首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Preincubation of luteal membranes with human choriogonadotropin results in the formation of an activated state of adenylate cyclase which is not reversed by washing and which is limited only by the absence of guanine nucleotides, whereas preincubation with GTP yields only a partially activated adenylate cyclase which requires the presence of both GTP and human choriogonadotropin during assay to demonstrate maximal activity. 2. Preincubation of luteal membranes with GTP and human choriogonadotropin does not lead to a synergistic increase in wash-resistant activity. 3. Luteal membranes that had been preincubated with GTP and hormone exhibited a decreasing rate of cyclic AMP synthesis during the adenylate cyclase assay incubation; addition of GTP during the assay incubation reversed the decrease. 4. Membranes that had been preincubated in the absence of guanine nucleotide and hormone showed a `burst' phase of cyclic AMP synthesis when GTP was present in the assay incubation and a `lag' phase with p[NH]ppG (guanosine 5′-[β,γ-imido]triphosphate) present in the assay. The presence of human choriogonadotropin with either nucleotide in the assay incubation eliminated the curvatures in plots observed with guanine nucleotides alone. 5. Luteal adenylate cyclase was persistently activated by preincubation with p[NH]ppG alone or in combination with human choriogonadotropin; the activation caused by p[NH]ppG alone was still increasing after 70min of preincubation, whereas that caused by p[NH]ppG in the presence of hormone was essentially complete within 10min of preincubation. 6. Luteal adenylate cyclase that had been partially preactivated by preincubation with p[NH]ppG was slightly increased in activity by the inclusion of further p[NH]ppG in the adenylate cyclase assay incubation, but more so with p[NH]ppG and hormone. Human choriogonadotropin alone caused no further increase in the activity of the partially stimulated preparation unless p[NH]ppG was also added to the assay incubation. 7. GTP decreased the activity of adenylate cyclase in membranes that had been partially preactivated in the presence of p[NH]ppG; the decrease in activity was greater when GTP and hormone were present simultaneously in the assay. 8. The results indicate that stable activation states of adenylate cyclase can be induced by preincubation of luteal membranes in vitro with human choriogonadotropin or p[NH]ppG, and that in the presence of p[NH]ppG the hormone may accelerate events subsequent to guanine nucleotide binding. Stable activation of luteal adenylate cyclase by prior exposure to GTP is not achieved. The involvement of GTPase activity and of hormone-promoted guanine nucleotide exchange in the modulation of luteal adenylate cyclase activity is discussed.  相似文献   

2.
Epinephrine increased adenylate cyclase activity 10 to 15 fold in lysates of the cultured human astrocytoma cell line 132-1N1. GTP had little effect on adenylate cyclase activity of lysed cell preparations either with or without added epinephrine. However, the epinephrine stimulation of adenylate cyclase was essentially lost (less than 90%) when a washed nuclei-free membrane preparation of the cyclase was assayed. A 10 to 15 fold epinephrine stimulation of the membrane adenylate cyclase could be demonstrated if cytosol of GTP were added to the assay with the hormone. The criteria of anion exchange, cation exchange, gel exclusion and paper chromatography indicated that the cytosolic agents which acted synergistically with hormones were GTP and GDP. The apparent Kact's for the synergistic action of GDP and GTP were essentially identical (1.0 muM) and of all the other nucleotides examined only GDP had a potency similar to GTP. However, the effect of GDP was apparently due to its rapid conversion to GTP even in the absence of a regenerating system. With epinephrine pretreatment of the intact 132-1N1 cells there was a specific loss of epinephrine stimulation of adenylate cyclase activity. The hormone pretreatment did not alter the capacity of the cytosol from these desensitized cells to potentiate epinephrine stimulation of the cyclase. Rather, the alteration was in the particulate fraction of the lysate. The desensitization of the membranous cyclase was stable and not reversed by GTP.  相似文献   

3.
LH controls Leydig cell steroidogenesis by interaction with specific membrane receptors initiating membrane coupling events. Stimulation of the androgen pathways occurs mainly through cAMP mediated mechanism including LH induced guanyl nucleotide binding, membrane phosphorylation and adenylate cyclase activation. cAMP dependent kinase activation presumably causes phosphorylation of key proteins of the steroidogenic pathway and consequent increase in testosterone production. The hormone also appears to facilitate the androgen stimulus by a cyclic AMP independent mechanism located at the plasma membrane or intracellular sites. The stimulatory event can be negatively influenced by the action of certain peptide hormones (i.e. angiotensin II) through the guanyl nucleotide inhibitory subunit of adenylate cyclase (Gi). In recent studies we have presented evidence for a Ca2+ sensitive kinase system present in purified cell membranes. Gpp(NH)p, GTP, and phospholipid in presence of nanomolar Ca2+ induce phosphate incorporation into Mr 44,500 substrate with marked inhibition at microM Ca2+. Similarly a biphasic pattern of activation was observed with adenylate cyclase activity. Membrane phosphorylation may be a modifier of LH-stimulated adenylate cyclase activity and possibly other LH induced actions in the activated Leydig cell membrane. Furthermore we have defined the stimulatory effects of forskolin on all Leydig cell cyclic AMP pools and have provided additional evidence of functional compartmentalization and/or cAMP independent facilitory stimulus of steroidogenesis by the trophic hormone. The demonstration of a novel high affinity inhibitory action of forskolin upon adenylate cyclase activity and cyclic AMP generation mediated by the Gi subunit of adenylate cyclase has provided a new approach for direct evaluation of functional inhibitory influence of Gi subunit in the Leydig cell. The cultured fetal Leydig cell system has provided a useful model to elucidate mechanisms involved in the development of gonadotropin induced estradiol mediated desensitization of steroidogenesis. We have isolated from the fetal testis a small population (2-5% of total) of transitional cells with morphological characteristics of cells found in 15 day postnatal testis but functional capabilities of the adult cell. We have also demonstrated after appropriate treatment (i.e. estrogen, and frequent or a high gonadotropin dose) the emergence of a functional adult-like cell type from the fetal Leydig cell population.  相似文献   

4.
GDP regulation of basal and receptor-mediated catecholamine-sensitive human fat cell adenylate cyclase was studied using purified plasma membrane preparations and assay conditions selected to minimize conversion of GDP to GTP. Under ordinary assay conditions (low NaCl concentration) and with App(NH)p as substrate to prevent GDP conversion to GTP, basal enzyme activity was stimulated up to 2-fold by GDP (0.1 mM) while addition of epinephrine (0.1 mM) eliminated stimulation by GDP and reduced basal adenylate cyclase activity. With ATP as substrate, the enzyme was not responsive to hormone in the absence of guanyl nucleotides and GDP augmentation of basal activity was small (0-1.5-fold) while stimulatory effects of epinephrine and isoproterenol were minimally but definitely exhibited (1.5-fold over basal). Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), a GDP analog resistant to phosphorylation and hydrolysis and an antagonist of GTP, stimulated enzyme activity more than did GDP but did not promote epinephrine action. Rather, inhibition of GDP beta S-stimulated adenylate cyclase activity was seen with both epinephrine and isoproterenol and also with GTP. In the presence of NaCl (200 mM), which alone produced 2-3-fold increase in basal enzyme activity, GDP (0.1 mM) and GDP beta S (50 microM) produced 8- and 15-fold increases of activity, respectively. Addition of UDP, to prevent possible conversion of GDP to GTP, had no effect on NaCl-enhanced activation by GDP. The results indicate that the human fat cell adenylate cyclase system is unique in responding to GDP and its analog GDP beta S by stimulation in the absence of hormone but suggest that as in other systems catecholamine-mediated stimulation is normally dependent on GTP. Salts (Na+) appear to stimulate the enzyme by facilitating the interaction of the guanyl nucleotide regulatory protein (N8) with the catalytic unit.  相似文献   

5.
The interdependent effects of divalent cations, pH, and various activators of adenylate cyclase were examined in partially purified plasma membranes from rat liver. This adenylate cyclase was found to exhibit largely alkaline pH optima, in the range of 8.3 to 9.3, for the expression of basal activity, and activities with GTP, GPP(NH)P, prostaglandin E1 and GTP, and N6-(phenylisopropyl)adenosine and GTP. Glucagon and GTP, while increasing activity 8- to 10-fold, shifted the optimum activity to about pH 7.5. However, stimulation of the enzyme by 10 mm NaF or 3 mm Na3VO4 was strikingly dependent on pH. In both cases activation was optimal at pH values between 6.3 and 7.3, though above about pH 8.5 fluoride was barely stimulatory and vanadate was slightly inhibitory. This effect of elevated pH to reduce fluoride- or vanadate-stimulated activity could be prevented by glucagon plus guanine nucleotide, but could not be reversed once activity was lowered during preincubation. The data suggest that this effect was not due to the formation of an inhibitor of adenylate cyclase per se, nor to an artifact of assay methods. The effect of elevated pH was more pronounced with Mn2+ as activating cation than with Mg2+. With fluoride and lower pH adenylate cyclase was essentially Mn2+ requiring, whereas with fluoride and higher pH activity was comparable with either cation. The data suggested that combinations of pH, divalent cation, and activating ligand dictate the interactions of the constitutive subunits of the adenylate cyclase and provide additional criteria with which current models for the regulation of adenylate cyclase may be tested.  相似文献   

6.
The interaction between the Ca2+-binding protein, calmodulin, and guanyl nucleotides was investigated in a rat striatal particulate fraction. We found that the ability of calmodulin to stimulate adenylate cyclase in the presence of guanyl nucleotides depends upon the type and concentration of the guanyl nucleotide. Adenylate cyclase activity measured in the presence of calmodulin and GTP reflected additivity at every concentration of these reactants. On the contrary, when the activating guanyl nucleotide was the nonhydrolyzable analog of GTP, guanosine-5'-(beta,gamma-imido)triphosphate (GppNHp), calmodulin could further activate adenylate cyclase only at concentrations less than 0.2 microM GppNHp. Kinetic analysis of adenylate cyclase by GppNHp was compatible with a model of two components of adenylate cyclase activity, with over a 100-fold difference in sensitivity for GppNHp. The component with the higher affinity for GppNHp was competitively stimulated by calmodulin. The additivity between calmodulin and GTP in the striatal particulate fraction suggests that they stimulate different components of cyclase activity. The calmodulin-stimulatable component constituted 60% of the total activity. Our two-component model does not delineate, at this point, whether there are two separate catalytic subunits or one catalytic subunit with two GTP-binding proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The dose and temporal (1-24 h) effects of two phenothiazines, chlorpromazine and trifluoperazine, on steroidogenesis and adenylate cyclase activity of gonadotropin-responsive Leydig tumor cells (M5480A) in primary culture were examined. At low doses (e.g. 0.1-1 microM) these antipsychotic drugs were slightly inhibitory (trifluoperazine) or without effect (chlorpromazine), while at 25 microM each drug was weakly stimulatory to basal testosterone production. Trifluoperazine was, in general, inhibitory to HCG-stimulated testosterone production, but chlorpromazine exhibited paradoxical effects. At 5 and 10 microM this neuroleptic agent increased HCG-stimulated steroidogenesis, while at 25 microM testosterone production was inhibited. In a particulate fraction prepared from the tumor the activity of adenylate cyclase was stimulated 3.4-fold in the presence of 10 microM 5'-guanylimidodiphosphate and 5-fold in the presence of HCG plus the non-hydrolyzable GTP analogue. Between doses of 1-100 microM neither drug altered the basal activity of adenylate cyclase. Trifluoperazine at doses of 1-100 microM inhibited 5'-guanylimidodiphosphate-stimulated adenylate cyclase activity both with and without added gonadotropin. At doses of 1-10 microM chlorpromazine had no effect on adenylate cyclase activity, but it stimulated activity in the dose range of 20-100 microM. Interestingly, in the presence of 5'-guanylimidodiphosphate this drug did not alter the stimulated enzymic activity achieved with a maximal dose of HCG. Therefore, these phenothiazines exhibit quite divergent dose-dependent effects and their actions must occur at multiple loci. Also, it seems unlikely that the effects of these agents on steroidogenesis and adenylate cyclase activity can be reconciled solely in terms of calmodulin-mediated processes.  相似文献   

8.
This study was aimed to elucidate whether GDP can mediate hormonal signal to adenylate cyclase in hepatic glucagon sensitive adenylate cyclase with ATP as substrate. Conversion of added GDP to GTP catalyzed by nucleoside diphosphate kinase was suppressed to less than 0.3% of added GDP by including UDP. Inhibition of this enzyme activity by UDP was accompanied by a preferential loss of the stimulatory effect of glucagon plus GDP on cyclase activity without changes in effects of glucagon plus GTP, glucagon plus guanosine 5'-(beta, gamma-imino)triphosphate, and NaF. Under this condition, i.e. in the presence of UDP, GDP competitively inhibited the actions of GTP (Ki for GDP, 1 microM) and guanosine 5'-(beta, gamma-imino)triphosphate in the presence of glucagon, the inhibition being complete at high GDP concentrations. GDP also inhibited cyclase activity stimulated by NaF with UDP but did only slightly without UDP. It was demonstrated that nucleoside diphosphate kinase is located in membranes in addition to cytosol fraction. However, the activity of membrane-associated enzyme was not affected by the addition of glucagon. Based on these observations, it is concluded that GDP is unable to mediate hormonal signal to adenylate cyclase and that it acts as an inhibitor of cyclase activity stimulated by GTP or its analog along with hormone. The results suggest a possible role of membrane-associated nucleoside diphosphate kinase in determining GTP and GDP levels at or near their binding site so as to replenish GTP and, thereby, decrease the inhibitory action of GDP when hormone is present.  相似文献   

9.
Adenylate Cyclase Activity in the Superior Cervical Ganglion of the Rat   总被引:2,自引:2,他引:0  
Abstract: Adenylate cyclase activity in cell-free homogenates of the rat superior cervical ganglion (SCG) was assayed under a variety of experimental conditions. Adenylate cyclase activity was decreased by approximately one-half when 1 m M EGTA was included in the homogenization buffer and assay mixture, indicating the presence of a Ca2+-sensitive adenylate cyclase in the ganglion. In the presence of EGTA, basal adenylate cyclase activity in homogenates of the SCG was 12.9 ± 0.6 pmol cyclic AMP/ganglion/10 min. Enzyme activity was stimulated three- to fourfold by 10 m M NaF or 10 m M MnCl2, Both GTP and its nonhydrolyzable analog guanylylimidodiphosphate (GppNHp) stimulated adenylate cyclase in a concentration-dependent manner over the range of 0.1–10.0 μ M . Stimulation by GppNHp was five to six times greater than that produced by GTP at all concentrations tested. Decentralization of the ganglion had no effect on basal or stimulated adenylate cyclase activity. Receptor-linked stimulation of adenylate cyclase was not obtained with any of the following: isoproterenol, epi-nephrine, histamine, dopamine, prostaglandin E2, or va-soactive intestinal peptide. Thus the receptor-linked regulation of adenylate cyclase activity appears to be lost in homogenates of the ganglion.  相似文献   

10.
Effects of guanine nucleotides on the adenylate cyclase activity of thyroid plasma membranes were investigated by monitoring metabolism of the radiolabeled nucleotides by thin-layer chromatography (TLC). When ATP was used as substrate with a nucleotide-regeneratign system, TSH stimulated the adenylate cyclase activity in the absence of exogenous guanine nucleotide. Addition of GTP and GDP equally enhanced the TSH stimulation. Effects of GTP and GDP were indistinguishable in regard to their inhibitory effects on NaF-stimulated activities. The results from TLC suggested that GDP could be converted to GTP by a nucleotide-regenerating system. Even in the absence of nucleotide-regenerating system, addition of GDP to the adenylate cyclase assay mixture int he parallel decrease in ATP levels and formation of GTP indicating that thyroid plasma membrane preparatiosn possessed a transphosphorylating activity. When an ATP analog, App[NH]p, was used as substrate without a nucleotide-regenerating system, no conversion of GDP to GTP was observed. Under such conditions, TSH did not stimulate the adenylate cyclase activity unless exogenous GTP or Gpp[NH]p was added. GDP no longer supported TSH stimulation and caused a slight decrease in the activity. GDP was less inhibitory than Gpp(NH)p to the NaF-stimulated adenylate cyclase activity. These results suggest: (1) TSH stimulation of thyroid adenylate cyclase is absolutely dependent on the regulatory nucleotides. (2) In contrst to GTP, GDP cannot support the coupling of the receptor-TSH complex to the catalytic componenet of adenylate cyclase. (3) The nucleotide regulatory site is more inhibitory to the stimulation of the enzyme by NaF when occupied by Gpp[NH]p than GDP.  相似文献   

11.
Effects of guanine nucleotides on the adenylate cyclase activity of thyroid plasma membranes were investigated by monitoring metabolism of the radiolabeled nucleotides by thin-layer chromatography (TLC). When ATP was used as substrate with a nucleotide-regenerating system, TSH stimulated the adenylate cyclase activity in the absence of exogenous guanine nucleotide. Addition of GTP or GDP equally enhanced the TSH stimulation. Effects of GTP and GDP were indistinguishable in regard to their inhibitory effects on NaF-stimulated activities. The results from TLC suggested that GDP could be converted to GTP by a nucleotide-regenerating system. Even in the absence of a nucleotide-regeneration system, addition of GDP to the adenylate cyclase assay mixture resulted in the parallel decrease in ATP levels and formation of GTP indicating that thyroid plasma membrane preparations possessed a transphosphorylating activity. When an ATP analog, App[NH]p, was used as substrate without a nucleotide-regenerating system, no conversion of GDP to GTP was observed. Under such conditions, TSH did not stimulate the adenylate cyclase activity unless exogenous GTP or Gpp[NH]p was added. GDP no longer supported TSH stimulation and caused a slight decrease in the activity. GDP was less inhibitory than Gpp(NH)p to the NaF-stimulated adenylate cyclase activity. These results suggest: (1) TSH stimulation of thyroid adenylate cyclase is absolutely dependent on the regulatory nucleotides. (2) In contrast to GTP, GDP cannot support the coupling of the receptor-TSH complex to the catalytic component of adenylate cyclase. (3) The nucleotide regulatory site is more inhibitory to the stimulation of the enzyme by NaF when occupied by Gpp[NH]p than GDP.  相似文献   

12.
Effect of prostacyclin (PGI2) on adenylate cyclase activity in human thyroid membranes was examined. PGI2 caused a dose- and time-dependent production of cyclic AMP (cAMP) with high potency. When GTP was added in concentrations up to 100 uM, the activation of adenylate cyclase by PGI2 was increased. In the assay medium containing 3 mM ATP, 10 uM GTP and nucleotide regenerating system, the replacement of Mg2+ by increasing concentrations of Mn2+ caused a progressive loss of PGI2 as well as TSH-stimulated adenylate cyclase activities, while high concentrations of Mg2+ (12 or 18 mM) slightly suppressed the activity stimulated by either PGI2 or TSH. Both agents had an additive effect on the stimulation of adenylate cyclase activity in the presence of either 6 mM Mg2+ or 6 mM Mn2+. Gamma-globulin fraction containing non-stimulatory TSH receptor antibody which was prepared from a patient with chronic thyroiditis, suppressed only TSH- but not PGI2-stimulation of the adenylate cyclase activity. These results suggest that PGI2 can stimulate the adenylate cyclase activity in human thyroid tissue, and that PGI2-stimulation may be mediated by the different system from TSH-dependent one.  相似文献   

13.
The subcellular localization of guanylate cyclase was examined in rat liver. About 80% of the enzyme activity of homogenates was found in the soluble fraction. Particulate guanylate cyclase was localized in plasma membranes and microsomes. Crude nuclear and microsomal fractions were applied to discontinuous sucrose gradients, and the resulting fractions were examined for guanylate cyclase, various enzyme markers of cell components, and electron microscopy. Purified plasma membrane fractions obtained from either preparation had the highest specific activity of guanylate cyclase, 30 to 80 pmol/min/mg of protein, and the recovery and relative specific activity of guanylate cyclase paralleled that of 5'-nucleotidase and adenylate cyclase in these fractions. Significant amounts of guanylate cyclase, adenylate cyclase, 5'-nucleotidase, and glucose-6-phosphatase were recovered in purified preparation of microsomes. We cannot exclude the presence of guanylate cyclase in other cell components such as Golgi. The electron microscopic studies of fractions supported the biochemical studies with enzyme markers. Soluble guanylate cyclase had typical Michaelis-Menten kinetics with respect to GTP and had an apparent Km for GTP of 35 muM. Ca-2+ stimulated the soluble activity in the presence of low concentrations of Mn-2+. The properties of guanylate cyclase in plasma membranes and microsomes were similar except that Ca-2+ inhibited the activity associated with plasma membranes and had no effect on that of microsomes. Both particulate enzymes were allosteric in nature; double reciprocal plots of velocity versus GTP were not linear, and Hill coefficients for preparations of plasma membranes and microsomes were calculated to be 1.60 and 1.58, respectively. The soluble and particulate enzymes were inhibited by ATP, and inhibition of the soluble enzyme was slightly greater. While Mg-2+ was less effective than Mn-2+ as a sole cation, all enzyme fractions were markedly stimulated with Mg-2+ in the presence of a low concentration of Mn-2+. Triton X-100 increased the activity of particulate fractions about 3- to 10-fold and increased the soluble activity 50 to 100%.  相似文献   

14.
The influence of the diterpene, forskolin, was studied on adenylate cyclase activity in membranes of rat basophilic leukemia cells. Forskolin increased basal adenylate cyclase activity maximally 2-fold at 100 microM. However, adenylate cyclase activity stimulated via the stimulatory guanine nucleotide-binding protein, Ns, by fluoride and the stable GTP analog, guanosine 5'-O-(3-thiotriphosphate), was inhibited by forskolin. Half-maximal and maximal inhibition occurred at about 1 and 10 microM forskolin, respectively. The inhibition occurred without an apparent lag phase, whereas the enzyme stimulation by forskolin was preceded by a considerable lag period. The inhibition was not affected by treating intact cells or membranes with pertussis toxin and proteolytic enzymes, respectively, which have been shown in other cell types to prevent adenylate cyclase inhibition mediated by the guanine nucleotide-binding regulatory component, Ni. The forskolin inhibition of the stable GTP analog-activated adenylate cyclase was impaired by increasing the Mg2+ concentration and was reversed into a stimulation by Mn2+. Under optimal inhibitory conditions, forskolin even decreased basal adenylate cyclase activity. Finally, forskolin largely reduced the apparent affinity of the rat basophilic leukemia cell adenylate cyclase for its substrate, MgATP, which reduction resulted in an apparent inhibition at low MgATP concentrations and a loss of the inhibition at higher MgATP concentrations. The data indicate that forskolin can cause both stimulation and inhibition of adenylate cyclase and, furthermore, they suggest that the inhibition may not be mediated by the Ni protein, but may be caused by a direct action of forskolin at the adenylate cyclase catalytic moiety.  相似文献   

15.
Horse thyroid plasma membranes were prepared by partition in an aqueous two phases system. The membrane fraction was enriched in adenylate cyclase and only slightly contaminated with mitochondria and lysosomes. Adenylate cyclase activity was stimulated by TSH and PGE1. The TSH stimulatory effect was nearly immediate and occured in the same range of concentrations that activates intact cell metabolism. It was potentiated by GTP and ITP. A quantitative analysis of the data suggests that activation of thyroid adenylate cyclase by TSH is a cooperative process.  相似文献   

16.
The activity of the adenylate cyclase inhibitory guanine-nucleotide-binding regulatory protein (Gi), measured as inhibition of forskolin-stimulated cyclic AMP formation, and its regulation by various nucleotides and the inhibitory alpha 2-adrenoreceptor agonist epinephrine was studied in membranes of human platelets. When adenylate cyclase activity was measured with ATP as substrate and in the absence of a nucleoside-triphosphate-regenerating system, GTP (0.1-10 microM) by itself potently and efficiently inhibited the enzyme. GDP was almost as potent and as effective as GTP. In the additional presence of epinephrine, the potencies of both GTP and GDP were increased about threefold, while maximal inhibition by these nucleotides was only slightly increased by the receptor agonist. In contrast to GTP and GDP, the metabolically stable GDP analog, guanosine 5'-[beta-thio]diphosphate, had only a very small effect, suggesting that GDP but not its stable analog is converted to the active GTP. Addition of UDP (1 mM), used to block the GDP to GTP conversion reaction, completely suppressed the inhibitory effect of GDP, while that caused by GTP was not affected. Most important, the inhibitory receptor agonist epinephrine counteracted the suppressive effect of UDP on GDP's action, suggesting that, while UDP inhibits the formation of GTP from GDP, the activated receptor stimulates this conversion reaction. In the presence of a complete nucleoside-triphosphate-regenerating system, which by itself had no influence on control forskolin-stimulated adenylate cyclase activity, GTP alone, at concentrations up to 10 microM, did not decrease enzyme activity, but required the presence of an inhibitory receptor agonist (epinephrine) to activate the Gi protein. Addition of the regenerating system creatine phosphate plus creatine kinase not only abolished adenylate cyclase inhibition by GTP alone, but also largely reduced both the potency and efficiency of epinephrine to activate the Gi protein in the presence of GTP. Furthermore, the nucleoside-triphosphate-regenerating system also largely delayed the onset of adenylate cyclase inhibition by the GTP analog, guanosine-5'-[beta-thio]triphosphate (10 nM), which was accelerated by epinephrine, and it also decreased the final enzyme inhibition caused by this GTP analog.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The postnatal development of skeletal muscle is accompanied by an increased capacity for glycogenolysis and anaerobic glycolysis. In the present study, regulatory features of cAMP synthesis were examined in neonatal and adult rabbit sarcolemmal membranes. Adult sarcolemma exhibited a 3-, 6-, and 10-fold greater adenylate cyclase activity than neonate for basal, NaF, and isoproterenol plus GTP, respectively. The Km for activation by isoproterenol was 1.4 X 10(-8) M and 6 X 10(-8) M for GTP. The number of beta-receptors was similar (0.9-1.2 pmol/mg). 10 microM GTP shifted isoproterenol EC50 from 1 X 10(-8) M to 1 X 10(-7) M in adult; neonatal agonist affinity was unaffected by GTP. Cholera toxin stimulated adenylate cyclase activity 2-fold and catalyzed 32P ribosylation of a Mr = 42,000 peptide in adult sarcolemma; both activities were low or absent in neonate. Isoproterenol-stimulated GTPase activity was elevated 4-fold in adult compared to neonatal sarcolemma. Mn2+ ion-stimulated basal activity, an indicator of catalytic function of adenylate cyclase, was also elevated in adult. Together, these findings suggest that the development of catecholamine-sensitive cAMP synthesis in muscle is governed by the coordinate expression of the regulatory and catalytic proteins of adenylate cyclase, but not the beta-receptor.  相似文献   

18.
Regulation of Adenosine-Sensitive Adenylate Cyclase from Rat Brain Striatum   总被引:7,自引:5,他引:2  
An adenosine-sensitive adenylate cyclase has been characterized from rat brain striatum. In whole homogenates as well as in particulate fractions, N6-phenylisopropyl adenosine (PIA), 2-chloroadenosine, and adenosine N′-oxide were equipotent in stimulating adenylate cyclase. Although GTP inhibited basal as well as PIA-stimulated activity of whole homogenates, the enzyme showed an absolute dependency on GTP for stimulation by PIA, dopamine, epinephrine, and norepinephrine in a particulate fraction derived from discontinuous sucrose gradient centrifugation. Adenosine exerts two effects on this adenylate cyclase, stimulation at low concentrations and inhibition at high concentrations, suggesting the presence of two adenosine binding sites. The stimulation of adenylate cyclase by PIA was dependent on the concentration of Mg2-. The degree of stimulation by PIA was greater at a low concentration of Mg2+, which suggests that stimulation by PIA was accompanied by increasing the apparent affinity for Mg2+. Activation of adenylate cyclase by PIA was blocked by theophylline or 3-isobutyl- 1-methylxanthine (IBMX). The pH optimum for basal or (PIA + GTP)-stimulated activities was broad, with a peak between 8.5 and 9.5. In the presence of GTP, stimulation by an optimal concentration of PIA was additive, with maximal stimulation by the catecholamines. Phospholipase A2 treatment at a concentration of 1 U/ml for 5 min completely abolished the stimulatory effect of dopamine, whereas PIA-stimulated activity remained unaltered. These data suggest that rat brain striatum either has a single adenylate cyclase, which is stimulated by catecholamines and adenosine by distinct mechanisms, or has different cyclase populations, stimulated by either adenosine or catecholamines.  相似文献   

19.
The GTP analog 5′-quanylyl-imidodiphosphate Gpp(NH) p potentiated the action of VIP on adenylate cyclase from intestinal epithelial cell membranes. The other nucleotides tested were also active on adenylate cyclase with the following order of potency GTP>GDP>GMP>ITP>UTP=CTP. Guanine nucleotides act by increasing the Vmax of the enzyme activity and by decreasing the Km of enzyme activation by VIP. Activation of the peptide-induced adenylate cyclase activity by Gpp (NH) p was inhibited by GTP and the other nucleotides with the same order and range of potency than those observed for their intrinsic stimulatory effect on adenylate cyclase. These data demonstrate the potent and specific action of quanine nucleotides on the VIP-sensitive adenylate cyclase.  相似文献   

20.
Radiation inactivation was used to examine the mechanism of activation of adenylate cyclase in the cultured renal epithelial cell line LLC-PK1 with hormonal (vasopressin) and nonhormonal (GTP, forskolin, fluoride, and chloride) activating ligands. Intact cells were frozen, irradiated at -70 degrees C (0-14 Mrad), thawed, and assayed for adenylate cyclase activity in the presence of activating ligands. The ln (adenylate cyclase activity) vs. radiation dose relation was linear (target size 162 kDa) for vasopressin- (2 microM) stimulated activity and concave downward for unstimulated (10 mM Mn2+), NaF- (10 mM) stimulated, and NaCl- (100 mM) stimulated activities. Addition of 2 microM vasopressin did not alter the ln activity vs. dose relation for NaF- (10 mM) stimulated activity. The dose-response relations for adenylate cyclase activation and for transition in the ln activity vs. dose curve shape were measured for vasopressin and NaF. On the basis of our model for adenylate cyclase subunit interactions reported previously [Verkman, A. S., Skorecki, K. L., & Ausiello, D. A. (1986) Am. J. Physiol. 260, C103-C123] and of new mathematical analyses, activation mechanisms for each ligand are proposed. In the unstimulated state, equilibrium between alpha beta and alpha + beta favors alpha beta; dissociated alpha binds to GTP (rate-limiting step), which then combines with the catalytic (C) subunit to form active enzyme. Vasopressin binding to receptor provides a rapid pathway for GTP binding to alpha. GTP and its analogues accelerate the rate of alpha GTP formation. Forskolin inhibits the spontaneous deactivation of activated C. Activation by fluoride may occur without alpha beta dissociation or GTP addition through activation of C by an alpha beta-F complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号