首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of nerve commitment during head regeneration in Hydra were investigated using a newly developed assay for committed cells. Committed nerve precursors were assayed by their ability to continue nerve differentiation following explanation of small pieces of tissue. Committed nerve precursors appear at the site of regeneration within 6 hr after cutting and increase rapidly. The increase is localized to the site of regeneration and does not occur at proximal sites in the body column of the regenerate. The increase is delayed about 8–12 hr when regeneration occurs at sites lower in the body column. The results show, furthermore, that redistribution of committed precursors does not play a major role in the pattern of nerve differentiation during regeneration. Since the increase in committed nerves coincides with the increase in morphogenetic potential of the regenerating tissue, the results strengthen the idea that morphogenetic signals are involved directly in the control of nerve commitment in Hydra.  相似文献   

2.
Two Brevibacterium linens strains and the cheese-ripening yeast Geotrichum candidum were compared with regard to their ability to produce volatile sulfur compounds (VSCs) from three different precursors namely L-methionine, 4-methylthio-2-oxobutyric acid (KMBA) and 4-methylthio-2-hydroxybutyric acid (HMBA). All microorganisms were able to convert these precursors to VSCs. However, although all were able to produce VSCs from L-methionine, only G. candidum accumulated KMBA when cultivated on this amino acid, contrary to B. linens suggesting that the transamination pathway is not active in this microorganism. Conversely, a L-methionine gamma-lyase activity--which catalyses the one step L-methionine to methanethiol (MTL) degradation route--was only found in B. linens strains. Several other enzymatic activities involved in the catabolism of the precursors tested were investigated. KMBA transiently accumulated in G. candidum cultures, and was then reduced to HMBA by a KMBA dehydrogenase (KDH) activity. This activity was not detected in B. linens. Despite no HMBA dehydrogenase (HDH) was found in G. candidum, a strong HMBA oxidase (HOX) activity was measured in this microorganism. This latter activity was weakly active in B. linens. KMBA and HMBA demethiolating activities were found in all the microorganisms. Our results illustrate the metabolic diversity between cheese-ripening microorganisms of the cheese ecosystem.  相似文献   

3.
Summary Hydra regenerating heads release at least two substances into the surrounding medium: one stimulates and one inhibits head formation. The inhibitor is released mainly during the first hour after cutting, the activator is released more slowly with a maximum in the second hour and with substantial release still during the following six hours. The release of both substances seems to be specific for head regeneration: it is not found in animals regenerating feet. The sequential release of these substances leads to the early changes observed at the cellular level during head regeneration inhydra: the inhibitor produces a decrease, the activator an increase in the mitotic activity of interstitial and epithelial cells, if assayed on intact animals. Head regeneration is blocked, if the release of the head activator is prevented. It is therefore suggested that these substances are necessary to initiate head regeneration inhydra.  相似文献   

4.
Planarians belong to the phylum Platyhelminthes and can regenerate their missing body parts after injury via activation of somatic pluripotent stem cells called neoblasts. Previous studies suggested that fibroblast growth factor (FGF) signaling plays a crucial role in the regulation of head tissue differentiation during planarian regeneration. To date, however, no FGF homologues in the Platyhelminthes have been reported. Here, we used a planarian Dugesia japonica model and identified an fgf gene termed Djfgf, which encodes a putative secreted protein with a core FGF domain characteristic of the FGF8/17/18 subfamily in bilaterians. Using Xenopus embryos, we found that DjFGF has FGF activity as assayed by Xbra induction. We next examined Djfgf expression in non-regenerating intact and regenerating planarians. In intact planarians, Djfgf was expressed in the auricles in the head and the pharynx. In the early process of regeneration, Djfgf was transiently expressed in a subset of differentiated cells around wounds. Notably, Djfgf expression was highly induced in the process of head regeneration when compared to that in the tail regeneration. Furthermore, assays of head regeneration from tail fragments revealed that combinatorial actions of the anterior extracellular signal-regulated kinase (ERK) and posterior Wnt/ß-catenin signaling restricted Djfgf expression to a certain anterior body part. This is the region where neoblasts undergo active proliferation to give rise to their differentiating progeny in response to wounding. The data suggest the possibility that DjFGF may act as an anterior counterpart of posteriorly localized Wnt molecules and trigger neoblast responses involved in planarian head regeneration.  相似文献   

5.
Planarian head extract was fractionated and the fractions were assayed for their effect on cultured cells and planarian regeneration. One fraction (molecular weight larger than 10 000; unadsorbable by DEAE-Sephadex, CM-Sephadex and Con A-Sepharose; and precipitable by ammonium sulfate) inhibited the growth of both Neuro 2a and PC-12 cell lines as well as planarian head- regeneration. This effect was specific for head-regeneration (regeneration of tails was not influenced), trypsin sensitive, reversible and stable after heat-treatment at 80° C for 30 min.  相似文献   

6.
The use of conspicuous communication signals often increases a signaler's risk of predation. Many species communicate with a repertoire of signals that may differ in their conspicuousness to predators. Few studies have examined the ability of prey to selectively decrease the use of individual signals in their displays under heightened predation risk. Here, I examined the behavior of male brown anole lizards (Anolis sagrei) in response to a simulated predatory attack from a model kestrel. This species communicates with three major visual signal types, the head‐bob, pushup, and dewlap extension, which vary in their motion and spectral characteristics. I predicted that lizards would decrease frequencies of the dewlap extension and pushup following the attack, but not the head‐bob. Males modulated their use of individual signals by decreasing pushup rates, but not head‐bob rates. Decreases in dewlap frequency were marginally significant. One explanation for these results is that lizards decrease frequencies of signal types based partly on their conspicuousness. The energetic cost of each signal type may be an equally important factor that determines the signaler's response to predators, particularly if a predatory attack is perceived as imminent.  相似文献   

7.
8.
 Several studies have provided strong, but indirect evidence that signalling through pathways involving protein kinase C (PKC) plays an important role in morphogenesis and patterning in Hydra. We have cloned a gene (HvPKC2) from Hydra vulgaris which encodes a member of the nPKC subfamily. In adult polyps, HvPKC2 is expressed at high levels in two locations, the endoderm of the foot and the endoderm of the hypostomal tip. Increased expression of HvPKC2 is an early event during head and foot regeneration, with the rise in expression being restricted to the endodermal cells underlying the regenerating ends. No upregulation is observed if regenerates are cut too close to the head to form a foot. Elevated expression of HvPKC2 is also observed in the endoderm underlying lithium-induced ectopic feet. A dynamic and complex pattern of expression is seen in developing buds. Regeneration of either head or foot is accompanied by an increase in the amount of PKC in both soluble and particulate fractions. An increase in the fraction of PKC activity which is membrane-bound is specifically associated with head regeneration. Taken together these data suggest that patterning of the head and foot in Hydra is controlled in part by the level of HvPKC2 expression, whilst head formation is accompanied by an in vivo activation of both calcium-dependent and independent PKC isoforms. Received: 10 July 1997 / Accepted: 8 November 1997  相似文献   

9.
1. (1) An unusual accumulation of S-adenosyl-L-methionine in Chromatium D was associated with a marked growth inhibition by L-methionine. The inhibition was overcome by L-isoleucine, L-leucine, L-phenylalanine, L-threonine, L-valine and putrescine. Based on their effects, these compounds are classified into 3 types.
2. (2) L-Isoleucine, L-leucine, L-phenylalanine and L-valine (Type I) inhibited the L-methionine uptake and consequently prevented the bacterium from the unusual accumulation of S-adenosyl-L-methionine even in the presence of L-methionine in the medium. Putrescine (Type II) stimulated the consumption of S-adenosyl-L-methionine, but did not influence the L-methionine uptake. Hence, the effect of putrescine would be explained by the action to diminish the intracellular level of S-adenosyl-L-methionine. L-Threonine (Type III) neither inhibited the L-methionine uptake nor affected the content of S-adenosyl-L-methionine due to the addition of L-methionine.
3. (3) The specific activity of homoserine kinase (EC 2.7.1.39) was greatly lowered by the addition of L-methionine under conditions in which Chromatium D unusually accumulates S-adenosyl-L-methionine. Homoserine dehydrogenase (EC 1.1.1.3) activity was inhibited by S-adenosyl-L-methionine (50% inhibition index, 3.5 mM). These facts strongly suggest that the growth inhibition by L-methionine is associated with the L-threonine deficiency caused by the unusual accumulation of S-adenosyl-L-methionine.
Abbreviations: AdoMet; S-adenosyl-L-methionine  相似文献   

10.
Melatonin, which is a substance produced by the pineal body in vertebrates, inhibited regeneration in the planarian Dugesia japonica japonica Ichikawa et Kawakatsu. When decapitated planarians were maintained in a 1 mmol dm–3 solution of melatonin, formation of the head was retarded; formation of the eyes, however, was not disturbed. Similarly in animals from which the tail was cut, regeneration of the tail was retarded if the animals were kept in melatonin solution of 1 mmol dm–3. The effect was reversible once the melatonin was removed. Retardation of regeneration did not occur with similar application of three melatonin derivatives, serotonin hydrochloride, N-acetylserotonin, and 6-hydroxymelatonin. Melatonin endogenous to the planarian could be demonstrated by means of radio-immunoassay and was more abundant in the head region than other regions of the body. Melatonin, thus, appears to play a role in regulating regeneration in planarians and conceivably provides positional information in that process.  相似文献   

11.
In the search of new compounds with biofilm‐inhibiting properties, mangroves with their richness of secondary metabolites can be a valuable resource. Crude methanolic leaf extracts from the mangrove Laguncularia racemosa enriched in phenolic substances cause a reduction in initial cell adhesion of Candida glabrata and Candida albicans, but not on Escherichia coli. LC/MS‐guided fractionation of the phenolic compounds resulted in 19 fractions, of which ten were analyzed for their bioactivity against cell adhesion. Effects on cell adhesion and planktonic growth of Escherichia coli, Candida glabrata and Candida albicans were measured in 96‐well microtiter plates in the presence of 0.2 mg ml?1 of the isolated fractions. Two fractions caused a reduction of cell adhesion of Candida albicans. These fractions containing bioactive compounds were analyzed by LC/MS and NMR spectroscopy. Casuarinin and digalloyl‐hexahydroxydiphenoyl‐glucose were identified in the active fractions, in addition to three signals of ellagitannins. These results indicate a specific mode of action of hydrolysable tannins against cell adhesion of Candida albicans, which needs to be further analyzed.  相似文献   

12.
The search for new molecules in fish protein hydrolysates is of great interest in animal feeding as it is in aquaculture, fertilizer, cosmetic, and pharmacologic domains. Different sources of hydrolysates such as shrimp waste (Pandalus borealis), cod (Gadus morhua) head, and head and viscera of sardine (Sardina pilchardus), obtained after hydrolysis or autolysis, were tested on fibroblast cell cultures and by gastrin radioimmunoassay. The level of hydrolysis seems to play an important role in the presence of biological peptides. Elution profile on a gel filtration Sephadex G-50 column was used to estimate the degree of hydrolysis of the fractions studied. Growth-factor-like activities were found in less-hydrolyzed fractions. Conversely, the most-hydrolyzed fractions showed gastrin and cholecystokinin immunoreactivity. Received January 22, 1999; accepted April 13, 1999  相似文献   

13.
Summary. The objective of the study was to test L-methioinine as a possible immune supportive supplement in HIV infected patients by means of a clinical study. A double-blind, placebo-controlled study was designed. The patients (n = 253) from four different trial centres were randomly divided into two groups, active and placebo, and regularly assessed by clinical and safety parameters. After six months from commencement, clinically and statistically significant differences were observed. The females of the active treatment group presented with a decreased level of decline in their CD4 counts (p = 0.0027), so also the patients of Centre 1 (p = 0.0377). All patients were placed onto active treatment after 12 months and were followed up for 48 months after the trial started. The same tendencies could be observed in the group as a whole, with no serious side effects directly associated to treatment. The study confirmed the supportive role of L-methionine in immune-compromised or deficient patients.  相似文献   

14.
Summary In Salmonella typhimurium, methionine auxotrophs such as metB can use D-methionine as a methionine source. MetP mutations prevent this growth since D-methionine can enter only via the metP high-affinity methionine transport system. D-methionine utilising revertants (Dmu+) were selected from metB23 metP760 (HU76) following nitrosoguanidine mutagenesis. The properties of two such revertants, HU206 and HU415, indicated that reversion was not due to backmutation of the metP760 mutation. Genetic analysis indicated that each strain possessed two mutations, designated dmu and gln, in addition to the original metB23 and metP760 mutations.The dmu mutation restores ability to grow on D-methionine, partly restores D- and L-methionine transport activity, and makes the cells particularly sensitive to inhibition by L-glutamine while growing on D but not L-methionine. The growth inhibition by L-glutamine was shown to be caused by competition by L-glutamine for D-methionine transport by the high-affinity methionine system. The gln mutation greatly reduces activity of the high-affinity glutamine transport system. The Dmu+ strains are also partly defective in the glutamine low-affinity transport system, possibly because the partially-restored methionine high-affinity system, or a component of this system, functions in the transport of glutamine by its low-affinity system.  相似文献   

15.
The endogenous substrate for protein carboxymethyltransferase in brain was examined. Several polypeptides were methylated when brain slices were incubated with L-methionine or when subcellular fractions of brain, such as the cytosolic fraction, were incubated with S-adenosyl L-methionine. Two methyl-accepting proteins in the cytoplasm were identified as tubulin and high molecular weight microtubule-associated proteins (300 kDa), which are components of microtubules. Tubulin behaved as a 43 kDa protein in acidic polyacrylamide gel electrophoresis, but as a 55 kDa protein in SDS-polyacrylamide gel electrophoresis. The methyl moiety transferred to these proteins from L-methionine was labile at alkaline pH. The high molecular weight microtubule-associated proteins showed higher methyl-accepting activity than tubulin or ovalbumin, which was used as a standard substrate: about 20 mmol of high molecular weight microtubule-associated proteins, 2 mmol of tubulin and 10 mmol of ovalbumin were methylated per mol of each protein in 30 min under the experimental conditions used.  相似文献   

16.
Quantitative trait loci (QTLs) controlling the plant-regeneration ability of Brassica oleracea protoplasts were mapped in a population of 128 F2 plants derived from a cross between the high-responding, rapid-cycling line and a low-responding, broccoli breeding line of B. oleracea. A modified bulked segregant analysis with AFLP markers identified two QTLs for plant regeneration. In a multiple regression analysis, the two QTLs explained 83% of the total genetic variation for regeneration recorded 15 weeks after initial transfer of microcalli to regeneration medium. Both QTLs showed additive effects, and the alleles contributing to the high regeneration frequencies were derived from the high-responding, rapid-cycling line. Using microsatellites with known location, the two QTLs were mapped to linkage groups O2 and O9 on the map published by Sebastian et al. [(2000) Theor Appl Genet 100:75–81] or to chromosomes C8 and C7 on the map published by Saal et al. [(2001) Theor Appl Genet 102:695–699]. QTLs for the early flowering trait of the rapid-cycling parent have previously been mapped to the same two linkage groups. Association between flowering time and regeneration ability was, however, not found in the present material, indicating that plant-regeneration ability can be transferred between cultivars independently of the early flowering trait. The detection of two major QTLs for plant regeneration in B. oleracea may provide the initial step towards the identification of markers suitable for marker-assisted selection of regeneration ability.  相似文献   

17.
Summary In tissue regenerating the head, the ability to initiate head formation in a host increases with the time allowed for regeneration before grafting, while the foot-initiating ability decreases concomitantly. The reverse was found for tissue about to regenerate a foot. The early divergent changes thus indicated are counteracted in both head and foot regeneration by treatment with an inhibitor (Berking, 1977) in low concentrations.The inhibitor also interferes with processes which determine wether or not hypostome and tentacles are formed, and how many tentacles (if any) appear. The circumferential spacing of the tentacles was regular whether their number was normal or below normal.Secondary axes caused by implanted tissue either detach after having formed a head and a foot (i.e. behave like buds) or do not detach, having only formed a head. This alternative depends on the origin and amount of the implanted tissue and on the position of the implant within the host.The following model based on these findings is proposed: Head and foot formation start with pre-patterns which cause a continuously increasing change of the tissue's ability to initiate a head or a foot. Along the body axis this ability is determined by a graded distribution of sources. As development progresses, the high source density which accumulates in the head region causes the formation of a hypostome and tentacles; the angular spacing of tentacles is also dependent on source density. At a certain low source density foot-formation is initiated. The inhibitor counteracts the increase of source density in head-forming tissue as well as the decrease of source density in foot-forming tissue. It thus appears to be part of the mechanism which controls morphogenesis in hydra.  相似文献   

18.
The mutantreg-16 is deficient in head regeneration and abnormal in size regulation. The gastric region becomes twice as long as that of normal animals before the first bud is produced. Both mutant characteristics are due to changes in head-specific morphogen concentrations.Reg-16 contains twice as much head inhibitor and only half as much head activator in its head as normal animals. This leads to a higher level of free head inhibitor in the whole animal resulting on one hand in a greater distance of buds from the head, and on the other hand in a total blockage of release of head activator and head inhibitor which would be necessary to initiate head regeneration.  相似文献   

19.
D-Methionine was converted to L-methionine in a reaction system where four enzymes were used. D-amino acid oxidase (D-AAO) from Arthrobacter protophormiae was used for the complete conversion of D-methionine to 2-oxo-4-methylthiobutyric acid. Catalase was added to prevent 2-oxo-4-methylthiobutyric acid decarboxylation. In the second reaction step, L-phenylalanine dehydrogenase (L-PheDH) from Rhodococcus sp. was used to convert 2- oxo-4-methylthiobutyric acid to L-methionine, and formate dehydrogenase (FDH) from Candida boidinii was added for NADH regeneration. Enzyme kinetics of all enzymes was analyzed in detail. Mathematical models for separate reactions steps, as well as for the complete system were developed and validated in the batch reactor experiments. Complete conversion of D-methionine to L-methionine was achieved. Considering that both enzymes act on different substrates, such a system could be easily employed for the synthesis of other amino acids from D-isomer, as well as from the racemate of a certain amino acid (DL-amino acid).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号