首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative statistical estimates of changes in ultraslow phasic electrical activity of the brain (in the range 0.05–0.5 Hz) and the EEG (1.5–50 Hz) with time were compared in the basic (reference) states of quiet wakefulness with the eyes open and closed (EO and EC, respectively). In both states, the changes in the power and coherence of ultraslow phasic activity and the EEG had similar trends; however, the topographic patterns of the changes were different. The obtained data confirm the assumption on different structural and functional bases of the EEG and ultraslow phasic activity of the brain and indicate polysystemic differences between the EO and EC states.  相似文献   

2.
In adult healthy right-handed subjects, the expression and degree of synchronization of the EEG alpha-range rhythmic components in different areas of the right and left hemispheres, were studied in a state of quiet wakefulness and during solving of verbal and spatial tasks presented in the visual field. The EEG of quiet wakefulness was characterized by different distribution of the alpha-range rhythmic components in the right and left hemispheres; in the right hemisphere low frequencies (7.5-10.5 c/s) were more expressed and more coherent; in the left one--the high frequencies (10.5-13.5 c/s). The solving of tasks was accompanied--along with a decrease of the whole alpha-range power spectra both in the right and the left hemispheres--by a local increase of synchronization of certain components of this range; the increase was specific to the hemisphere and the kind of task. The increase of synchronization of low-frequency components was observed in the right hemisphere during solving of the spatial task and that of the high-frequency components was noticed in the left hemisphere during solving of the verbal task. On the basis of the data on hemispheric specificity of electric activity synchronization of the alpha-rhythm, a suggestion is made about a different character of the functional integration of the structures of the right and left hemispheres in the process of solving of spatial and verbal tasks.  相似文献   

3.
The thermal fields and biopotentials of the brain were studied in 11 healthy subjects in the states of quiet wakefulness and sleep (stages I–IV). To this end, a new method of dynamic radiomapping was applied in parallel with the traditional method of EEG recording. The method of dynamic radiomapping is based on measuring the brain thermal radiation in the decimeter (40 cm) wave range. It allows the integral brain temperature to be recorded from deep inside and up to 2.5 cm from the surface with the help of 12 antennas applied to the skin. The temperature of the cerebral cortex of the human subject in the state of quiet wakefulness varied stochastically in the range of deviations of ±0.3°C in all areas. Changes in the brain functional state, i.e., the transition from wakefulness to sleep, were accompanied by either an increase in the variation range to ±0.5°C or the appearance of stationary foci of heating (by 0.9–1.3°C) or cooling (by –0.7°C) of individual locations and amplitudes.  相似文献   

4.
The influence of a pharmaceutical preparation of glycine on the EEG and the quality of sensorimotor activity of healthy subjects and alcoholics was studied during the performance of a test on pursuing tracking. Subjects with left-sided dominance of spatial synchronization of cortical biopotentials in the posterofron-totemporal areas under conditions of quiet wakefulness with open eyes were found to have an advantage in performing this kind of activity. Glycine normalized pathological changes of cortical activity and, under certain conditions, improved sensorimotor parameters of operator activity.  相似文献   

5.
Four individuals of the lizard Ctenosaura pectinata were chronically implanted for electroencephalographic (EEG), electromyographic (EMG) and electro-oculographic (EOG) recordings. Four different vigilance states were observed throughout the nyctohemeral cycle. These states were: Active wakefulness (Aw), quiet wakefulness (Qw), quiet sleep (Qs) and active sleep (As). Each state displayed its own behavioral and electrophysiological characteristics. EEG waves were similar during Aw and Qw but they diminished in amplitude and frequency when passing from these states to Qs, and both parameters increased during As. Muscular activity was intense in Aw, it decreased during Qw and almost disappeared during Qs. This activity reappeared in a phasic way during As, coinciding with generalized motor manifestations. Ocular activity was intense during Aw but minimal during Qw, it disappeared in Qs and was present intermittently in As. Aw, Qw, Qs and As occupied 5.9%, 25.7%, 67.7% and 0.6% of the 24 hr period, respectively. The frequency and duration of As episodes showed great inter-animal variability and the mean duration was of 12.9 sec. Stimuli reaction threshold was highest during sleep. In conclusion, the lizard Ctenosaura pectinata exhibit two sleep phases (Qs and As) that may be assimilated to slow wave sleep (SWS) and paradoxical sleep (PS) of birds and mammals.  相似文献   

6.
The EEG and infraslow phasic electrical processes in the band of 0.05-0.5 Hz (ISPP) were simultaneously recorded in 16 derivations (10-20 System without Fz, Cz, and Pz) in 35 women volunteers in the state of quiet wakefulness with closed eyes. Artifacts and non-stationary segments with a sharp amplitude increase were eliminated from the records in preprocessing editing. Spatial correlations were evaluated using maxima of crosscorrelation functions and coherence functions averaged over the whole spectrum. Correlations for both kind of processes appeared to be rather similar, in particular, they were both characterized by the low values if interhemispheric covariations in the temporal areas. The ISSP correlations were significantly lower for the least distance between derivations and had lower spatial gradient than the EEG correlations. There were also some topical differences between the processes. The obtained evidence support the idea of the ISPP as direct manifestations of cortical electrical activity, however, rather specific in relation with the routine EEG correlations.  相似文献   

7.
Autospectral characteristics (ASC) of potentials of different neocortical areas of dogs in a state of quiet wakefulness were studied in a wide frequency band (1-100 Hz) by means of correlation-spectral analysis. A transition from evaluation of the mean power tendencies to a construction of distributions of different power levels for each of five arbitrarily chosen frequency bands permitted to reveal regional differences in ASC of each animal as well as interindividual EEG distinctions. The regional differences observed in all frequency bands (though not equally expressed) including the higher ones indicate not only the informativity of high-frequency components of electrical neocortical activity but also their neuronal origin.  相似文献   

8.
Nitric oxide (NO), being produced by active neurones and also being a cerebral vasodilator, may couple brain activity and blood flow in sleep, particularly during active sleep (AS), which is characterized by widespread neural activation and markedly elevated cerebral blood flow (CBF) compared with quiet wakefulness (QW) and quiet sleep (QS). This study examined CBF and cerebral vascular resistance (CVR) in lambs (n = 6) during spontaneous sleep-wake cycles before and after infusion of N(omega)-nitro-L-arginine (L-NNA), an inhibitor of NO synthase. L-NNA infusion produced increases in CVR and decreases in CBF during all sleep-wake stages, with the greatest changes occurring in AS (DeltaCVR, 88 +/- 19%; DeltaCBF -24 +/- 8%). The characteristic CVR and CBF differences among AS, QS, and QW disappeared within 1-3 h of L-NNA infusion, but had reappeared by 24 h despite persisting cerebral vasoconstriction. These experiments show that NO promotes cerebral vasodilatation during sleep as well as wakefulness, particularly during AS. Additionally, NO is the major, although not sole, determinant of the CBF differences that exist between sleep-wake states.  相似文献   

9.
In schoolchildren aged nine to ten years, the analysis of EEG indices (spectral power density, the function of coherence in the α band) of different cortex regions in four experimental situations—quiet wakefulness, mnemenic activity, relaxation, and mnemenic activity in the postrelaxation period—was performed. In the mnemenic activity situations, a task for determining the short-term auditory-speech memory span was used. A positive effect of relaxation on the efficiency of mnemenic activity expressed in an increase in the short-term memory span was found. Comparison of groups formed according to the increase in the memory span showed differences in the dynamics of coherence indices. Only in children with a pronounced postrelaxation increase in the memory span in the situation of mnemenic activity was an increase in coherence in the high-frequency subrange of the α band of the EEG detected, whose functional significance is related to selective inhibition.  相似文献   

10.
The relations between the component of the hippocampal network free oscillations, i.e., sharp potential waves (SPW) and the theta component of the hippocampal EEG are considered. It is commonly accepted that, in the course of changes from the state corresponding to a weak activation of the hippocampal network in the theta rhythm by the septum through the state corresponding to a medium activation to the state of a high activation, the inverse dependence between the magnitudes of these components in the EEG spectra takes place. However, our work shows that this dependence can be deranged in the rat EEG during quiet wakefulness that corresponds to the medium activation of the hippocampal network in theta rhythm. It was also shown that the RF stimulation can evoke abnormal signals with well-pronounced theta activity against the background of a considerable SPW component. This phenomenon demonstrates a possibility of a strong derangement of the dependence, which is, as a rule, observed under the natural conditions. The hypothesis concerning the organization and regulation of the investigated components of the hippocampal EEG is proposed.  相似文献   

11.
EEG sleep spindle activity (SpA) during non-rapid eye movement (NREM) sleep has been reported to be associated with measures of intelligence and overnight performance improvements. The reticular nucleus of the thalamus is generating sleep spindles in interaction with thalamocortical connections. The same system enables efficient encoding and processing during wakefulness. Thus, we examined if the triangular relationship between SpA, measures of intelligence and declarative learning reflect the efficiency of the thalamocortical system. As expected, SpA was associated with general cognitive ability, e.g. information processing speed. SpA was also associated with learning efficiency, however, not with overnight performance improvement in a declarative memory task. SpA might therefore reflect the efficiency of the thalamocortical network and can be seen as a marker for learning during encoding in wakefulness, i.e. learning efficiency.  相似文献   

12.
The respiratory-related activity of the arytenoideus (AR) muscle, a vocal cord adductor, was investigated in 10 healthy adults during wakefulness and sleep. AR activity was measured with intramuscular hooked-wire electrodes implanted by means of a fiber-optic nasopharyngoscope. Correct placement of the electrodes was confirmed by discharge patterns during voluntary maneuvers. The AR usually exhibited respiratory-related activity during quiet breathing in all awake subjects. Tonic activity was frequently present throughout the respiratory cycle. The pattern of phasic discharge during wakefulness exhibited considerable intrasubject variability both in timing and level of activity. Phasic activity usually began in midinspiration and terminated in mid- to late expiration. Periods of biphasic discharge were observed in four subjects. Phasic discharge primarily confined to expiration was also commonly observed. During quiet breathing in wakefulness, the level of phasic AR activity appeared to be directly related to the time of expiration. The AR was electrically silent in the six subjects who achieved stable periods of non-rapid-eye-movement sleep. Rapid-eye-movement sleep was observed in three subjects and was associated with sporadic paroxysmal bursts of AR activity. The results during wakefulness indicate that vocal cord adduction in expiration is an active phenomenon and suggest that the larynx may have an active role in braking exhalation.  相似文献   

13.
Relaxation-induced changes in characteristics of the functional state of the nervous system (EEG parameters and electrodermal resistance (EDR)) were studied in 30 schoolchildren aged 9–10 years. A multichannel EEG was recorded from the occipital, parietal, temporo-parieto-occipital, central, and frontal areas of both brain hemispheres in three test conditions: quiet wakefulness, R, and recovery of the initial state. Simultaneously, the EDR was monitored. EEG amplitude spectra and coherence were calculated. Prior to and after relaxation, a cognitive test to determine the extent of short-term auditory verbal memory was performed. While changes in the EDR were reversible, relaxation-induced changes in the EEG parameters persisted after relaxation in many subjects. Changes in EEG coherence between distant derivations were most stable. Since short-term auditory verbal memory improved after relaxation, the postrelaxation changes in the EEG parameters were considered to reflect positive changes arising in the brain function and increasing the efficiency of cognitive processes.  相似文献   

14.
This work was aimed at a search for EEG corellates of efficiency of nonverbal creative performance. Standardized Torrens technique which makes it possible to quantitatively assess creativity was used. The EEG records were performed before and during test performance, EEG parameters were compared to Torrens scores on three scales: flexibility, originality and efficiency. Absolute values of spatial synchronization, coherence and spectral power both in the baseline and during the performance were calculated. Changes in these parameters were traced during the transition from the state of quiet wakefulness to creative performance. The narrow-band analysis of coherence and spectral power allowed the number and orientation of processes associated with creativity scales to be assessed. The absence of substantial EEG changes during the test performance is indicative of the steady, nondynamical functional state of the brain.  相似文献   

15.
An electroencephalographic study of the brain activity in the wakefulness-sleep cycle was carried out on rats of Krushinskii-Molodkina line (KM) with hereditary predisposition to audiogenic convulsions and on Wistar rats that were insensitive to the convulsiogenic sound effect, but with epileptiform manifestations appearing on the background of cadmium intoxication and administration of kainic acid into the caudate nucleus head. There were revealed several EEG patterns whose presence was an indicator of formation of disorders of the CNS activity of the paroxysmal character in the animals. It has been established that in the phase of the rat rapid-wave sleep, a high representation of episodes with predominance of α-diapason EEG oscillations can be considered a specific non-paroxysmal abnormality due to the presence of convulsive syndrome in these animals. There was shown a long steady decrease of sensitivity of KM rats to the convulsiogenic sound effect, which appeared after multiple audiogenic generalized tonicoclonic convulsive attacks, correlated with a decrease of the degree of ?-diapason oscillations and with an increase of representation of α-diapason waves on EEG in the state of the animal quiet wakefulness. The role of disintegration in activity of the ascending activating brain systems in the animal and human paroxysmal syndromes is discussed.  相似文献   

16.
The study of electroencephalographic (EEG) activity during sleep in the spider monkey has provided new insights into primitive arboreal sleep physiology and behavior in anthropoids. Nevertheless, studies conducted to date have maintained the frequency ranges of the EEG bands commonly used with humans. The aim of the present work was to determine the EEG broad bands that characterize sleep and wakefulness in the spider monkey using principal component analysis (PCA). The EEG activity was recorded from the occipital, central, and frontal EEG derivations of six young-adult male spider monkeys housed in a laboratory setting. To determine which frequencies covaried and which were orthogonally independent during sleep and wakefulness, the power EEG spectra and interhemispheric and intrahemispheric EEG correlations from 1 to 30 Hz were subjected to PCA. Findings show that the EEG bands detection differed from those reported previously in both spider monkeys and humans, and that the 1–3 and 2–13 Hz frequency ranges concur with the oscillatory activity elucidated by cellular recordings of subcortical regions. Results show that applying PCA to the EEG spectrum during sleep and wakefulness in the spider monkey led to the identification of frequencies that covaried with, and were orthogonally independent of, other frequencies in each behavioral vigilance state. The new EEG bands differ from those used previously with both spider monkeys and humans. The 1–3 and 2–13 Hz frequency ranges are in accordance with the oscillatory activity elucidated by cellular recordings of subcortical regions in other mammals.  相似文献   

17.
EEG monopolarly recorded in points F3, F4, O1, O2 of 20 healthy subjects in six states (quiet wakefulness with open or closed eyes, spontaneous button pressings in arbitrary moments of time, listening to clicks, reaction to clicks by pressing the button at random or at equal intervals between stimuli), were processed by means of the computer program transforming the raw EEG tracings to a sequence of stationary segments. The accumulated segments were divided into classes of "similar" ones by a two-stage procedure of cluster analysis. In each lead six types of segments were identified forming populations of structural units of an individual human EEG. Four types were recorded all over the brain: their spectra were of a great resemblance in different brain areas. The EEG of each individual was characterized by a certain combination of segment types which practically did not change by their quality in different states of the subject.  相似文献   

18.
The frontal midline Θ rhythm in the GO/NOGO paradigm was studied in a group of apparently healthy children at ages of 7–13 years. Calculated event-related synchronization in response to stimulus presentation in tests was used as an index of the phasic component, and the relative change in the EEG power in the Θ band (compared to the activity in the state of quiet wakefulness) in response to test performance was used as an index of the tonic component. Subjects were divided into two groups according to the characteristics of the baseline Θ activity. A statistically significant correlation between the phasic and tonic components of the Θ rhythm was found in the group of children characterized by the absence of the frontal midline Θ rhythm in the baseline EEG. No such correlation was found in the group of children characterized by a pronounced baseline Θ rhythm. The results testify to the functional heterogeneity of the phasic and tonic components of the human midline Θ rhythm.  相似文献   

19.
Six normal adults were studied 1) to compare respiratory-related posterior cricoarytenoid (PCA) muscle activity during wakefulness and sleep and 2) to determine the effect of upper airway occlusions during non-rapid-eye-movement (NREM) sleep on PCA activity. A new electromyographic technique was developed to implant hooked-wire electrodes into the PCA by using a nasopharyngoscope. A previously described technique was used to induce upper airway occlusions during NREM sleep (Kuna and Smickley, J. Appl. Physiol. 64: 347-353, 1988). The PCA exhibited phasic inspiratory activity during quiet breathing in wakefulness and sleep in all subjects. Discounting changes in tonic activity, peak amplitude of PCA inspiratory activity during stage 3-4 NREM sleep decreased to 77% of its value in wakefulness. Tonic activity throughout the respiratory cycle was present in all subjects during wakefulness but was absent during state 3-4 NREM sleep. In this sleep stage, PCA phasic activity abruptly terminated near the end of inspiration. During nasal airway occlusions in NREM sleep, PCA phasic activity did not increase significantly during the first or second occluded effort. The results, in combination with recent findings for vocal cord adductors in awake and sleeping adults, suggest that vocal cord position during quiet breathing in wakefulness is actively controlled by simultaneously acting antagonistic intrinsic laryngeal muscles. In contrast, the return of the vocal cords toward the midline during expiration in stage 3-4 NREM sleep appears to be a passive phenomenon.  相似文献   

20.
The inability to see the fetus makes the assessment of fetal behavior difficult. To circumvent this problem we implanted a Plexiglas window in the left flank of the ewe. Fetuses were instrumented for measurements of sleep, breathing, and swallowing. Ten fetal sheep were studied on 32 occasions. Six fetuses were delivered through the window at term, and postnatal behavior was compared with intrauterine behavior. Fetuses observed during resting conditions alternated between periods of quiet sleep [high-voltage electrocortical activity (ECoG)] and active or rapid-eye-movement sleep (low-voltage ECoG). In quiet sleep, movements were absent except for periodic generalized electromyographic discharges. Eye and breathing movements were rare or absent. Swallowing was also absent. In active sleep, movements were increased with powerful breathing and swallowing activity. Fetal wakefulness defined by open eyes and purposeful movements of the head was never seen in utero but was clearly observed after delivery. We conclude that fetal wakefulness as defined postnatally was not able to be demonstrated in utero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号