首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acid-base and coordination properties towards Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) of four polyamino-phenol macrocycles 15-hydroxy-3,6,9-triazabicyclo[9.3.1]pentadeca-11,13,115-triene L1, 18-hydroxy-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-14,16,118-triene L2, 21-hydroxy-3,6,9,12,15-pentaazabicyclo[15.3.1]enaicosa-17,19,121-triene L3 and 24-hydroxy-3,6,9,12,15,18-hexaazabicyclo[18.3.1]tetraicosa-20,22,124-triene L4 are reported. The protonation and stability constants were determined by means of potentiometric measurements in 0.15 mol dm−3 NMe4Cl aqueous solution at 298.1 K. L1 forms highly unsaturated Co(II), Cu(II), Zn(II) and Cd(II) mononuclear complexes that are prone to give dimeric dinuclear species with [(MH−1L1)2]2+ stoichiometry, in solution. L2 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes that can coordinate external species as OH anion, giving hydroxylated complexes at alkaline pH. L3 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes and Co(II), Ni(II), Cu(II) and Zn(II) dinuclear [M2H−1L3]3+ species. L4 forms stable mono- and dinuclear Co(II), Cu(II), Zn(II) and Cd(II) complexes, but only mononuclear species with Pb(II). The effect of macrocyclic size is considered in the discussion of results.  相似文献   

2.
We postulate that zinc(II) is a keystone in the structure of physiological mouse copper metallothionein 1 (Cu-MT 1). Only when Zn(II) is coordinated does the structure of the in vivo- and in vitro-conformed Cu-MT species consist of two additive domains. Therefore, the functionally active forms of the mammalian Cu-MT may rely upon a two-domain structure. The in vitro behaviour of the whole protein is deduced from the Cu titration of the apo and Zn-containing forms and compared with that of the independent fragments using CD, UV-vis, ESI-MS and ICP-AES. We propose the formation of the following Cu, Zn-MT species during Zn/Cu replacement in Zn7-MT: (Zn4)alpha(Cu4Zn1)beta-MT, (Cu3Zn2)alpha(Cu4Zn1)beta-MT and (Cu4Zn1)alpha(Cu6)beta-MT. The cooperative formation of (Cu3Zn2)alpha(Cu4Zn1)beta-MT from (Zn4)alpha(Cu4Zn1)beta-MT indicates that the preference of Cu(I) for binding to the beta domain is only partial and not absolute, as otherwise accepted. Homometallic Cu-MT species have been obtained either from the apoform of MT or from Zn7-MT after total replacement of zinc. In these species, copper distribution cannot be inferred from the sum of the independent alpha and beta fragments. The in vivo synthesis of the entire MT in Cu-supplemented media has afforded Cu7Zn3-MT [(Cu3Zn2)alpha(Cu4Zn1)beta-MT], while that of alpha MT has rendered a mixture of Cu4Zn1-alpha MT (40%), Cu5Zn1-alpha MT (20%) and Cu7-alpha MT (40%). In the case of beta MT, a mixture of Cu6-beta MT (25%) and Cu7-beta MT (75%) was recovered [1]. These species correspond to some of those conformed in vitro and confirm that Zn(II) is essential for the in vivo folding of Cu-MT in a Cu-rich environment. A final significant issue is that common procedures used to obtain mammalian Cu6-beta MT from native sources may not be adequate.  相似文献   

3.
Crs5 is a Saccharomyces cerevisiae Metallothionein (MT), non-homologous to the paradigmatic Cu-thionein Cup1. Although considered a secondary copper-resistance agent, we show here that it determines survival under zinc overload in a CUP1-null background. Its overexpression prevents the deleterious effects exhibited by CUP1-CRS5-null cells when exposed to combined Zn/Cu, as it does the mouse MT1 Zn-thionein, but not Cup1. The detailed characterization of Crs5 in vivo and in vitro Zn(II)-, Cd(II)- and Cu(I)-binding abilities fully supports its resemblance to mammalian MTs. Hence, Crs5 exhibits a good divalent metal-binding ability, yielding homometallic, highly chiral and stable Zn and Cd complexes when expressed in media enriched with these metal ions. In Cu-supplemented cultures, heterometallic Zn,Cu complexes are recovered, unless aeration is kept to a minimum. These features define a Crs5 dual metal-binding behaviour that is significantly closer to Zn-thioneins than to Cu-thioneins. Protein sequence similarities fully support these findings. Overall, a Crs5 function in global metal cell homeostasis, based on its Zn-binding features, is glimpsed. The comparative evaluation of Crs5 in the framework of MT functional differentiation and evolution allows its consideration as a representative of the primeval eukaryotic forms that progressively evolved to give rise to the Zn-thionein lineage.  相似文献   

4.
The binding of Cd(II) and Zn(II) to human serum albumin (HSA) and dog serum albumin (DSA) has been studied by equilibrium dialysis and 113Cd(II)-NMR techniques at physiological pH. Scatchard analysis of the equilibrium dialysis data indicate the presence of at least two classes of binding sites for Cd(II) and Zn(II). On analysis of the high-affinity class of sites, HSA is shown to bind 2.08 +/- 0.09 (log K = 5.3 +/- 0.6) and 1.07 +/- 0.12 (log K = 6.4 +/- 0.8) moles of Cd(II) and Zn(II) per mole of protein, respectively. DSA bound 2.02 +/- 0.19 (log K = 5.1 +/- 0.8), and 1.06 +/- 0.15 (log K = 6.0 +/- 0.2) moles of Cd(II) and Zn(II) per mole of protein, respectively. Competition studies indicate the presence of one high-affinity Cd(II) site on both HSA and DSA that is not affected by Zn(II) or Cu(II), and one high-affinity Zn(II) site on both HSA and DSA that is not affected by Cd(II) or Cu(II). 113Cadmium-HSA spectra display three resonances corresponding to three different sites of complexation. In site I, Cd(II) is most probably coordinated to two or three histidyl residues, site II to one histidyl residue and three oxygen ligands (carboxylate), while for the most upfield site III, four oxygens are likely to be involved in the binding of the metal ion. The 113Cd(II)-DSA spectra display only two resonances corresponding to two different sites of complexation. The environment around Cd(II) at sites I and II on DSA is similar to sites I and II, respectively, on HSA. No additional resonances are observed in any of these experiments and in particular in the low field region where sulfur coordination occurs. Overall, our results are consistent with the proposal that the physiologically important high-affinity Zn(II) and Cd(II) binding sites of albumins are located not at the Cu(II)-specific NH2-terminal site, but at internal sites, involving mostly nitrogen and oxygen ligands and no sulphur ligand.  相似文献   

5.
A new ligand N-salicyloyl-N'-o-hydroxythiobenzhydrazide (H2Sotbh) forms complexes [Mn(HSotbh)2], [Fe(Sotbh-H)(H2O)2], [M(Sotbh)] [M=Co(II), Cu(II) and Zn(II)] and [Ni(Sotbh)(H(2)O)2], which were characterized by various physico-chemical techniques. M?ssbauer spectrum of [Fe(Sotbh-H)(H2O)2] reveals the quantum admixture of 5/2 and 3/2 spin-states. Mn(II), Cu(II) and Ni(II) complexes were observed to inhibit the growth of tumor in vitro, whereas, Fe(III), Co(II), Zn(II) complexes did not. In vivo administration of Mn(II), Cu(II) and Ni(II) resulted in prolongation of survival of tumor bearing mice. Tumor bearing mice administered with Mn(II), Cu(II) and Ni(II) complexes showed reversal of tumor growth associated induction of apoptosis in lymphocytes. The paper discusses the possible mechanisms and therapeutic implication of the H2Sotbh and its metal complexes in tumor regression and tumor growth associated immunosuppression.  相似文献   

6.
Vertebrate metallothioneins are found to contain Zn(II) and variable amounts of Cu(I), in vivo, and are believed to be important for d10-metal control. To date, structural information is available for the Zn(II) and Cd(II) forms, but not for the Cu(I) or mixed metal forms. Cu(I) binding to metallothionein-1 has been investigated by circular dichroism, luminescence and 1H NMR using two synthetic fragments representing the alpha- and the beta-domain. The 1H NMR data and thus the structures of Zn4alpha metallothionein (MT)-1 and Zn3betaMT-1 were essentially the same as those already published for the corresponding domains of native Cd7MT-1. Cu(I) titration of the Zn(II)-reconstituted domains provided clear evidence of stable polypeptide folds of the three Cu(I)-containing alpha- and the four Cu(I)-containing beta-domains. The solution structures of these two species are grossly different from the structures of the starting Zn(II) complexes. Further addition of Cu(I) to the two single domains led to the loss of defined domain structures. Upon mixing of the separately prepared aqueous three and four Cu(I) loaded alpha- and beta-domains, no interaction was seen between the two species. There was neither any indication for a net transfer of Cu(I) between the two domains nor for the formation of one large single Cu(I) cluster involving both domains.  相似文献   

7.
Liu T  Golden JW  Giedroc DP 《Biochemistry》2005,44(24):8673-8683
A novel Zn(II)/Pb(II)/Cd(II)-responsive operon that consists of genes encoding a Zn(II)/Pb(II) CPx-ATPase efflux pump (aztA) and a Zn(II)/Cd(II)/Pb(II)-specific SmtB/ArsR family repressor (aztR) has been identified and characterized from the cyanobacterium Anabaena PCC 7120. In vivo real time quantitative RT-PCR assays reveal that both aztR and aztA expression are induced by divalent metal ions Zn(II), Cd(II), and Pb(II) but not by other divalent [Co(II), Ni(II)] or monovalent metal ions [Cu(I) and Ag(I)]. The introduction of a plasmid containing the azt operon into a Zn(II)/Cd(II)-hypersensitive Escherichia coli strain GG48 functionally restores Zn(II) and Pb(II) resistance with a limited effect on Cd(II) resistance. Gel mobility shift assays and aztR O/P-lacZ induction experiments confirm that AztR is the metal-regulated repressor of this operon. In vitro biochemical and mutagenesis studies indicate that AztR contains a sole metal-binding site, designated the alpha3N site, that binds Zn(II), Cd(II), and Pb(II) with a high affinity. Optical absorption spectra of Co(II)- and Cd(II)-substituted AztR and (113)Cd NMR spectroscopy of (113)Cd(II)-substituted AztR reveal that the sole alpha3N site in AztR is a CadC-like distorted tetrahedral S(3)(N,O) metal site. The first metal-coordination shell in the AztR alpha3N site differs from other alpha3N family members that sense Cd(II)/Pb(II) and those alpha5 repressors that sense Zn(II)/Co(II). Our results reveal that the alpha3N site in AztR mediates derepression of the azt operon in the presence of Zn(II), as well as Cd(II) and Pb(II); this might have provided Anabaena with an evolutionary advantage to adapt to heavy-metal-rich environments, while maintaining homeostasis of an essential metal ion, Zn(II).  相似文献   

8.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   

9.
Potentiometric, visible, infrared, electron spin, and nuclear magnetic resonance studies of the complexation of N-(2-acetamido)iminodiacetic acid (H2ADA) by Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) are reported. Ca(II) and Mg(II) were found not to form 2:1 ADA2- to M(II) complexes, while Mn(II), Cu(II), Ni(II), Zn(II), and Co(II) did form 2:1 metal chelates at or below physiological pH values. Co(II) and Zn(II), but not Cu(II), were found to induce stepwise deprotonation of the amide groups to form [M(H-1ADA)4-(2)]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed on the basis of various spectral data.  相似文献   

10.
Metal complexes of a sulfonamide possessing strong carbonic anhydrase (CA) inhibitory properties, 5-(2-chlorophenyl)-1, 3, 4-thiadiazole-2-sulfonamide (chlorazolamide) have been obtained from the sodium salt of the sulfonamide and the following metal ions: Mg(II), Zn(II), Mn(II), Cu(II), Co(II), Ni(II), Be(II), Cd(II), Pb(II), AI(III), Fe(III) and La(III). The original sulfonamide and its complexes were assayed for the in vitro inhibition of three CA isozymes, CA I, II, and IV, some of which play a critical role in ocular fluid secretion. All these compounds (the sulfonamide and its metal complexes) behaved as powerful inhibitors against the three investigated isozymes. The parent sulfonamide possessed an extremely weak topical pressure lowering effect when administered as a 1-2% suspension into the rabbit eye, but some of its metal complexes, such as the Mg(II), Zn(II), Mn(II) and Cu(II) derivatives, lower intraocular pressure (IOP) in experimental animals very well. Ex vivo data showed a 99.5-99.9% CA II inhibition in ocular fluids and tissues of rabbits treated with these agents, proving that the observed IOP lowering is due to CA inhibition. The influence of the different metal ions upon the efficiency of the obtained complexes as pressure lowering drugs are discussed, leading to the possibility of designing more selective; potent pharmacological agents from this class  相似文献   

11.
Human neuronal growth inhibitory factor (GIF) is a metallothionein-like protein specific to the central nervous system, which has been linked to Alzheimer's disease. In this article a short overview of the biological and structural properties of native Cu4,Zn3-GIF are described. Moreover, metal-thiolate clusters formed in the synthetic beta-domain (residues 1-32) and the alpha-domain (residues 32-68) both with native CuI and ZnII, and as a spectroscopic probe also with Cd(II) are discussed. The cluster formation was followed by electronic absorption, circular dichroism (CD), magnetic circular dichroism (MCD) and 113Cd NMR spectroscopy and, in the special case of Cu(I) complexes, by luminescence spectroscopy at 77 K. These structural features are compared with those of recombinant Zn7- and 113Cd7-GIF. The structural studies suggest the existence of distinct MeII4S11 and MeII3S9 clusters located in the mutually interacting alpha- and beta-domains, respectively, of Cd7-GIF. In addition, evidence for a highly dynamic and flexible structure of this protein is presented.  相似文献   

12.
Recombinant (E. coli ) synthesis of mammalian MT1 and MT4 domains as separate peptides in Zn(II) and Cd(II) enriched growth media has rendered metal complexes containing sulfide anions as additional ligands. The Cd preparations show higher sulfide content than the Zn preparations. Also, the betaMT1 and betaMT4 fragments exhibit higher sulfide/peptide ratios than the respective alpha fragments. Titration of Zn3-betaMT1 with Cd(II) followed by addition of several sodium sulfide equivalents shows that the Cd(II)-betaMT1 species can incorporate sulfide ligands in vitro, with a concomitant evolution of their UV-vis and CD fingerprints to those characteristic of the Cd-S2- chromophores. Current results have also provided full understanding of previous data collected by this group in the characterization of the Cd-betaMT1 preparations obtained from large-scale fermentor synthesis by allowing identification of at least 2S2- ligands per Cd-betaMT1 species. Furthermore, the results here presented have revealed that synthesis of betaMT4 in Cd-supplemented cultures yielded Cd,S(2-)-containing clusters instead of the proposed heterometallic Zn,Cd-betaMT4 complexes. Finally, a global evaluation of our results suggests that the higher the Cu-thionein character of a MT peptide, the higher is its tendency to harbor nonproteic ligands (i.e., sulfide anions) when building divalent metal clusters, especially Cd-MT complexes.  相似文献   

13.
The nucleocapsid protein (NCP) from Mason-Pfizer monkey virus (MPMV) contains two evolutionary invariant Cys-X2-Cys-X4-His-X4-Cys retroviral-type zinc finger structures, where the Cys and His residues provide ligands to a tetrahedrally coordinated Zn(II) ion. The N-terminal zinc finger (F1) of NCP from MPMV contains an immediately contiguous Cys in the -1 position relative to the start of this conserved motif: Cys-Cys-X2-Cys-X4-His-X4-Cys. Metal complexes of 18-amino acid peptides which model the native zinc finger sequence, SER-Cys-X2-Cys-X4-His-X4-Cys (F1_SC), and non-native Cys-SER-X2-Cys-X4-His-X4-Cys (F1_CS) and SER-SER-X2-Cys-X4-His-X4-Cys (F1_SS) sequences have been spectroscopically characterized and compared to the native two-zinc-finger protein fragment, MPMV NCP 21-80. All Co(II)-substituted peptide complexes adopt tetrahedral ligand geometries and have S-MCo(II) ligand-to-metal charge-transfer (LMCT) transition intensities consistent with three Co(II)-S bonds for F1_SC and F1_CS. The non-native F1_CS peptide binds Co(II) with KCo=1.5᎒6 M-1, comparable to that of the native complex, and 걄-fold tighter than F1_SS. Like the Co(II) derivative, the absorption spectrum of Ni(II)-substituted NCP 21-80 is most consistent with tetrahedral Ni(II) complexes with multiple thiolate donors. In contrast, Ni(II) complexes of F1_SC and F1_CS exhibit a single absorption band in the 400-550 nm region ()겨-300 M-1 cm-1), distinct in the two complexes, assignable to a degenerate d-d transition envelope characteristic of non-native square-planar coordination geometry, and an intense LMCT transition in the UV ()255ᄾ,000 M-1 cm-1). Cd(II) complexes have intense absorption in the UV (5max=233 nm), with absolute intensities consistent with 񬩈 M-1 cm-1 per Cd(II)-S bond. 113Cd NMR spectroscopy of 113Cd MPMV NCP gives '=649 ppm, consistent with S3N coordination. Co(II) and Cd(II) complexes of non-native F1_CS peptides are more sensitive to oxidation by O2, relative to F1_SC, suggestive of a higher lability in the non-native chelate. The implications of these findings for the evolutionary conservation of this motif are discussed.  相似文献   

14.
An in vitro and in vivo study of some copper chelating anti-inflammatory agents for alleviation of inflammation associated with rheumatoid arthritis (RA) has been conducted. Two copper chelating agents, N(1)-(2-aminoethyl)-N(2)-(pyridin-2-ylmethyl)ethane-1,2-diamine ([555-N]) and N-(2-(2-aminoethylamino)ethyl)picolinamide ([H(555)-N]) have been synthesized as their hydrochloride salt; their protonation constants and formation constants with Cu(II), Zn(II) and Ca(II) determined by glass electrode potentiometry at 298K and an ionic strength of 0.15M. Cu(II) formed stable complexes at physiological pH while the in vivo competitors, Zn(II) and Ca(II) formed weak complexes with both chelating agents. Both [555-N] and [H(555)-N] showed better selectivity for Cu(II) than for Zn(II) and Ca(II). Electronic spectra for species formed at physiological pH suggest a square planar geometry. Speciation calculations using a blood plasma model predicted that these copper chelating agents are able to mobilize Cu(II) in vivo, while bio-distribution studies of their (64)Cu(II)-labelled complexes at physiological pH showed tissue accumulation and retention indicating an encouraging biological half life.  相似文献   

15.
The metal ion coordinating properties of the ligands N,N-bis(2-methylquinoline)-2-(2-aminoethyl)pyridine (DQPEA) and N,N-bis(2-methylquinoline)-2-(2-aminomethyl)pyridine (DQPMA) are presented. DQPEA and DQPMA differ only in that DQPEA forms six-membered chelate rings that involve the pyridyl group, whereas DQPMA forms analogous five-membered chelate rings.These two ligands illustrate the application of a ligand design principle, which states that increase of chelate ring size in a ligand will result in increase in selectivity for smaller relative to larger metal ions. The formation constants (log K1) of DQPEA and DQPMA with Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) are reported. As expected from the applied ligand design principle, small metal ions such as Ni(II) and Zn(II) show increases in log K1 with DQPEA (six-membered chelate ring) relative to DQPMA (five-membered chelate ring), while large metal ions such as Cd(II) and Pb(II) show decreases in log K1 when the chelate ring increases in size. In order to further understand the steric origin of the destabilization of complexes of metal ions of differing sizes by the six-membered chelate ring of DQPEA, the structures of [Zn(DQPEA)H2O](ClO4)2 (1) [triclinic, , a = 9.2906(10), b = 10.3943(10), c = 17.3880(18) Å, α = 82.748(7)°, β = 88.519(7)°, γ = 66.957(6)°, Z = 4, R = 0.073] and [Cd(DQPEA)(NO3)2] (2) [monoclinic, C2/c, a = 22.160(3), b = 15.9444(18), c = 16.6962(18) Å, β = 119.780(3)°, Z = 8, R = 0.0425] are reported. The Zn in (1) is five-coordinate, with a water molecule completing the coordination sphere. The Cd(II) in (2) is six-coordinate, with two unidentate nitrates coordinated to the Cd. It is found that the bonds to the quinaldine nitrogens in the DQPEA complexes are considerably stretched as compared to those of analogous TPyA (tri(pyridylmethyl)amine) complexes, which effect is attributed to the greater steric crowding in the DQPEA complexes. The structures are analyzed for indications of the origins of the destabilization of the complex of the large Cd(II) ion relative to the smaller Zn(II) ion. A possible cause is the greater distortion of the six-membered chelate ring in (2) than in (1), as evidenced by torsion angles that are further away from the ideal values in (2) than in (1). Fluorescence properties of the DQPMA and DQPEA complexes of Zn(II) and Cd(II) are reported. It is found that the DQPEA complex of Zn(II) has increased fluorescence intensity compared to the DQPMA complex, while for the Cd(II) complex the opposite is found. This is related to the greater strain in the six-membered chelate ring of the Cd(II) DQPEA complex as compared to the Zn(II) complex, with resulting poorer overlap in the Cd-N bond, and hence greater ability to quench the fluorescence in the Cd(II) complex.  相似文献   

16.
Complexes of the type [M(bssdh)]Cl and [M(dspdh)]Cl, where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); Hbssdh = benzil salicylaldehyde succinic acid dihydrazone, Hdspdh = diacetyl salicylaldehyde phthalic acid dihydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra and X–ray diffraction studies. Magnetic moment values and electronic spectral transitions indicate a spin free octahedral structure for Co(II), Ni(II) and Cu(II) complexes. IR spectral studies suggest that both the ligands behave as monobasic hexadentate ligands coordinating through three > C = O, two > C = N– and a phenolate group to the metal. ESR spectra of Cu(II) complexes are axial type and suggest as the ground state. X–ray powder diffraction parameters for [Co(bssdh)]Cl and [Co(dspdh)]Cl complexes correspond to an orthorhombic crystal lattice. The ligands as well as their metal complexes show a significant antifungal and antibacterial activity against various fungi and bacteria. The metal complexes are more active than the parent ligands.  相似文献   

17.
Three new complexes [Cu(L)(2)(NO(3))](NO(3))(H(2)O)(1/2)(CH(3)OH)(1/2) (1), [Cd(L)(2)(NO(3))(2)](H(2)O)(3) (2) and [Cd(L)(2)(ClO(4))(CH(3)OH)](ClO(4))(H(2)O)(1/4)(CH(3)OH) (3) (L=1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene) were synthesized and characterized by elemental analyses, IR and X-ray diffraction analysis. Among them, the Cu(II) and Cd(II) ions were both coordinated by four N donors from two distinct L ligands via N,N-bidentate chelating coordination mode. Additional weak interactions, such as the face-to-face pi-pi stacking and C-Hcdots, three dots, centeredO H-bonding interactions, linked the mononuclear unit into 1D chain and further into 2D network. Complexes 1-3 were subjected to biological assays in vitro against six different cancer cell lines. All of them exhibited cytotoxic specificity and notable cancer cell inhibitory rate. The interactions of 1-3 with calf thymus DNA were investigated by thermal denaturation, viscosity measurements, spectrophotometric and electrophoresis methods. The results indicate that these complexes bound to DNA by intercalation mode via the ligand L and had different nuclease activities, which were in good agreement with their DNA-binding strength. Moreover, the central metal ions of 1-3 played a vital role in DNA-binding behaviors, DNA-cleavage activities and cytotoxicities, whereas the contribution of the different counter anions to their bioactivities also should not be ignored.  相似文献   

18.
4-Acetyl-2-(acetylamino)-5-dimethyl-Δ2-1,3,4-thiadiazole (AAT) has been used to obtain the complexes of the general formula [M(AAT)X2]·H2O where M(II) = Zn, Hg, Cd and Cu, and X  Cl or 12 SO4. The complexes have been characterized on the basis of their elemental analysis, molar conductance, magnetic susceptibility and spectral data. Probable structures for the complexes have been proposed on the basis of their physico-chemical properties. The fungitoxicity of AAT and the isolated complexes has been tested on pathogenic fungi.  相似文献   

19.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   

20.
Previous investigations of the potential of metal-organic compounds as inhibitors of human immunodeficiency virus type I protease (HIV-1 PR) showed that the copper(II) complex diaqua [bis(2-pyridylcarbonyl)amido] copper(II) nitrate dihydrate and the complex bis[N2-(2,3,6-trimethoxybenzyl)-4-2-pyridinecarboxamide] copper(II) behaved as inhibitors of HIV-1 PR. In a search for similar readily accessible ligands, we synthesised and studied the structural properties of N2-(2-pyridylmethyl)-2-pyridinecarboxamide (L) copper(II) complexes. Three different crystal structures were obtained. Two were found to contain ligand L simultaneously in a tridentate and bidentate conformation [Cu(L(tri)L(bi))]. The other contained two symmetry-related ligands, coordinated through the pyridine nitrogen and the amide oxygen atoms [Cu(L(bi))(2)]. A search of the Cambridge Structural Database indicated that L(tri) resulting from nitrogen bound amide hydrogen metal substitution is favoured over chelation through the amide oxygen atom. In our case, we calculated that the conformation of L(tri) is 11 kcal/mol more favourable than that of L(bi). ESI-MS experiments showed that the Cu(L(bi))(2) structure could not be observed in solution, while Cu(L(tri)L(bi))-related complexes were indeed present. The lack of protease inhibition of the pyridine carboxamide copper(II) complexes was explained by the fact that the Cu(L(bi)L(tri)) complex could not fit into the HIV-1 active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号