首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
inv encodes invasin, which is the primary invasion factor of Yersinia enterocolitica. inv expression in vitro is regulated in response to temperature, pH, and growth phase. In vitro, inv is maximally expressed at 26 degrees C and repressed at 37 degrees C at neutral pH but, when the pH of the media is adjusted to 5.5, levels of inv expression at 37 degrees C are comparable to those at 26 degrees C. A previous genetic screen for regulators of inv identified RovA, which was found to be required for activation of inv in vitro under all conditions tested as well as in vivo. Here we describe a screen that has identified a negative regulator of inv expression, ymoA. The ymoBA locus was identified by transposon mutagenesis as a repressor of inv expression in vitro at 37 degrees C at neutral pH. This mutant shows increased inv expression at 37 degrees C. The mutant can be fully complemented for inv expression by a plasmid expressing ymoA. These results indicate that YmoA plays a role in the negative regulation of inv.  相似文献   

10.
An essential virulence attribute for Yersinia enterocolitica and Yersinia pseudotuberculosis is the ability to invade the intestinal epithelium of mammals. The chromosomal invasin gene (inv) has been cloned from both of these Yersinia species, and the Y. pseudotuberculosis invasin has been well characterized (R. R. Isberg, D. L. Voorhis, and S. Falkow, Cell 50:769-778, 1987). Here we constructed TnphoA translational fusions to the Y. enterocolitica inv gene to identify, characterize, and localize the inv protein product in Escherichia coli. The cloned Y. enterocolitica inv locus encoded a unique protein of ca. 92 kilodaltons when expressed in minicells. A protein of comparable size was detected in immunoblots by using monoclonal antibodies directed against the Y. pseudotuberculosis invasin. This protein, which we also refer to as invasin, promoted both attachment to and invasion of cultured epithelial cells. These two functions were not genetically separable by insertional mutagenesis. We determined that the Y. enterocolitica invasin was localized on the outer membrane and that it was exposed on the bacterial cell surface, which may have implications for how invasin functions to mediate invasion.  相似文献   

11.
Many enteric pathogens are equipped with multiple cell adhesion factors which are important for host tissue colonization and virulence. Y. enterocolitica, a common food-borne pathogen with invasive properties, uses the surface proteins invasin and YadA for host cell binding and entry. In this study, we demonstrate unique cell adhesion and invasion properties of Y. enterocolitica serotype O:3 strains, the most frequent cause of human yersiniosis, and show that these differences are mainly attributable to variations affecting the function and expression of invasin in response to temperature. In contrast to other enteric Yersinia strains, invasin production in O:3 strains is constitutive and largely enhanced compared to other Y. enterocolitica serotypes, in which invA expression is temperature-regulated and significantly reduced at 37°C. Increase of invasin levels is caused by (i) an IS1667 insertion into the invA promoter region, which includes an additional promoter and RovA and H-NS binding sites, and (ii) a P98S substitution in the invA activator protein RovA rendering the regulator less susceptible to proteolysis. Both variations were shown to influence bacterial colonization in a murine infection model. Furthermore, we found that co-expression of YadA and down-regulation of the O-antigen at 37°C is required to allow efficient internalization by the InvA protein. We conclude that even small variations in the expression of virulence factors can provoke a major difference in the virulence properties of closely related pathogens which may confer better survival or a higher pathogenic potential in a certain host or host environment.  相似文献   

12.
The inv gene encodes the protein invasin, which is the primary invasion factor for Yersinia enterocolitica in vitro and in vivo. Previous studies of Yersinia species have shown that inv expression and entry into mammalian cells are temperature regulated. Invasin production is reduced at the host temperature of 37°C as compared to production at ambient temperature; consequently, this study was initiated to determine whether other host environmental signals might induce inv expression at 37°C. An inv::phoA translational fusion was recombined on to the Y. enterocolitica chromosome by allelic exchange to monitor inv expression. Molecular characterization of expression of the wild-type inv gene and the inv phoA fusion showed that invasin is not produced until early stationary phase in bacteria grown at 23°C. Y. enterocolitica grown at 37°C and pH 5.5 showed levels of inv expression comparable to those observed in bacteria grown at 23 C. An increase in Na+ ions caused a slight increase in expression at 37 C. However, expression at 37°C was unaffected by anaerobiosis, growth’medium, calcium levels, or iron levels. Additionally, Y. enterocolitica expressed invasin in Peyer's patches two days after being introduced intragastrically into BALB/c mice. These results suggest that invasin expression in K enterocolitica may remain elevated eariy during interaction with the intestinal epithelium, a site at which invasin was shown to be necessary.  相似文献   

13.
Antimicrobial peptides (APs) belong to the arsenal of weapons of the innate immune system against infections. In the case of gram-negative bacteria, APs interact with the anionic lipid A moiety of the lipopolysaccharide (LPS). In yersiniae most virulence factors are temperature regulated. Studies from our laboratory demonstrated that Yersinia enterocolitica is more susceptible to polymyxin B, a model AP, when grown at 37°C than at 22°C (J. A. Bengoechea, R. Díaz, and I. Moriyón, Infect. Immun. 64:4891-4899, 1996), and here we have extended this observation to other APs, not structurally related to polymyxin B. Mechanistically, we demonstrate that the lipid A modifications with aminoarabinose and palmitate are downregulated at 37°C and that they contribute to AP resistance together with the LPS O-polysaccharide. Bacterial loads of lipid A mutants in Peyer's patches, liver, and spleen of orogastrically infected mice were lower than those of the wild-type strain at 3 and 7 days postinfection. PhoPQ and PmrAB two-component systems govern the expression of the loci required to modify lipid A with aminoarabinose and palmitate, and their expressions are also temperature regulated. Our findings support the notion that the temperature-dependent regulation of loci controlling lipid A modifications could be explained by H-NS-dependent negative regulation alleviated by RovA. In turn, our data also demonstrate that PhoPQ and PmrAB regulate positively the expression of rovA, the effect of PhoPQ being more important. However, rovA expression reached wild-type levels in the phoPQ pmrAB mutant background, hence indicating the existence of an unknown regulatory network controlling rovA expression in this background.  相似文献   

14.
15.
Escherichia coli strains harbouring the Yersinia pseudotuberculosis inv gene are able to enter cultured mammalial cells. We show here that this property is not shared by all enteric bacteria, since Shigella flexneri 2a cured of its virulence-associated plasmid and harbouring the inv gene is unable to enter mammalian cells efficiently. Mapping studies showed that the region of the chromosome responsible for this phenotype includes rfaB, a locus involved in the production of O antigen. S. flexneri 2a strains that express O antigen were unable to enter mammalian cells, even though invasin was efficiently expressed and localized, showing that this structure interferes with invasin activity. The O antigen either masks invasin or sterically hinders the ability of the mammalian cell receptor to bind this protein.  相似文献   

16.
17.
18.
The inv locus of Yersinia enterocolitica is sufficient to convert a non-invasive Escherichia coli K12 strain into a microorganism that is able to penetrate cultured mammalian cells. The nucleotide sequence of inv reveals an open reading frame corresponding to an 835-amino-acid protein that is homologous to the invasin protein from Yersinia pseudotuberculosis. A polyclonal antiserum elicited by a synthetic peptide corresponding to the C-terminal 88 amino acids of this open reading frame detected a unique 100 kD protein in cell lysates of Y. enterocolitica strain 8081 c and in an E. coli strain harbouring the cloned inv gene. This protein localized to the outer membranes of both microorganisms and was cleaved by low concentrations of extracellular trypsin. HEp-2 cells were shown to attach to surfaces coated with bacterial outer membranes containing invasin and this attachment was destroyed by treatment of the membranes with trypsin. Thus it appears that the invasin protein from Y. enterocolitica is able to mediate both attachment to and entry of cultured epithelial cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号