首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure of a fucoidan from the brown seaweed Fucus serratus L   总被引:1,自引:0,他引:1  
A fucoidan consisting of L-fucose, sulfate and acetate in a molar proportion of 1:1:0.1 and small amounts of xylose and galactose were isolated from the brown seaweed Fucus serratus L. The fucoidan structure was investigated by 1D and 2D 1H and 13C NMR spectroscopy of its desulfated and de-O-acetylated derivatives as well as by methylation analysis of the native and desulfated polysaccharides. A branched structure was suggested for the fucoidan with a backbone of alternating 3- and 4-linked alpha-L-fucopyranose residues, -->3)-alpha-L-Fucp-(1-->4)-alpha-L-Fucp-(1-->, about half of the 3-linked residues being substituted at C-4 by trifucoside units alpha-L-Fucp-(1-->4)-alpha-L-Fucp-(1-->3)-alpha-L-Fucp-(1-->. Minor chains built up of 4-linked alpha-fucopyranose and beta-xylose residues were also detected, but their location, as well as the position of galactose residues, remained unknown. Sulfate groups were shown to occupy mainly C-2 and sometimes C-4, although 3,4-diglycosylated and some terminal fucose residues may be nonsulfated. Acetate was found to occupy C-4 of 3-linked Fuc and C-3 of 4-linked Fuc in a ratio of about 7:3.  相似文献   

2.
Chemically fully sulfated polysaccharides including xylan (-->4Xylbeta-(1-->4)Xylbeta1-->), amylose (-->4Glcalpha-(1-->4)Glcalpha1-->), cellulose (-->4Glcbeta-(1-->4)Glcbeta1-->), curdlan (-->3Glcbeta-(1-->3)Glcbeta1-->) and galactan (-->3Galbeta-(1-->3)Galbeta1-->), which have been isolated from Korean clam, were prepared, and their anticoagulant activity was investigated. The results strongly suggest that the activity might not be depending on anomeric configuration (alpha or beta) or monosaccharide species but on the glycosidic linkage, either (1-->3) or (1-->4). 1H NMR studies of these modified polysaccharides show that the neighboring sulfate groups at the C-2 and C-3 positions might have caused the conformational changes of each monosaccharide from 4C(1) to 1C(4). Furthermore, the effect of 6-sulfate residues on the anticoagulant activity was investigated using a specific desulfated reaction for the chemically fully sulfated polysaccharides. The 6-sulfate group is very important in determining anticoagulant activity of (1-->3)-linked polysaccharides, whereas the activity is not affected by presence or absence of the 6-sulfate group in (1-->4)-linked polysaccharides.  相似文献   

3.
Sulfated sialyl-alpha-(2 --> 3)-neolactotetraose (IV3NeuAcnLcOse4) derivatives at C-6 of GlcNAc (6-O-sulfo), terminal Gal (6'-O-sulfo), and both GlcNAc and Gal (6,6'-di-O-sulfo) residues have systematically been synthesized. (Methyl 5-acetamido-4,7,8,9- tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosy lonate)-(2 --> 3)-2,4-di-O-benzoyl-6-O-levulinoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(trimethylsilyl)ethyl (2-acetamido-2-deoxy- 3-O-benzyl-6-O-p-methoxyphenyl-beta-D-glucopyranosyl)-(1 --> 3)-(2,4,6-tri-O-benzyl-beta-D-galactopyranosyl)-(1 --> 4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside to give the suitably protected pentasaccharide which, upon selective removal of the p-methoxyphenyl and/or levulinoyl groups at C-6 of the GlcNAc and the terminal Gal residues, successive O-sulfation(s) and deprotection, afforded the desired three sulfated IV3NeuAcnLcOse4 derivatives. Acceptor specificity of the synthetic IV3NeuAcnLcOse4 probes for a human alpha-(1 --> 3)-fucosyltransferase (Fuc-TVII) was examined to study the biosynthetic pathway of L-selectin ligand. Only the 6-sulfated derivative at C-6 of GlcNAc was recognized by Fuc-TVII to give 6-O-sulfo sialyl LeX.  相似文献   

4.
Li B  Wei XJ  Sun JL  Xu SY 《Carbohydrate research》2006,341(9):1135-1146
A fucoidan, obtained from the hot-water extract of the brown seaweed, Hizikia fusiforme, was separated into five fractions by DEAE Sepharose CL-6B and Sepharose CL-6B column chromatography. All five fractions contained predominantly fucose, mannose and galactose and also contained sulfate groups and uronic acid. The fucoidans had MWs from 25 to 950 kDa. The structure of fraction F32 was investigated by desulfation, carboxyl-group reduction, partial hydrolysis, methylation analysis and NMR spectroscopy. The results showed that the sugar composition of F32 was mainly fucose, galactose, mannose, xylose and glucuronic acid; sulfate was 21.8%, and the MW was 92.7 kDa. The core of F32 was mainly composed of alternating units of -->2)-alpha-D-Man(1--> and -->4)-beta-D-GlcA(1-->, with a minor portion of -->4)-beta-D-Gal(1--> units. The branch points were at C-3 of -->2)-Man-(1-->, C-2 of -->4)-Gal-(1--> and C-2 of -->6)-Gal-(1-->. About two-thirds of the fucose units were at the nonreducing ends, and the remainder were (1-->4)-, (1-->3)- and (1-->2)-linked. About two-thirds of xylose units were at the nonreducing ends, and the remainder were (1-->4)-linked. Most of the mannose units were (1-->2)-linked, and two-thirds of them had a branch at C-3. Galactose was mainly (1-->6)-linked. The absolute configurations of the sugar residues were alpha-D-Manp, alpha-L-Fucp, alpha-D-Xylp, beta-D-Galp and beta-D-GlcpA. Sulfate groups in F32 were at C-6 of -->2,3)-Man-(1-->, C-4 and C-6 of -->2)-Man-(1-->, C-3 of -->6)-Gal-(1-->, C-2, C-3 or C-4 of fucose, while some fucose had two sulfate groups. There were no sulfate groups in either the GlcA or xylose residues.  相似文献   

5.
The distribution of carboxymethyl substituents in the alpha-(1 --> 6)-linked maltotriosyl repeating units of a carboxymethylpullulan (CMP) series was investigated by high resolution NMR spectroscopy on very short oligomers (DPn = 1.2-1.5) obtained by acid hydrolysis. A series of 2D NMR experiments on parent pullulan, hydrolysed pullulan and CMP was used to assign the proton and carbon chemical shifts of CMP acid hydrolysates. The degree of substitution (DS) and the relative distribution of -CH2COONa groups at OH-2, OH-3, OH-4 and OH-6 of glucose residues (DSi) were determined from 1H NMR measurements. From a set of CMP samples, widely different in degree of substitution, it was observed that the substitution at C-2 is predominant and decreases according to the order C-2 > C-3 > C-6 > C-4. Taking into account the availability of each OH group in the parent pullulan, an order of relative reactivity of hydroxyl groups is defined according to the relation: Ri = DSi/ni, where ni is the number of free OH groups in a maltotriose unit (MTU) for a given site C-i, the reactivity order was found to be OH-2 > OH-4 > OH-6 > OH-3.  相似文献   

6.
4-methoxyphenyl glycosides of 2,3'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl tetraose (16), 3',2'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl hexaose (27), and a twentyose (42) consisting of beta-(1-->6)-linked D-galactopyranosyl pentadecaoligosaccharide backbone with alpha-L-arabinofuranosyl side chains alternately attached at C-2 and C-3 of the middle galactose residue of each consecutive beta-(1-->6)-linked galactotriose unit of the backbone, were synthesized with isopropyl 3-O-allyl-2,4-di-O-benzoyl-1-thio-beta-D-galactopyranoside (6), 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (7), 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (12), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (17), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (19), and 2,6-di-O-acetyl-3,4-di-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (28) as the key synthons. Condensation of 6 with 7 gave the disaccharide donor 8, and subsequent condensation of 8 with 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranosyl-(1-->6)-2-O-acetyl-3,4-di-O-benzoyl-beta-D-galactopyranoside (9) followed by selective deacetylation afforded the tetrasaccharide acceptor 11. Coupling of 11 with 12 gave the pentasaccharide 13, its deallylation followed by coupling with 12, and debenzoylation gave the hexasaccharide 16 with beta-(1-->6)-linked galactopyranose backbone and 2- and 3'-linked alpha-L-arabinofuranose side chains. The octasaccharide 27 was similarly synthesized, while the twentyoside 42 was synthesized with tetrasaccharides 33 or 24 as the donors and 23, 36, 38, and 40 as the acceptors by consecutive couplings followed by deacylation.  相似文献   

7.
Galactose oxidase (EC 1.1.3.9, GAO) was used to convert the C-6' OH of Galbeta(1 --> 4)Glcbeta-OBn (5) to the corresponding hydrated aldehyde (7). Chemical modification, through dehydratative coupling and reductive amination, gave rise to a small library of Galbeta(1 --> 4)Glcbeta-OBn analogues (9a-f, 10, 11). UDP-[6-(3)H]Gal studies indicated that alpha1,3-galactosyltransferase recognized the C-6' modified Galbeta(1 --> 4)Glcbeta-OBn analogues (9a-f, 10, 11). Preparative scale reactions ensued, utilizing a single enzyme UDP-Gal conversion as well as a dual enzymatic system (GalE and alpha1,3GalT), taking full advantage of the more economical UDP-Glc, giving rise to compounds 6, 15-22. Galalpha(1 --> 3)Galbeta(1 --> 4)Glcbeta-OBn trisaccharide (6) was produced on a large scale (2 g) and subjected to the same chemoenzymatic modification as stated above to produce C-6" modified derivatives (23-30). An ELISA bioassay was performed utilizing human anti-alphaGal antibodies to study the binding affinity of the derivatized epitopes (6, 15-30). Modifications made at the C-6' position did not alter the IgG antibody's ability to recognize the unnatural epitopes. Modifications made at the C-6" position resulted in significant or complete abrogation of recognition. The results indicate that the C-6' OH of the alphaGal trisaccharide epitope is not mandatory for antibody recognition.  相似文献   

8.
A hemicellulosic polysaccharide, which was homogeneous on sedimentation analysis and also on electrophoresis, was isolated from the rice endosperm cell walls by the combination of alkaline extraction, ion exchange chromatography and iodine complex formation. It is composed of arabinose, xylose and glucose (molar ratio, 1.0: 2.0: 5.7) together with a small amount of galactose and rhamnose. Methylation analysis, Smith degradation and fragmentation with cellulase showed that this polysaccharide is composed of three distinct polysaccharide moieties i.e., xyloglucan, β-glucan and arabinoxylan. The xyloglucan consists of β-(1→4)-linked glucan back bone and short side chains of single xylose units or galactosylxylose both attached to C-6 of the glucose residues. The β-glucan contains both (1 →3)-and (1→4)-linkages similarly to the other cereal β-glucans, but differ from them in containing the blocks of (1→3)-linked glucose residues in the chain. The arabinoxylan has a highly branched structure, in which 78% of (1→4)-linked xylose residues have short side chains of arabinose at C-3 position.

On the basis of these findings, the interconnection of these polysaccharide moieties is discussed.  相似文献   

9.
Several structurally different glucans (alpha- and beta-) and galactomannans were characterized as components of four species of the genus Ramalina, namely R. dendriscoides, R. fraxinea, R. gracilis and R. peruviana. Freeze-thawing treatment of hot aqueous extracts furnished as precipitates (PW) linear alpha-D-glucans of the nigeran type, with regularly distributed (1-->3)- and (1-->4)-linkages in a 1:1 ratio. The supernatants (SW) contained alpha-D-glucans with (1-->3)- and (1-->4)-linkages in a molar ratio of 3:1. The lichen residues were then extracted with 2% aq. KOH, and the resulting extracts submitted to the freeze-thawing treatment, giving rise to precipitates (PK2) of a mixture of alpha-glucan (nigeran) and beta-glucan, which were suspended in aqueous 0.5% NaOH at 50 degrees C, dissolving preferentially the beta-glucan. These were linear with (1-->3)-linkages (laminaran). The mother liquor of the KOH extractions (2% and 10% aq. KOH) was treated with Fehling's solution to give precipitates (galactomannans). The galactomannans are related, having (1-->6)-linked alpha-D-mannopyranosyl main chains, substituted at O-4 and in a small proportion at O-2,4 by beta-D-galactopyranosyl units. Despite the different habitats of these lichenized fungi, all species studied in this investigation have a similar pool of polysaccharides.  相似文献   

10.
A polysaccharide fraction consisting of d-galactose, sulfate, and pyruvate in a molar proportion of 4:2:1 was isolated from the green seaweed Codium yezoense by water extraction followed by ion-exchange chromatography. To elucidate its structure, modified polysaccharides were prepared by desulfation, depyruvylation, and by total removal of non-carbohydrate substituents. Structures of the native polysaccharide and of the products of its chemical modifications were investigated by methylation analysis as well as by 1D and 2D (1)H and (13)C NMR spectroscopy. The polysaccharide devoid of sulfate and pyruvate was subjected to two subsequent Smith degradations to afford a rather low-molecular and essentially linear (1-->3)-beta-d-galactan. A highly ramified structure was suggested for the native polysaccharide, which contains linear backbone segments of 3-linked beta-d-galactopyranose residues connected by (1-->6) linkages, about 40% of 3-linked residues being additionally substituted at C-6, probably by short oligosaccharide residues also containing (1-->3) and (1-->6) linkages. Sulfate groups were found mainly at C-4 and in minor amounts at C-6. Pyruvate was found to form mainly five-membered cyclic ketals with O-3 and O-4 of the non-reducing terminal galactose residues. The minor part of pyruvate forms six-membered cyclic ketals with O-4 and O-6. The absolute configurations of ketals (R for six-membered ketals and S for five-membered ones) were established using NMR spectral data.  相似文献   

11.
Structure of a fucoidan from the brown seaweed Fucus evanescens C.Ag   总被引:6,自引:0,他引:6  
A fucoidan consisting of L-fucose, sulfate and acetate in a molar proportion of 1:1.23:0.36 was isolated from the Pacific brown seaweed Fucus evanescens. The structures of its desulfated and de-O-acetylated derivatives were investigated by 1D and 2D (1)H and (13)C NMR spectroscopy, and the data obtained were confirmed by methylation analysis of the native and desulfated polysaccharides. The fucoidan was shown to contain a linear backbone of alternating 3- and 4-linked alpha-L-fucopyranose 2-sulfate residues: -->3)-alpha-L-Fucp(2SO(3)(-))-(1-->4)-alpha-L-Fucp(2SO(3)(-))-(1-->. Additional sulfate occupies position 4 in a part of 3-linked fucose residues, whereas a part of the remaining hydroxyl groups is randomly acetylated.  相似文献   

12.
A beta-glucuronidase purified from a commercial pectolytic enzyme preparation of Aspergillus niger hydrolyzed about half of the 4-O-methyl-glucuronic acid (4-Me-GlcA) residues located at the nonreducing terminals of (1-->6)-linked beta-galactosyl side chains of the carbohydrate portion of a radish arabinogalactan-protein (AGP) modified by treatment with fungal alpha-L-arabinosidase. Digestion of the alpha-L-arabinosidase-treated AGP with exo-beta-(1-->3)-galactanase released, by exo-fission of beta-(1-->3)-galactosidic bonds in the backbone chains of the AGP, neutral beta-(1-->6)-galactooligosaccharides with various chain lengths and their acidic derivatives substituted at their nonreducing terminals with 4-Me-beta-GlcA groups. In contrast, successive digestion of the alpha-L-arabinosidase-treated AGP with beta-glucuronidase followed by exo-beta-(1-->3)-galactanase liberated much higher amounts of beta-(1-->6)-galactooligomers together with a small portion of short acidic oligomers, mainly 4-Me-beta-GlcA-(1-->6)-Gal and 4-Me-beta-GlcA-(1-->6)-beta-Gal-(1-->6)-Gal. These results indicate that beta-glucuronidase acts upon 4-Me-beta-GlcA residues in long (1-->6)-linked beta-galactosyl side chains of the AGP, whereas short acidic side chains survive the attack of the enzyme.  相似文献   

13.
Lactobacillus pentosus B235, which was isolated as part of the dominant microflora from a garlic containing fermented fish product, was grown in a chemically defined medium with inulin as the sole carbohydrate source. An extracellular fructan beta-fructosidase was purified to homogeneity from the bacterial supernatant by ultrafiltration, anion exchange chromatography and hydrophobic interaction chromatography. The molecular weight of the enzyme was estimated to be approximately 126 kDa by gel filtration and by SDS-PAGE. The purified enzyme had the highest activity for levan (a beta(2-->6)-linked fructan), but also hydrolysed garlic extract, (a beta(2-->1)-linked fructan with beta(2-->6)-linked fructosyl sidechains), 1,1,1-kestose, 1,1-kestose, 1-kestose, inulin (beta(2-->1)-linked fructans) and sucrose at 60, 45, 39, 12, 9 and 3%, respectively, of the activity observed for levan. Melezitose, raffinose and stachyose were not hydrolysed by the enzyme. The fructan beta-fructosidase was inhibited by p-chloromercuribenzoate, EDTA, Fe2+, Cu2+, Zn2+ and Co2+, whereas Mn2+ and Cu2+ had no effect. The sequence of the first 20 N-terminal amino acids was: Ala-Thr-Ser-Ala-Ser-Ser-Ser-Gln-Ile-Ser-Gln-Asn-Asn-Thr-Gln-Thr-Ser-Asp-Val-Val. The enzyme had temperature and pH optima at 25 degrees C and 5.5, respectively. At concentrations of up to 12% NaCl no adverse effect on the enzyme activity was observed.  相似文献   

14.
Abstract The chemical structure of the lipid A moiety of the lipopolysaccharide of the type strain of Plesiomonas shigelloides was elucidated. It consists of a β-(1 → 6)-linked glucosamine disaccharide carrying phosphate groups at C-1 of the reducing and at C-4' of the non-reducing glucosamine. It contains a total of 6 residues of fatty acids, 2 amide-linked and 4 ester-linked. The amino groups of the backbone disaccharide are N -acylated by substituted 3-hydroxyacyl residues: at the reducing glucosamine by 3-O-(14:0)14:0; and at the non-reducing glucosamine by 3-O-(12:0)14:0.
Two residues of 3-hydroxytetradecanoic acid are linked to C-3 and C-3' of the glucosamine residues; the hydroxy groups of these ester-linked 3-hydroxytetradecanoic acids are unsubstituted. In free lipid A, the hydroxyl groups at C-4 and C-6' are unsubstituted, indicating that the 2-keto-3-deoxyoctonic acid (KDO) is linked to C-6' of the non-reducing glucosamine, as was shown with enterobacterial lipid A. The taxonomical significance of these structural details is discussed.  相似文献   

15.
A method is described for the preparation of two types of multi-labeled 6 beta-hydroxycortisol containing either five deuterium atoms at C-19 methyl and C-1 methylene or four 13C atoms at C-1, C-2, C-4, and C-19 in addition to the five deuterium atoms for use as analytical internal standards for gas chromatography-mass spectrometry (GC-MS). BMD derivatives of [1,1,19,19,19-2H(5)]cortisone and [1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisone (cortisone-2H(5)-BMD and cortisone-13C(4),2H(5)-BMD) were first synthesized via indan synthon method starting from optical active 11-oxoindanylpropionic acid and labeled isopropenyl anion ([1,1,3,3,3-2H(5)]- or [1,3-13C(2),1,1,3,3,3-2H(5)]isopropenyl anion). The labeled isopropenyl anion was prepared from commercially available [1,1,1,3,3,3-2H(6)]- or [1,3-13C(2),1,1,1,3,3,3-2H(6)]acetone. Ultraviolet (UV) irradiated autoxidation at C-6 position of 3-ethyl-3,5-dienol ether derivatives of the labeled cortisone-BMDs gave 6 beta-hydroxy-[1,1,19,19,19-2H(5)]cortisone-BMD and 6 beta-hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisone-BMD, respectively, as a mixture of 6 beta- and 6 alpha-epimers in a ratio of 4:1. Separation of 6 beta- and 6 alpha-epimers by thin-layer chromatography (TLC) and subsequent hydrolysis of the BMD group at C-17 gave pure labeled 6 beta-hydroxycortisone. After protecting the keto group at C-3 of the labeled 6 beta-hydroxycortisone-BMD as semicarbazone, reduction of 11-keto group with NaBH(4) and subsequent removal of the C-3 and C-17 protecting groups gave 6beta-hydroxy-[1,1,19,19,19-2H(5)]cortisol (6 beta-hydroxycortisol-2H(5)) and 6 beta-hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisol (6 beta-hydroxycortisol-13C(4),2H(5)), respectively, as a mixture of 6 beta- and 6 alpha-epimers (6 beta:6 alpha=4.4:1). The isotopic compositions of 6 beta-hydroxycortisol-2H(5) and 6 beta-hydroxycortisol-13C(4),2H(5) were 90.9 and 92.1 at.%, respectively. Furthermore, 6 beta-hydroxy-[1 alpha,16,16,17 alpha-2H(4)]testosterone was synthesized by the UV irradiated autoxidation at C-6 position of 3-ethyl-3,5-dienol ether derivative of deuterium-labeled testosterone ([1 alpha,16,16,17 alpha-2H(4)]testosterone) obtained by using catalytic deuteration and hydrogen-deuterium exchange reactions.  相似文献   

16.
Alginate with long strictly alternating sequences of mannuronic (M) and guluronic (G) acid residues, F(G) = 0.47 and F(GG) = 0.0, was prepared by incubating mannuronan with the recombinant C-5 epimerase AlgE4. By partial acid hydrolysis of this PolyMG alginate at pH values from 2.8 to 4.5 at 95 degrees C, alpha-L-GulpA-(1-->4)-beta-D-ManpA (G-M) linkages were hydrolyzed far faster than beta-D-ManpA-(1-->4)-alpha-L-GulpA (M-G) linkages in the polymer chain. The ratio of the rates (kG-M/kM-G) decreased with increasing pH. The dominant mechanism for hydrolysis of (1-->4)-linked PolyMG in weak acid was thus proved to be an intramolecular catalysis of glycosidic cleavage of the linkages at C-4 by the undissociated carboxyl groups at C-5 in the respective units. The higher degradation rate of G-M than M-G glycosidic linkages in the polymer chain of MG-alginate at pH 3.5 and 95 degrees C was exploited to make oligomers mainly consisting of M on the nonreducing and G on the reducing end and, thus, a majority of oligomers with an even number of residues. The ratio of the rate constants kG-M/kM-G at this pH was 10.7. The MG-hydrolysate was separated by size exclusion chromatography and the MG oligosaccharide fractions analyzed by electrospray ionization-mass spectrometry together with 1H and 13C NMR spectroscopy. Chemical shifts of MG-oligomers (DP2-DP5) were elucidated by 2D 1H and 13C NMR.  相似文献   

17.
18.
3,4,6-Tri-O-acetyl-D-galactal was transformed into methyl 6-O-acetyl-2-azido-4-O-benzyl-2-deoxy-beta-D-galactopyranoside and its 4-O-acetyl-6-O-benzyl analogue, each of which was glycosylated with activated, O-acetylated derivatives of methyl D-glucopyranosyluronate. The resulting beta-(1----3)-linked disaccharide derivatives were each reductively N-acetylated, hydrogenolysed, O-sulfated, and saponified to afford the disodium salts of methyl 2-acetamido-2-deoxy-3-O-(beta-D-glucopyranosyluronic acid)-4-O-sulfo-beta-D-galactopyranoside and the 6-O-sulfo analogue. D-Galactal was also transformed into activated derivatives of 2-azido-3,6-di-O-benzyl-2-deoxy-D-galactopyranose and their 3,4-di-O-benzyl analogues with various substituents at O-4 and O-6. These glycosyl donors were condensed with 6-O-protected derivatives of methyl 2,3-di-O-benzyl-beta-D-glucopyranoside to give the beta-(1----4)-linked disaccharide derivatives, which were selectively deprotected, then oxidised at C-6 of the gluco unit, reductively N-acetylated, selectively deprotected, O-sulfated at C-4 or C-6 of the galacto unit, and hydrogenolysed to give the disodium salts of methyl 4-O-(2-acetamido-2-deoxy-4-O-sulfo-beta-D-galactopyranosyl)-beta-D- glucopyranosiduronic acid and the 6-O-sulfo analogue.  相似文献   

19.
Lipopolysaccharide (LPS) oligosaccharide epitopes are major virulence factors of Haemophilus influenzae. The structure of LPS glycoforms of H. influenzae type b strain Eagan containing a mutation in the gene lgtC is investigated. LgtC is involved in the biosynthesis of globoside trisaccharide [alpha-D-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-D-Glcp-(1-->], an LPS epitope implicated in the virulence of this organism. Glycose and methylation analyses provided information on the composition while electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS (LPS-OH) indicated the major glycoform to contain 4 hexoses attached to the common H. influenzae triheptosyl inner-core unit. The structure of the Hex4 glycoform in LPS-OH and core oligosaccharide samples was determined by NMR. It consists of an l-alpha-D-HepIIIp-(1-->2)-[PEtn-->6]-l-alpha-D-HepIIp-(1-->3)-l-alpha-D-HepIp-(1-->5)-[P-->4]-alpha-D-Kdop-(2--> to which a beta-D-Glcp-(1-->4)-alpha-D-Glcp disaccharide unit is extended from HepII at the C-3 position, while HepI and HepIII are substituted at the C-4 and C-2 positions with beta-D-Glcp and beta-D-Galp, respectively. This structure corresponds to that expressed as a subpopulation in the parent strain. 31P NMR studies permitted the identification of subpopulations of LPS containing Kdo substituted at the C-4 position with monophosphate or pyrophosphoethanolamine (PPEtn). HepIII was found to be substituted with either phosphate at the C-4 position or acetate at the C-3 position, but not both of them together in the same subpopulation. The subpopulations containing phosphate and acetate at HepIII and their location have not previously been reported.  相似文献   

20.
The beta-D-galactosidase from porcine liver induced regiospecific transglycosylation of beta-D-galactose from beta-D-Gal-OC6H4NO2-o to OH-6 of, respectively, p-nitrophenyl glycoside acceptors of Gal, GlcNAc and GalNAc to afford beta-Gal-(1-->6)-alpha-Gal-OC6H4NO2-p, beta-Gal-(1--> 6)-beta-Gal-OC6H4NO2-p, beta-Gal-(1-->6)-alpha-GalNAc-OC6H4NO2-p, beta-Gal-(1-->6)-beta-GalNAc-OC6H4NO2-p, beta-Gal-(1-->6)-alpha-GlcNAc-OC6H4NO2-p, and beta-Gal-(1-->6)-beta-GlcNAc-OC6H4NO2-p. The enzyme showed much higher transglycosylation activity for the alpha-glycoside acceptors than the corresponding beta-glycoside acceptors. The regioselectivity of the beta-D-galactosidase from Bacillus circulans ATCC 31382 greatly depended on the nature of the acceptor. When alpha-D-GalNAc-OC6H4NO2-p and alpha-D-GlcNAc-OC6H4NO2-p were used as acceptors, the enzyme showed high potency for regioselective synthesis of beta-Gal-(1-->3)-alpha-GalNAc-OC6H4NO2-p and beta-Gal-(1-->3)-alpha-GlcNAc-OC6H4NO2-p in high respective yields of 75.9 and 79.3% based on the acceptors added. However, replacement of beta-D-Gal-OC6H4NO2-p by beta-D-GalNAc-OC6H4NO2-p did change the direction of galactosylation. The enzyme formed regioselectively beta-Gal-(1-->6)-beta-Gal-OC6H4NO2-p with (beta-Gal-1-->(6-beta-Gal-1-->)n6-beta-Gal-OC6H4NO2-p, n = 1-4). No beta-(1-->3)-linked product was detected during the reaction. Use of the two readily available beta-D-galactosidases facilitates the preparation of (1-->3)- and (1-->6)-linked disaccharide glycosides of beta-D-Gal-GalNAc and beta-D-Gal-GlcNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号