首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The arbuscular mycorrhizal status of two plant species, Biscutella laevigata L. and Plantago lanceolata L., was investigated on calamine spoil mounds in Boles?aw (southern Poland). Although B. laevigata is a member of the Brassicaceae, a family generally accepted as non-mycorrhizal, this species formed AM symbioses on both heavy metal-contaminated and non-contaminated sites. Besides vesicles and coils, arbuscules were also observed, especially in roots collected prior to seed maturity. Relative mycorrhizal root length and relative arbuscular richness were usually much higher in P. lanceolata than in B. laevigata but not absolute arbuscule richness. Roots of P. lanceolata showed higher colonisation than B. laevigata. Although roots were collected from plants in close proximity, no correlation in mycorrhizal parameters was found between the two species.  相似文献   

2.
The abundance and distribution of arbuscular mycorrhizal fungi (AMF) were evaluated in the Tabriz Plain, where soil salinity levels range from 7.3 to 92.0 dS/m. Soil and root samples were collected from the rhizosphere of several glycophytes (Allium cepa L., Medicago sativa L., Triticum aestivum L. and Hordeum vulgare L.) and halophytes (Salicornia sp. and Salsola sp.) and were analysed for spore number in soil, root colonization with AMF and some physical and chemical soil properties. The number of AMF spores was not correlated significantly with soil salinity but suffered adverse effects from the accumulation of some anions and cations. Cluster analysis of correlation matrices showed that root colonization, soil pH, sand and clay percent, and soil-available P, rather than soil salinity and ion concentrations, were closely related with spore number. The percentage of root length colonized in glycophytes significantly decreased with increasing soil salinity. Barley roots showed 5% mycorrhizal colonization in high soil salinity (~20 dS/m). Halophyte roots were not mycorrhizal but more spores were found in rhizosphere than in non-rhizosphere soil.  相似文献   

3.
The effects of liming and inoculation with the arbuscular mycorrhizal fungus, Glomus intraradices Schenck and Smith on the uptake of phosphate (P) by maize (Zea mays L.) and soybean (Glycine max [L.] Merr.) and on depletion of inorganic phosphate fractions in rhizosphere soil (Al-P, Fe-P, and Ca-P) were studied in flat plastic containers using two acid soils, an Oxisol and an Ultisol, from Indonesia. The bulk soil pH was adjusted in both soils to 4.7, 5.6, and 6.4 by liming with different amounts of CaCO3.In both soils, liming increased shoot dry weight, total root length, and mycorrhizal colonization of roots in the two plant species. Mycorrhizal inoculation significantly increased root dry weight in some cases, but much more markedly increased shoot dry weight and P concentration in shoot and roots, and also the calculated P uptake per unit root length. In the rhizosphere soil of mycorrhizal and non-mycorrhizal plants, the depletion of Al-P, Fe-P, and Ca-P depended in some cases on the soil pH. At all pH levels, the extent of P depletion in the rhizosphere soil was greater in mycorrhizal than in non-mycorrhizal plants. Despite these quantitative differences in exploitation of soil P, mycorrhizal roots used the same inorganic P sources as non-mycorrhizal roots. These results do not suggest that mycorrhizal roots have specific properties for P solubilization. Rather, the efficient P uptake from soil solution by the roots determines the effectiveness of the use of the different soil P sources. The results indicate also that both liming and mycorrhizal colonization are important for enhancing P uptake and plant growth in tropical acid soils.  相似文献   

4.
To establish relationships between soil phosphorus (P) fractions and leaf P, a mycorrhizal species (Plantago lanceolata L.) was compared with a typically non-mycorrhizal species (Rumex acetosella L.) in a glasshouse experiment. The plants were grown in 40 soils from non-fertilised, abandoned pastures or abandoned arable fields and leaf P concentration were found to be related to various soil P fractions after six weeks of growth. The differences in the P fractions in soil can account for a large share of the variation in leaf P concentration in both species, but the two species differed in their utilisation of P fractions. Leaf P concentration of R. acetosella was more related to extractable soil P than that of P. lanceolata. Rumex acetosella showed a higher maximum P concentration. The P fractions accounting for the largest share of the variation in leaf P concentration was the Bray 1 extractable and the weak oxalate (1 mM) extractable P, and for P. lanceolata also the Na2SO4+NaF extractable P fraction. P extracted with these methods accounted for up to 80% of the variation in P concentration in leaves of R. acetosella and 65% of the variation in leaves of P. lanceolata. More P extractable with weak oxalate, Na2SO4+NaF and strong oxalate (50 mM) was released from the soil than was taken up by the plants during the experimental period. The Bray 1 extractable P fraction, however, decreased in both unplanted and planted soils. Phosphatase release was not induced in any of the plants during the experimental period, indicating that they were not mobilising soil organic P. However, some of the methods extracted a large share of the organic P and still explained much of the variation in leaf P concentration. Mycorrhizal colonisation of P. lanceolata was inversely related to the extractable soil P. The consistently fast P uptake of R. acetosella indicates that this species have a high demand for P. The differences in P utilisation between R. acetosella and P. lanceolata could be caused by their different mycorrhizal status.  相似文献   

5.
Grapevine (Vitis vinifera L.) and two selected weeds from Mediterranean Croatian vineyards (Plantago lanceolata L. and Tanacetum cinerariifolium (Trevir.) Sch.Bip.) were examined in pot culture experiments, individually or when combined, to see whether multiple hosts influenced the formation of the symbiosis with arbuscular mycorrhizal fungi (AMF). The results after six-month period showed that plant identity and density significantly influenced development of mycorrhizal intra- and extraradical mycelium and/or sporulation. Grapevine and T. cinerariifolium individually and in combination resulted in a greater development of arbuscular mycorrhizae in terms of spore production, extraradical mycelium length and root colonization compared with pots containing P. lanceolata. Herbaceous weed species seemed to promote a different set of dominant AMF, potentially providing a wider spectrum of AMF for colonising grapevine roots. This indicates the value of encouraging host plant diversity in vineyards. AMF sequences obtained in this study are the first data reported for soils in Croatia.  相似文献   

6.
A greenhouse investigation was conducted to determine the effect of arbuscular mycorrhiza and drought on the growth of two tropical hedgerow legume trees (Gliricidia sepium and Leucaena leucocephala) under simulated eroded soil conditions. It was a factorial design with two levels of watering regime (adequate watering and drought), inoculation with Glomus deserticola (with and without), and two soil types (0-30 cm topsoil and 30-60 cm subsoil). Each treatment was replicated 3 times. After ten drought cycles, the growth of Gliricidia sepium in the subsoil was enhanced by mycorrhizal inoculation under both watering regimes whereas there was no significant contribution of mycorrhizal inoculation to the growth of L. leucocephala in both soil types under the two watering regimes. Drought stress significantly reduced most growth parameters for the two tree species in both soils with or without fungal inoculation. The N-fixing activity of Gliricidia sepium benefited from Glomus deserticola inoculation while that of L. leucocephala was not significantly affected in the topsoil. Mycorrhizal colonization was reduced for both tree species in the subsoil compared to the topsoil while it was significantly increased for both species in the subsoil when compared to the uninoculated subsoil counterpart. In the subsoil, inoculation of Gliricidia sepium with the mycorrhizal fungus increased root colonization by 89% and 73% under adequate watering and drought, respectively, whereas L. leucocephala had only a 38% and 42% increase in root colonization under comparative conditions in the subsoil. Thus Glomus deserticola inoculation may be beneficial to the growth of Gliricidia sepium in a badly eroded site where topsoil is missing.  相似文献   

7.
The world heritage of Huangshan is located in the east-central China. In order to obtain a better overview of biodiversity in Huangshan, we investigated the diversity of arbuscular mycorrhizal fungi in the soil of Huangshan. Forty-two rhizosphere soil samples were collected and 989 arbuscular mycorrhizal fungal spore samples were obtained using the wet-sieving method. Twenty-five species of arbuscular mycorrhizal fungi were identified from the collections. The species were of the genera Acaulospora (6 species), Entrophospora (1 species), Glomus (16 species) and Scutellospora (2 species). Acaulospora and Glomus were dominant at the study site. The arbuscular mycorrhizal fungi spore density ranged from 45 to 3,250 per 100 g soil (average 839), and the species richness of arbuscular mycorrhizal fungi ranged from 1 to 9 (average 4.2) per soil sample. Shannon–Wiener index and Simpson’s index were calculated to evaluate the arbuscular mycorrhizal fungal diversity. The diversity of arbuscular mycorrhizal fungal community in the subtropical forest of Huangshan may be the result of mutual selection between arbuscular mycorrhizal fungi and the ecological environment.  相似文献   

8.
Decomposers and arbuscular mycorrhizal fungi (AMF) both determine plant nutrition; however, little is known about their interactive effects on plant communities. We set up a greenhouse experiment to study effects of plant competition (one- and two-species treatments), Collembola (Heteromurus nitidus and Protaphorura armata), and AMF (Glomus intraradices) on the performance (above- and belowground productivity and nutrient uptake) of three grassland plant species (Lolium perenne, Trifolium pratense, and Plantago lanceolata) belonging to three dominant plant functional groups (grasses, legumes, and herbs). Generally, L. perenne benefited from being released from intraspecific competition in the presence of T. pratense and P. lanceolata. However, the presence of AMF increased the competitive strength of P. lanceolata and T. pratense against L. perenne and also modified the effects of Collembola on plant productivity. The colonization of roots by AMF was reduced in treatments with two plant species suggesting that plant infection by AMF was modified by interspecific plant interactions. Collembola did not affect total colonization of roots by AMF, but increased the number of mycorrhizal vesicles in P. lanceolata. AMF and Collembola both enhanced the amount of N and P in plant shoot tissue, but impacts of Collembola were less pronounced in the presence of AMF. Overall, the results suggest that, by differentially affecting the nutrient acquisition and performance of plant species, AMF and Collembola interactively modify plant competition and shape the composition of grassland plant communities. The results suggest that mechanisms shaping plant community composition can only be understood when complex belowground interactions are considered.  相似文献   

9.
Onion (Allium cepa) plants were grown in pots in two types of irradiated soil, mineral and organic. Onion development was observed under two or three levels of P fertilization, and three methods of arbuscular mycorrhizal fungus inoculation with two fungus species. In mineral soil, preinoculated onion plants had a higher biomass than non-inoculated control plants or plants inoculated with either colonized root segments or spores. Fungus species had no differential effect on dry biomass or final bulb diameter. Preinoculated onion plants reached marketable size (>25 mm bulb diameter) 2-3 weeks earlier than those inoculated by either of the other two methods. Non-inoculated onion plants remained stunted. Bulbs of onions inoculated with Glomus versiforme were firmer than those inoculated with G. intraradices. Increasing P fertilizer rates had a significant positive linear effect on the P tissue concentration of plants inoculated with G. intraradices or G. versiforme, but no effect on bulb firmness. The P tissue concentration of inoculated plants was significantly higher than that of non-inoculated controls, and in inoculated plants, it differed among inoculation methods. The P tissue concentration was higher in onion plants inoculated with G. versiforme than in those inoculated with G. intraradices. In organic soil, the dry biomass of preinoculated plants was higher than that of plants inoculated by root segments. The highest root colonization levels were obtained under a low soil P level with G. intraradices, and with the root segment method of inoculation with G. versiforme.  相似文献   

10.
The symbiosis between plants and arbuscular mycorrhizal (AM) fungi is hypothesized to be an important contributor to plant–soil feedbacks, which can influence the outcome of inter‐specific competition. Mycorrhizal feedbacks can be conspecific, which affects individuals of the same species, or heterospecific, which affects individuals of a different species. When heterospecific feedbacks are more positive than conspecific feedbacks, heterospecific individuals are expected to outcompete conspecific individuals. To test this hypothesis, we quantified conspecific mycorrhizal feedback for Plantago lanceolata as a focal species, and heterospecific mycorrhizal feedbacks for 21 competitor old‐field species using mycorrhizae cultured with P. lanceolata. We quantified inter‐specific competition against the focal species by growing the 21 old‐field species with and without P. lanceolata in the presence of mycorrhizae cultured with P. lanceolata. Heterospecific and conspecific feedbacks were both positive, and average heterospecific feedbacks exceeded conspecific feedback by 75%. Competition suppressed P. lanceolata biomass by 14% and average competitor biomass was reduced by 44% in the presence of P. lanceolata, and these effects varied with competitor species identity. Contrary to predictions, the magnitude of heterospecific feedbacks did not predict the ability of competitor species to either suppress or resist suppression by P. lanceolata. Instead, the outcome of competition was significantly and positively correlated with intrinsic growth rate, measured as biomass of competitor species five weeks after germination in non‐inoculated conditions. Our findings suggest that species experiencing more positive mycorrhizal feedbacks than a competitor do not necessarily have a competitive advantage. Mycorrhizal mediated soil feedbacks may be less important than intrinsic differences in growth rate in determining competitive outcomes.  相似文献   

11.
Arbuscular mycorrhizal fungi have mutualistic symbiosis with higher plants, increasing plant resistance to environmental stresses and nutrient uptake and improving soil. During arbuscular mycorrhizal symbiosis, a range of chemical and biological factors are affected. In this study, two species of arbuscular mycorrhiza (Glomus mosseae and G. intraradices) were used to assess the effects of inoculation on licorice growth and secondary metabolite production. After successful inoculation, the increase in the growth rate, P and Zn uptake, and the accumulation of secondary metabolites in licorice (Glycyrrhiza glabra L.) roots were observed in two periods of 3 and 6 months compared to control. After 6 months, more increments in growth, secondary metabolites, and P and Zn uptake were observed compared with the first 3-months period. Two groups of secondary metabolites arising from phenolic and terpenoid metabolism obviously responded to mycorrhizal fungi colonization in licorice roots.  相似文献   

12.
Temporal and spatial patterns of arbuscular mycorrhizal fungi (AMF) and glomalin and soil enzyme activities were investigated in different managed semiarid steppes located in Inner Mongolia, North China. Soils were sampled in a depth up to 30 cm from non-grazed, overgrazed, and naturally restored steppes from June to September. Roots of Leymus chinense (Trin.) Tzvel. and Stipagrandis P. Smirn. were also collected over the same period. Results showed that overgrazing significantly decreased the total mycorrhizal colonization of S. grandis; total colonization of L. chinensis roots was not significantly different in the three managed steppes. Nineteen AMF species belonging to six genera were isolated. Funneliformis and Glomus were dominant genera in all three steppes. Spore density and species richness were mainly influenced by an interaction between plant growth stage and management system (P?P?相似文献   

13.
Mycorrhizal fungi of mycoheterotrophic Burmannia nepalensis and B. itoana were identified by molecular identification methods based on fungal SSU nrDNA region. In B. nepalensis, RFLP patterns and sequences from all root samples from 14 individuals were identical. A single fungal sequence was also obtained from B. itoana roots from three individuals. Phylogenetic analysis showed that the fungal sequences from these two species are included in Glomeraceae (former Glomus group A). Our results indicate that the two Burmannia species are associated with narrow phylogenetic ranges of arbuscular mycorrhizal fungi.  相似文献   

14.
The seasonal dynamics of a community of endomycorrhizal fungal morphotypes in the roots of three grassland species (Achillea millefolium, Poa angustifolia, Plantago lanceolata) was evaluated, together with the effects of experimental treatment (mowing and phosphorus application) and the host plant properties. Strong seasonal variability was found in the fungal community, where clear seasonal patterns can be distinguished for several fungal morphotypes. The sampling date explained 20 to 30% of the total compositional variability for all three host species. ThePlantago roots host the highest number of arbuscular mycorrhizal (AM) fungal populations. There are two co-dominant fungal morphotypes inAchillea roots (assigned to the generaScutellospora andGlomus) and only one strongly dominant morphotype (assigned toGlomus), in thePoa roots. All three host species have a comparable pattern of richness of AM morphotypes with a single peak in the summer, possibly aligned with the flowering time of the host.  相似文献   

15.
 The mycorrhizal status of Lythrum salicaria (Lythraceae) was assessed under growth room and field conditions. Growth room studies indicated that L. salicaria is facultatively mycorrhizal and capable of forming vesicular-arbuscular associations with six Glomus species, but not with Gigaspora margarita. Overall, hyphal and arbuscular colonization levels were significantly higher in the wet treatments than in the dry treatments (P<0.0001). However, taken individually, significant increases in arbuscular colonization (P<0.05) were found only in L. salicaria colonized with Glomus clarum, G. aggregatum, and G. versiforme and exposed to the wet treatments compared with the dry treatments, while significant increases in hyphal colonization were found in L. salicaria colonized with G. clarum, and G. versiforme exposed to the wet treatments. There was no overall effect of water availability on levels of vesicular colonization or differences in vesicular colonization levels within species under dry or wet conditions. In contrast, field studies along an existing water gradient revealed that hyphal and arbuscular colonization levels were significantly higher (P<0.05) in the dry and intermediate regions of the gradient than in the wet regions. Vesicular colonization was not significantly affected by the gradient. Total stem height was significantly affected by water availability, plot location and an interaction of the two (P<0.05), and was generally higher in the intermediate and wet plots. Accepted: 20 September 1995  相似文献   

16.
Arbuscular mycorrhizas (AM) are important for promoting the mineral nutrition, growth and survival of plants used to rehabilitate degraded areas. Clusia pusilla is an evergreen shrub which is tolerant of high irradiance, germinates readily and can be easily reproduced by cuttings. All these characteristics make this species useful in the recovery of deforested areas. The aim of this work was to explore the response of C. pusilla to AM in the field, in two types of soil: the shrubland soil in which the species naturally grows and in a soil of a riparian forest. Eight treatments were performed in each type of soil. The treatments consisted of a non-mycorrhizal control and mycorrhizal plants colonized by one of the three AM inocula tested in the presence or absence of triple superphosphate (150 kg ha-1). After 11 months of growth in the shrubland soil, C. pusilla seedlings showed an increase in height and dry weight in response to the fertilizer but not to mycorrhizas. In contrast, in the forest soil the arbuscular mycorrhizal fungi (AMF) effect was equivalent to the fertilizer effect, and the two effects interacted positively. The lack of response to AM in shrubland soil was caused by its high sand content, which hinders the retention of the inocula. Due to a higher clay content, the forest soil binds inocula more tightly than shrubland soil. In conclusion, C. pusilla appears to benefit greatly from the addition of AMF in forest soil, though it requires an additional P source for such benefits in shrubland soil. This P source must be organic so that phosphorus is not lost by leaching. Although the growth rate of this species is very low, its survival can be guaranteed with the application of AMF inocula together with P-fertilizer applied at a low rate.  相似文献   

17.
Some plants are more mycorrhizal than others and mycorrhizal colonisation of plants in extreme environments is frequently additionally reduced due to decreased spore density and/or diversity and therefore frequently overlooked. We analysed two plant species from both metal polluted and saline enriched soils with differing mycorrhizal colonisation levels/status using classical and molecular methods. The selected plant species were Sesleria caerulea (L.) Ard. and Thlaspi praecox Wulfen from a metal polluted site, and Limonium angustifolium (Tausch) Degen [Statice serotina Rchb., L. vulgare Mill. subsp. Serotinum (Rchb.) Gams] and Salicornia europaea L. from the Se?ovlje salterns in Slovenia. Despite the high mycorrhizal frequencies (F%) observed, the presence of arbuscules (A%) was at best low in S. caerulea and T. praecox, and undetectable in L. angustifolium and S. europaea. Temporal temperature gradient gel electrophoresis (TTGE) was applied to field-collected samples from both burdened environments and proved to be an effective technique for rapid profiling and identification of arbuscular mycorrhizal fungi (AMF). Sequencing and phylogenetic analysis confirmed the association of AMF of the genus Glomus with roots of all four plant species. This is the first report on the identification and profiling of Glomeromycota in the field-collected Cd/Zn metal hyperaccumulator T. praecox growing at a highly metal polluted site, as well as in L. angustifolium and S. europaea collected in a saline environment. The identification of AMF from both ecosystems only partially resembles previous identifications on the basis of spores.  相似文献   

18.
While the effect of disturbance on overall abundance and community composition of arbuscular mycorrhizal (AM) fungi has been researched in agricultural fields, less is known about the impact in semi-natural grasslands. We sampled two AM plant species, Festuca brevipila and Plantago lanceolata, from an ongoing grassland restoration experiment that contained replicated plowed and control plots. The AM fungal community in roots was determined using nested PCR and LSU rDNA primers. We identified 38 phylotypes within the Glomeromycota, of which 29 belonged to Glomus A, six to Glomus B, and three to Diversisporaceae. Only three phylotypes were closely related to known morphospecies. Soil disturbance significantly reduced phylotype richness and changed the AM fungal community composition. Most phylotypes, even closely related ones, showed little or no overlap in their distribution and occurred in either the control or disturbed plots. We found no evidence of host preference in this system, except for one phylotype that preferentially seemed to colonize Festuca. Our results show that disturbance imposed a stronger structuring force for AM fungal communities than did host plants in this semi-natural grassland.  相似文献   

19.
We investigated in the field the carbon (C) transfer between sugar maple (Acer saccharum) saplings and the spring ephemeral Erythronium americanum via the mycelium of arbuscular mycorrhizal (AM) fungi. Sugar maple saplings and E. americanum plants were planted together in pots placed in the ground of a maple forest in 1999. Ectomycorrhizal yellow birches (Betula alleghaniensis) were added as control plants. In spring 2000, during leaf expansion of sugar maple saplings, the leaves of E. americanum were labelled with 14CO2. Seven days after labelling, radioactivity was detected in leaves, stem and roots of sugar maples. Specific radioactivity in sugar maples was 13-fold higher than in yellow birches revealing the occurrence of a direct transfer of 14C between the AM plants. The quantity of 14C transferred to sugar maple saplings was negatively correlated with the percentage of 14C allocated to the storage organ of E. americanum. A second labelling was performed in autumn 2000 on sugar maple leaves during annual growth of E. americanum roots. Radioactivity was detected in 7 of 22 E. americanum root systems and absent in yellow birches. These results suggest that AM fungi connecting different understorey species can act as reciprocal C transfer bridges between plant species in relation with the phenology of the plants involved.  相似文献   

20.
Common bean (Phaseolus vulgaris L.) genotypes CocoT and Flamingo were inoculated with Rhizobium tropici CIAT899 and Glomus intraradices (Schenck & Smith) and grown under sufficient versus deficient phosphorus supply for comparing the effects of double inoculation on growth, nodulation, mycorrhization of the roots, phosphorus use efficiency and total nitrogen. Although the double inoculation induced a significant increase in all parameters whatever the phosphorus supply in comparison to control, significant differences were found among genotypes and treatments. Nevertheless, the highest phosphorus use efficiency and plant total nitrogen were found under P deficiency in combination with arbuscular mycorrhizal fungi. It is concluded that inoculation with rhizobia and arbuscular mycorrhizal fungi could improve symbiotic nitrogen fixation even under phosphorus deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号