首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 A comprehensive analysis was carried out of the tri-molecular complex of peptide, major histocompatibility class II molecule, and T-cell receptor (TcR) involved in the recognition of the promiscuous HA (306–318) peptide, restricted by one of two closely related HLA-DR alleles, HLA-DRB1*0101 and HLA-DRB1*0103. These two DR molecules differ by only three amino acids at positions 67, 70, and 71, in the third variable region of the DRB1 chain. None of the HA (306–318)-specific T-cell clones restricted by these two DR molecules tolerated amino acid substitution at the peptide-binding position 71, despite the fact that the substitution did not interfere with peptide binding. The majority of the DRB1*0103-restricted clones tolerated substitution of the amino acid at the TcR-contacting position 70, while the DRB1*0101-restricted T cells did not. Biased usage of TRVA and TRVB segments was observed for the DRB1*0103-restricted clones; in contrast, apparently random usage was seen in the DRB1*0101-restricted T cells. Finally, limiting dilution analysis revealed a lower frequency of T cells reactive with the HA peptide in a DRB1*0103 compared with a DRB1*0101 individual. Taken together these data suggest that biased TcR gene usage may reflect a relatively low precursor frequency of T cells, and the need for clonal expansion of a limited set of high avidity T cells. Received: 7 August 1998 / Revised: 19 November 1998  相似文献   

2.
In humans, HLA-DR alleles sharing amino acids at the third hypervariable region with DRB1*0401(shared epitope) are associated with a predisposition to rheumatoid arthritis, whereas DRB1*0402 is not associated with such a predisposition. Both DRB1*0402 and DRB1*0401 occur in linkage with DQ8 (DQB1*0302). We have previously shown that transgenic (Tg) mice expressing HLA-DRB1*0401 develop collagen-induced arthritis. To delineate the role of "shared epitope" and gene complementation between DR and DQ in arthritis, we generated DRB1*0402, DRB1*0401.DQ8, and DRB1*0402.DQ8 Tg mice lacking endogenous class II molecules, AE(o). DRB1*0402 mice are resistant to develop arthritis. In double-Tg mice, the DRB1*0401 gene contributes to the development of collagen-induced arthritis, whereas DRB1*0402 prevents the disease. Humoral response to type II collagen is not defective in resistant mice, although cellular response to type II collagen is lower in *0402 mice compared with *0401 mice. *0402 mice have lower numbers of T cells in thymus compared with *0401 mice, suggesting that the protective effect could be due to deletion of autoreactive T cells. Additionally, DRB1*0402 mice have a higher number of regulatory T cells and show increased activation-induced cell death, which might contribute toward protection. In DRB1*0401.DQ8 mice, activated CD4(+) T cells express class II genes and can present DR4- and DQ8-restricted peptides in vitro, suggesting a role of class II(+) CD4 T cells locally in the joints. The data suggest that polymorphism in DRB1 genes determines predisposition to develop arthritis by shaping the T cell repertoire in thymus and activating autoreactive or regulatory T cells.  相似文献   

3.
CD4+ T cells play a central role in the induction and persistence of CD8+ T cells in several models of autoimmune and infectious disease. To improve the efficacy of a synthetic peptide vaccine based on the self-Ag, gp100, we sought to provide Ag-specific T cell help. To identify a gp100 epitope restricted by the MHC class II allele with the highest prevalence in patients with malignant melanoma (HLA-DRB1*0401), we immunized mice transgenic for a chimeric human-mouse class II molecule (DR4-IE) with recombinant human gp100 protein. We then searched for the induction of CD4+ T cell reactivity using candidate epitopes predicted to bind to DRB1*0401 by a computer-assisted algorithm. Of the 21 peptides forecasted to bind most avidly, murine CD4+ T cells recognized the epitope (human gp10044-59, WNRQLYPEWTEAQRLD) that was predicted to bind best. Interestingly, the mouse helper T cells also recognized human melanoma cells expressing DRB1*0401. To evaluate whether human CD4+ T cells could be generated from the peripheral blood of patients with melanoma, we used the synthetic peptide h-gp10044-59 to sensitize lymphocytes ex vivo. Resultant human CD4+ T cells specifically recognized melanoma, as measured by tumor cytolysis and the specific release of cytokines and chemokines. HLA class II transgenic mice may be useful in the identification of helper epitopes derived from Ags of potentially great clinical utility.  相似文献   

4.
One prerequisite for developing peptide-based allergen immunotherapy is knowing the T cell epitopes of an allergen. In this study, human T cell reactivity against the major dog allergen Can f 1 was investigated to determine peptides suitable for immunotherapy. Seven T cell epitope regions (A-G) were found in Can f 1 with specific T cell lines and clones. The localization of the epitope regions shows similarities with those of the epitopes found in Bos d 2 and Rat n 1. On average, individuals recognized three epitopes in Can f 1. Our results suggest that seven 16-mer peptides (p15-30, p33-48, p49-64, p73-88, p107-122, p123-138, and p141-156), each from one of the epitope regions, show widespread T cell reactivity in the population studied, and they bind efficiently to seven HLA-DRB1 molecules (DRB1*0101, DRB1*0301, DRB1*0401, DRB1*0701, DRB1*1101, DRB1*1301, and DRB1*1501) predominant in Caucasian populations. Therefore, these peptides are potential candidates for immunotherapy of dog allergy.  相似文献   

5.
Over the past decade, many efforts have been made to identify MHC class II-restricted epitopes from different tumor-associated Ags. Melan-A/MART-1(26-35) parental or Melan-A/MART-1(26-35(A27L)) analog epitopes have been widely used in melanoma immunotherapy to induce and boost CTL responses, but only one Th epitope is currently known (Melan-A51-73, DRB1*0401 restricted). In this study, we describe two novel Melan-A/MART-1-derived sequences recognized by CD4 T cells from melanoma patients. These epitopes can be mimicked by peptides Melan-A27-40 presented by HLA-DRB1*0101 and HLA-DRB1*0102 and Melan-A25-36 presented by HLA-DQB1*0602 and HLA-DRB1*0301. CD4 T cell clones specific for these epitopes recognize Melan-A/MART-1+ tumor cells and Melan-A/MART-1-transduced EBV-B cells and recognition is reduced by inhibitors of the MHC class II presentation pathway. This suggests that the epitopes are naturally processed and presented by EBV-B cells and melanoma cells. Moreover, Melan-A-specific Abs could be detected in the serum of patients with measurable CD4 T cell responses specific for Melan-A/MART-1. Interestingly, even the short Melan-A/MART-1(26-35(A27L)) peptide was recognized by CD4 T cells from HLA-DQ6+ and HLA-DR3+ melanoma patients. Using Melan-A/MART-1(25-36)/DQ6 tetramers, we could detect Ag-specific CD4 T cells directly ex vivo in circulating lymphocytes of a melanoma patient. Together, these results provide the basis for monitoring of naturally occurring and vaccine-induced Melan-A/MART-1-specific CD4 T cell responses, allowing precise and ex vivo characterization of responding T cells.  相似文献   

6.
The HLA-DRB1*0401 MHC class II molecule (DR4) is genetically associated with rheumatoid arthritis. It has been proposed that this MHC class II molecule participates in disease pathogenesis by presenting arthritogenic endogenous or exogenous peptides to CD4+ T cells, leading to their activation and resulting in an inflammatory response within the synovium. In order to better understand DR4 restricted T cell activation, we analyzed the candidate arthritogenic antigens type II collagen, human aggrecan, and the hepatitis B surface antigen for T-cell epitopes using a predictive model for determining peptide–DR4 affinity. We also applied this model to determine whether cross-reactive T-cell epitopes can be predicted based on known MHC–peptide–TCR interactions. Using the HLA-DR4-IE transgenic mouse, we showed that both T-cell proliferation and Th1 cytokine production (IFN-γ) correlate with the predicted affinity of a peptide for DR4. In addition, we provide evidence that TCR recognition of a peptide–DR4 complex is highly specific in that similar antigenic peptide sequences, containing identical amino acids at TCR contact positions, do not activate the same population of T cells.  相似文献   

7.
The spontaneous cytotoxic T cell responses to melanoma differentiation antigens and influenza matrix peptide were compared in 20 HLA-A2+ melanoma patients and 17 healthy A2+ individuals. Cytotoxic T lymphocyte (CTL) responses were determined by mixed lymphocyte peptide culture (MLPC) involving two stimulations of unfractionated peripheral blood lymphocytes (PBLs) with peptide in vitro. CTL responses to Melan-A 9-mer (amino acids 27–35, AAGIGILTV) peptide were detected in 4 out of 16 normal individuals, but in none of the melanoma patients. CTL specific for influenza matrix peptide were frequently found in both normal individuals and melanoma patients, suggesting that generalized immuno-suppression was not responsible for this difference. No significant responses were observed in either normal individuals or melanoma patients to Melan-A 10-mer (26–35, EAAGIGILTV), two gp100 epitopes (280–288, YLEPGPVTA; 457–466, LLDGTATLRL) and two tyrosinase epitopes (1–9, MLLAVLYCL; 368–376, YMDGMSQV). Melan-A (27–35)-specific CTL cells generated by normal individuals and melanoma patients recognized both synthetic peptide-pulsed T2 cells and two HLA-A2+, Melan-A+ melanoma cell lines (ME272, LAR1) in an antigen-specific, MHC class I restricted manner. T cells generated against Melan-A 9-mer were also able to recognize Melan-A 10-mer-pulsed target cells. Spontaneous CTL responses to Melan-A 9-mer from three known responder normal individuals were further evaluated over a prolonged time course (6–11 months). All 3 subjects demonstrated specific Melan-A 9-mer responses throughout the study period, although lytic activity fluctuated over time for a given individual. We found the MLPC assay to be reliable and easy to perform for monitoring T cell responses, although it may still not be sufficiently sensitive to detect low numbers of precursor T cells. Received: 21 May 1998 / Accepted: 23 July 1998  相似文献   

8.
Allergen-specific cells are present in very low frequency in peripheral blood of humans, and differ in function in allergic and nonallergic individuals. We report in this study that soluble class II MHC tetramers can be used to directly identify and study such allergen epitope-specific CD4+ T cells in humans. We identified the major antigenic epitope of rye grass allergen Lol p 1 in HLA-DRB1*0401 individuals using HLA-DR*0401 transgenic mice and peripheral blood cells from HLA-DR*0401 individuals. Using DRB1*0401 tetramers loaded with this major epitope of Lol p 1, we detected allergen-specific CD4+ T cells in the peripheral blood of DRB1*0401 rye grass allergic individuals after ex vivo expansion with allergen. These tetramer-positive cells produced IL-4, but little IFN-gamma. In contrast, we were unable to detect rye grass tetramer-positive cells in cultures from HLA-DR*0401 nonallergic individuals, even after expansion with IL-2. Thus, our results suggest that rye grass allergen-specific T cells in DR*0401 nonallergic subjects are present at very low levels (e.g., because of deletion or suppression), differ in a fundamental way in their requirement for ex vivo expansion (e.g., they may be anergic), or use TCRs distinct from those of allergic individuals. Thus, analysis using DRB1*0401 tetramers loaded with a major epitope of Lol p 1 indicates that allergen-specific CD4+ T cells in nonallergic individuals are distinct from those in allergic subjects.  相似文献   

9.
Rheumatoid arthritis (RA) is genetically associated with MHC class II molecules that contain the shared epitope. These MHC molecules may participate in disease pathogenesis by selectively binding arthritogenic peptides for presentation to autoreactive CD4(+) T cells. The nature of the arthritogenic Ag is not known, but recent work has identified posttranslationally modified proteins containing citrulline (deiminated arginine) as specific targets of the IgG Ab response in RA patients. To understand how citrulline might evoke an autoimmune reaction, we have studied T cell responses to citrulline-containing peptides in HLA-DRB1*0401 transgenic (DR4-IE tg) mice. In this study, we demonstrate that the conversion of arginine to citrulline at the peptide side-chain position interacting with the shared epitope significantly increases peptide-MHC affinity and leads to the activation CD4(+) T cells in DR4-IE tg mice. These results reveal how DRB1 alleles with the shared epitope could initiate an autoimmune response to citrullinated self-Ags in RA patients.  相似文献   

10.
Autoreactive T cells represent a natural repertoire of T cells in both diseased patients and healthy individuals. The mechanisms regulating the function of these autoreactive T cells are still unknown. Ob1A12 is a myelin basic protein (MBP)-reactive Th cell clone derived from a patient with relapsing-remitting multiple sclerosis. Mice transgenic for this human TCR and DRA and DRB1*1501 chains develop spontaneous experimental autoimmune encephalomyelitis. The reactivity of Ob1A12 is reported to be restricted to recognition of MBP peptide 85-99 in the context of DRB1*1501. DRA/DRB1*1501 and the patient's other restriction element, DRA/DRB1*0401, differ significantly in their amino acid sequences. In this study we describe an altered peptide ligand derived from MBP(85-99) with a single amino acid substitution at position 88 (Val to Lys; 88V-->K), that could stimulate the Ob1A12.TCR in the context of both DRA/DRB1*1501 and DRA/DRB1*0401. Analysis of a panel of transfected T cell hybridomas expressing Ob1A12.TCR and CD4 indicated that Ob1A12.TCR cross-reactivity in the context of DRA/DRB1*0401 is critically dependent on the presence of the CD4 coreceptor. Furthermore, we found that activation of Ob1A12.TCR with MBP altered peptide ligand 85-99 88V-->K presented by DRB1*1501 or DRB1*0401 resulted in significant differences in TCR zeta phosphorylation. Our data indicate that injection of altered peptide ligand into patients heterozygous for MHC class II molecules may result in unexpected cross-reactivities, leading to activation of autoreactive T cells.  相似文献   

11.
Several HLA-DR alleles are genetically associated with rheumatoid arthritis. DRB1*0401 predominates in Northern Europe and has a characteristic (70)QKRAA motif. This sequence contacts bound peptides and the TCR. Further interactions have been suggested with additional proteins during Ag loading. We explored the much stronger processing/presentation of full-length recombinant human acetylcholine receptor alpha subunit to a specific T cell clone by APC from DRB1*0401+ than *0408+ donors. Using DR*04 transfectants, we show that this difference results largely from the single Lys71<-->Arg interchange (0401<-->0408), which scarcely affects epitope binding, rather than from any other associated polymorphism. Furthermore, we proved our recombinant polypeptides to contain the Escherichia coli 70-kDa heat shock protein molecule DnaK and its requirement for efficient processing and presentation of the epitope by DRB1*0401+ cells. According to a recent report, 70-kDa heat shock protein chaperones preferentially bind to the QKRAA, rather than the QRRAA, motif. Variations between the shared epitope motifs QKRAA and QRRAA are emphasized by underlining. We propose that such interactions enhance the intracellular epitope loading of *0401 molecules. They may thus broaden immune responses to pathogens and at least partially explain the distinct contributions of DRB1*0401 and other alleles to disease predisposition.  相似文献   

12.
Melanoma-reactive HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) lines generated in vitro lyse autologous and HLA-matched allogeneic melanoma cells and recognize multiple shared peptide antigens from tyrosinase, MART-1, and Pmel17/gp100. However, a subset of melanomas fail to be lysed by these T cells. In the present report, four different HLA-A*0201+ melanoma cell lines not lysed by melanoma-reactive allogeneic CTL have been evaluated in detail. All four are deficient in expression of the melanocytic differentiation proteins (MDP) tyrosinase, Pmel17/gp100, gp75/trp-1, and MART-1/Melan-A. This concordant loss of multiple MDP explains their resistance to lysis by melanoma-reactive allogeneic CTL and confirms that a subset of melanomas may be resistant to tumor vaccines directed against multiple MDP-derived epitopes. All four melanoma lines expressed normal levels of HLA-A*0201, and all were susceptible to lysis by xenoreactive-peptide-dependent HLA-A*0201-specific CTL clones, indicating that none had identifiable defects in antigen-processing pathways. Despite the lack of shared MDP-derived antigens, one of these MDP-negative melanomas, DM331, stimulated an effective autologous CTL response in vitro, which was restricted to autologous tumor reactivity. MHC-associated peptides isolated by immunoaffinity chromatography from HLA-A1 and HLA-A2 molecules of DM331 tumor cells included at least three peptide epitopes recognized by DM331 CTL and restricted by HLA-A1 or by HLA-A*0201. Recognition of these CTL epitopes cannot be explained by defined, shared melanoma antigens; instead, unique or undefined antigens must be responsible for the autologous-cell-specific anti-melanoma response. These findings suggest that immunotherapy directed against shared melanoma antigens should be supplemented with immunotherapy directed against unique antigens or other undefined antigens, especially in patients whose tumors do not express MDP. Received: 31 October 1997 / Accepted: 4 August 1999  相似文献   

13.
 Human melanoma is a highly immunogenic tumor capable of inducing a specific immune response. A number of melanoma-associated antigens have been characterized during the past several years and can be classified into two groups: differentiation antigens  –  present also in normal melanocytes  –  and tumor-specific antigens, which, with the exception of testis, are present only in tumor cells. In a previous publication [Kirkin A. F., Petersen T. R., Olsen A. C., Li L., thor Straten P., Zeuthen J. (1995) Cancer Immunol Immunother 41:71] we have described the production of clones of cytotoxic T lymphocytes (CTL) against the highly immunogenic human melanoma cell line FM3. Using these clones we have defined four previously unknown melanoma-associated antigens, which could be subdivided into differentiation and progression antigens. In the experiments reported in this paper, we have further compared CTL clones from different groups and shown that the sensitivity of melanoma cells to CTL that recognize differentiation or progression antigens is differentially modulated during tumor progression as well as by the lymphokines interferon γ (IFNγ) and interleukin-10 (IL-10). The interaction of CTL clones recognizing progression antigens was strongly increased after treatment of melanoma cells with IFNγ, while the recognition by CTL clones specific for differentiation antigens either was unchanged or significantly decreased. IL-10 treatment of melanoma cells induced up-regulation with respect to recognition by CTL clones specific for differentiation antigens without affecting the recognition of melanoma cells by CTL clones specific for progression antigens. Using cellular systems at different stages of tumor progression, we demonstrated that the progressed state of melanoma cells is associated with increased sensitivity to recognition by CTL clones detecting progression antigens, and with decreased sensitivity to CTL clones recognizing differentiation antigens. Mimicking tumor progression, treatment with IFN-γ induced apparent down-regulation of differentiation antigens. A hypothesis is suggested in which IFN-γ plays different roles in the immune response against poorly immunogenic and highly immunogenic melanoma cells, increasing the progression of poorly immunogenic tumor cells or promoting a strong immune response and regression of highly immunogenic melanoma cells. Received: 23 November 1995 / Accepted: 7 March 1996  相似文献   

14.
Plasticity of TCR interactions during CD4(+) T cell activation by an MHC-peptide complex accommodates variation in the peptide or MHC contact sites in which recognition of an altered ligand by the T cell can modify the T cell response. To explore the contribution of this form of TCR cross-recognition in the context of T cell selection on disease-associated HLA molecules, we have analyzed the relationship between TCR recognition of the DRB1*0401- and DRB1*0404-encoded HLA class II molecules associated with rheumatoid arthritis. Thymic reaggregation cultures demonstrated that CD4(+) T cells selected on either DRB1*0401 or DRB1*0404 could be subsequently activated by the other MHC molecule. Using HLA tetramer technology we identify hemagglutinin residue 307-319-specific T cells restricted by DRB1*0401, but activated by hemagglutinin residues 307-319, in the context of DRB1*0404. One such clone exhibits an altered cytokine profile upon activation with the alternative MHC ligand. This altered phenotype persists when both class II molecules are present. These findings directly demonstrate that T cells selected on an MHC class II molecule carry the potential for activation on altered self ligands when encountering Ags presented on a related class II molecule. In individuals heterozygous for these alleles the possibility of TCR cross-recognition could lead to an aberrant immune response.  相似文献   

15.
MOTIVATION: The immunogenicity of peptides depends on their ability to bind to MHC molecules. MHC binding affinity prediction methods can save significant amounts of experimental work. The class II MHC binding site is open at both ends, making epitope prediction difficult because of the multiple binding ability of long peptides. RESULTS: An iterative self-consistent partial least squares (PLS)-based additive method was applied to a set of 66 peptides no longer than 16 amino acids, binding to DRB1*0401. A regression equation containing the quantitative contributions of the amino acids at each of the nine positions was generated. Its predictability was tested using two external test sets which gave r(pred) = 0.593 and r(pred) = 0.655, respectively. Furthermore, it was benchmarked using 25 known T-cell epitopes restricted by DRB1*0401 and we compared our results with four other online predictive methods. The additive method showed the best result finding 24 of the 25 T-cell epitopes. AVAILABILITY: Peptides used in the study are available from http://www.jenner.ac.uk/JenPep. The PLS method is available commercially in the SYBYL molecular modelling software package. The final model for affinity prediction of peptides binding to DRB1*0401 molecule is available at http://www.jenner.ac.uk/MHCPred. Models developed for DRB1*0101 and DRB1*0701 also are available in MHCPred.  相似文献   

16.
 Human T-cell-mediated autoimmune diseases are often genetically linked to particular alleles of HLA class II genes. Vogt-Koyanagi-Harada’s (VKH) disease, which is regarded as an autoimmune disorder in multiple organs containing melanocytes, has been found to be associated with HLA-DR4 (DRB1*0405) and HLA-DR53 (DRB4*0101). Tyrosinase is a melanoma antigen (Ag) expressed by normal melanocytes as well as melanoma cells against which responses by autologous T cells have been detected. We established a T-cell line from the peripheral blood of a patient with VKH disease which responded to synthetic peptides corresponding to tyrosinase. The T-cell line was generated which recognized the tyrosinase p188 – 208 peptide when presented by the HLA-DR4 (DRB1*0405) molecule on the surface of HLA class II-expressing L-cell transfectants. The minimal antigenic peptide which induced T-cell responses was an 11-amino-acid sequence and located at tyrosinase p193 – 203 (E-I-W-R-D-I-D-F-A-H-E). This peptide contained the DRB1*0405-binding peptide motif (hydrophobic residues (Y, F, W) at position 1 as an anchor residue, and negatively charged residues (D, E) at position 9), which corresponded to the W at p195 and the D at p203. These observations demonstrate that tyrosinase peptides are immunogenic, and may be a candidate for an autoantigen in VKH disease, suggesting that probing the T-cell responses against synthetic peptides is a productive approach for identifying the autoantigenic peptides associated with autoimmune diseases including VKH disease. Received: 22 August 1997 / Revised: 7 October 1997  相似文献   

17.
Myelin oligodendrocyte glycoprotein (MOG) is an Ag present in the myelin sheath of the CNS thought to be targeted by the autoimmune T cell response in multiple sclerosis (MS). In this study, we have for the first time characterized the T cell epitopes of human MOG restricted by HLA-DR4 (DRB1*0401), an MHC class II allele associated with MS in a subpopulation of patients. Using MHC binding algorithms, we have predicted MOG peptide binding to HLA-DR4 (DRB1*0401) and subsequently defined the in vivo T cell reactivity to overlapping MOG peptides by testing HLA-DR4 (DRB1*0401) transgenic mice immunized with recombinant human (rh)MOG. The data indicated that MOG peptide 97-108 (core 99-107, FFRDHSYQE) was the immunodominant HLA-DR4-restricted T cell epitope in vivo. This peptide has a high in vitro binding affinity for HLA-DR4 (DRB1*0401) and upon immunization induced severe experimental autoimmune encephalomyelitis in the HLA-DR4 transgenic mice. Interestingly, the same peptide was presented by human B cells expressing HLA-DR4 (DRB1*0401), suggesting a role for the identified MOG epitopes in the pathogenesis of human MS.  相似文献   

18.
 In order to construct an immunogenic cellular vaccine, we transduced three HLA-A*0201 human melanoma lines, selected for expression of classes I and II HLA, adhesion molecules and the T cell-defined melanoma antigens Melan/MART-1, gp100 and tyrosinase, with both interleukin-2 (IL-2) and B7-1 genes by the use of a polycistronic retroviral vector. The lines were selected to share only the HLA-A*0201 allele to avoid generation of strong alloreactivity in case of their multiple in vivo use in HLA-A*0201 + patients. Phenotypic and functional analysis of B7-1-IL2 transduced melanoma lines in comparison with B7-1 transduced and/or parental untransduced counterparts were then carried out. Tumor cells expressing either B7-1 or both genes did not change their original antigenic profile. From a functional point of view, expression of both genes in melanoma lines: (1) improved the response of anti-melanoma cytotoxic T lymphocytes (CTL) over singly transduced or untransduced melanoma cells when subthreshold levels of MHC-peptide complexes were expressed by melanoma cells; (2) conferred a distinct advantage in the ability to stimulate cytotoxicity and interferon-γ release by autologous and/or HLA-A*0201-compatible allogeneic lymphocytes; (3) allowed the generation of a high number of specific CTL by in vitro stimulation of lymphocytes of HLA-A*0201-melanoma patients. Thus, B7-IL2 gene-transduced melanoma lines appear to display a high immunogenicity and could be used as vaccine in melanoma patients. Received: 17 August 2000 / Accepted: 1 February 2001  相似文献   

19.
NY-ESO-1 is expressed by a broad range of human tumors and is often recognized by Abs in the sera of cancer patients with NY-ESO-1-expressing tumors. The NY-ESO-1 gene also encodes several MHC class I- and class II-restricted tumor epitopes recognized by T lymphocytes. In this study we report one novel pan-MHC class II-restricted peptide sequence, NY-ESO-1 87-111, that is capable of binding to multiple HLA-DR and HLA-DP4 molecules, including HLA-DRB1*0101, 0401, 0701, and 1101 and HLA-DPB1*0401 and 0402 molecules. We also demonstrate that peptide NY-ESO-1 87-111 stimulates Th1-type and Th-2/Th0-type CD4(+) T cells and clones when presented in the context of these HLA-DR and HLA-DP4 molecules. Both bulk CD4(+) T cells and CD4(+) T cell clones were capable of recognizing not only peptide-pulsed APCs, but also autologous dendritic cells, either loaded with the NY-ESO-1 protein or transfected with NY-ESO-1 cDNAs. Using IFN-gamma and IL-5 ELISPOT assays and PBL from patients with NY-ESO-1-expressing tumors, we observed the existence of Th1-type circulating CD4(+) T cells recognizing peptide NY-ESO-1 87-111 in the context of HLA-DP4 molecules. Taken together, these data represent the first report of an HLA-DR- and HLA-DP-restricted epitope from a tumor Ag. They also support the relevance of cancer vaccine trials with peptides NY-ESO-1 87-111 in the large number of cancer patients with NY-ESO-1-expressing tumors.  相似文献   

20.
A hepatitis C virus E(2) protein-derived sequence was selected for studying the effect of N-glycosylation on the peptide chain's conformational structure. The results suggested that the (534)TDVF(537) motif contained in peptide 33402 ((529)WGENDTDVFVLNNTRY(544)) had a type III beta-turn, relevant in antigen recognition of polyclonal antibodies, binding to human cells, and binding to HLA DRB1 *0401 molecules. N-Glycopeptides derived from this sequence contained monosaccharides in Asn(532). N-Glycopeptides presented differences in peptide chain structure compared to non-glycosylated peptides. Peptide 33402 specifically bound to human cells, specificity becoming lost when it was N-glycosylated. N-Glycosylation decreased antigen recognition of mouse polyclonal sera against this sequence. N-Glycopeptide binding to HLA DRB1 *0401 molecules was similar to that presented by non-glycosylated peptide, indicating that N-glycosylation did not affect binding to HLA DRB1 *0401 molecules. N-Glycosylation induced changes at structural and functional level which could be relevant for modulating human cell binding properties and antibody recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号