首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mapping RFLP Loci in Maize Using B-a Translocations   总被引:11,自引:6,他引:5       下载免费PDF全文
D. Weber  T. Helentjaris 《Genetics》1989,121(3):583-590
Plants hypoploid for specific segments of each of the maize (Zea mays L.) chromosomes were generated using 24 different B-A translocations. Plants carrying each of the B-A translocations were crossed as male parents to inbreds, and sibling progeny hypoploid or not hypoploid for specific chromosomal segments were recovered. Genomic DNAs from the parents, hypoploid progeny, and nonhypoploid (euploid or hyperploid) progeny for each of these B-A translocations were digested with restriction enzymes, electrophoresed in agarose gels, blotted onto reusable nylon membranes, and probed with nick-translated, cloned DNA fragments which had been mapped previously by restriction fragment length polymorphism (RFLP) analysis to the chromosome involved in the B-A translocation. The chromosomal segment on our RFLP map which was uncovered by each of the B-A translocations was determined. This work unequivocally identified the short and long arms of each chromosome on this map, and it also identified the region on each chromosome which contains the centromere. Because the breakpoints of the B-a translocations were previously known on the cytological and the conventional genetic maps, this study also allowed this RFLP map to be more highly correlated with these maps.  相似文献   

2.
Despite possessing related ancestral genomes, hexaploid wheat behaves as a diploid during meiosis. The wheat Ph1 locus promotes accurate synapsis and crossover of homologous chromosomes. Interspecific hybrids between wheat and wild relatives are exploited by breeders to introgress important traits from wild relatives into wheat, although in hybrids between hexaploid wheat and wild relatives, which possess only homoeologues, crossovers do not take place during meiosis at metaphase I. However, in hybrids between Ph1 deletion mutants and wild relatives, crossovers do take place. A single Ph1 deletion (ph1b) mutant has been exploited for the last 40 years for this activity. We show here that chemically induced mutant lines, selected for a mutation in TaZIP4-B2 within the Ph1 locus, exhibit high levels of homoeologous crossovers when crossed with wild relatives. Tazip4-B2 mutant lines may be more stable over multiple generations, as multivalents causing accumulation of chromosome translocations are less frequent. Exploitation of such Tazip4-B2 mutants, rather than mutants with whole Ph1 locus deletions, may therefore improve introgression of wild relative chromosome segments into wheat.  相似文献   

3.
Meiotic chromosomes in human oocytes are packaged differently than in spermatocytes at the pachytene stage of meiosis I, when crossing-over takes place. Thus the meiosis-specific pairing structure, the synaptonemal complex (SC), is considerably longer in oocytes in comparison to spermatocytes. The aim of the present study was to examine the influence of this length factor on meiotic recombination in male and female human germ cells. The positions of crossovers were identified by the DNA mismatch repair protein MLH1. Spermatocytes have approximately 50 crossovers per cell in comparison to more than 70 in oocytes. Analyses of inter-crossover distances (and presumptively crossover interference) along SCs suggested that while there might be inter-individual variation, there was no consistent difference between sexes. Thus the higher rate of recombination in human oocytes is not a consequence of more closely spaced crossovers along the SCs. The rate of recombination per unit length of SC is higher in spermatocytes than oocytes. However, when the so-called obligate chiasma is excluded from the analysis, then the rates of recombination per unit length of SC are essentially identical in the two sexes. Our analyses indicate that the inter-sex difference in recombination is largely a consequence of the difference in meiotic chromosome architecture in the two sexes. We propose that SC length per se, and therefore the size of the physical platform for crossing-over (and not the DNA content) is the principal factor determining the difference in rate of recombination in male and female germ cells. A preliminary investigation of SC loop size by fluorescence in situ hybridization (FISH) indicated loops may be shorter in oocytes than in spermatocytes.  相似文献   

4.
The Bloom syndrome helicase, BLM, has numerous functions that prevent mitotic crossovers. We used unique features of Drosophila melanogaster to investigate origins and properties of mitotic crossovers that occur when BLM is absent. Induction of lesions that block replication forks increased crossover frequencies, consistent with functions for BLM in responding to fork blockage. In contrast, treatment with hydroxyurea, which stalls forks, did not elevate crossovers, even though mutants lacking BLM are sensitive to killing by this agent. To learn about sources of spontaneous recombination, we mapped mitotic crossovers in mutants lacking BLM. In the male germline, irradiation-induced crossovers were distributed randomly across the euchromatin, but spontaneous crossovers were nonrandom. We suggest that regions of the genome with a high frequency of mitotic crossovers may be analogous to common fragile sites in the human genome. Interestingly, in the male germline there is a paucity of crossovers in the interval that spans the pericentric heterochromatin, but in the female germline this interval is more prone to crossing over. Finally, our system allowed us to recover pairs of reciprocal crossover chromosomes. Sequencing of these revealed the existence of gene conversion tracts and did not provide any evidence for mutations associated with crossovers. These findings provide important new insights into sources and structures of mitotic crossovers and functions of BLM helicase.  相似文献   

5.
The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome.  相似文献   

6.
In order to study the crossability of wheat with H. bulbosum a series of wheat varieties from various sources and their F1 hybrids as well as tetraploid H. bulbosum from different countries were used as parents in this experiment. The main results of the experiment are showed as follows: 1. Twenty-one wheat varieties from Europe, West Asia, America, China, Australia etc. 11 countries and regions respectively as famele parents were crossed with four tetraploid H. bulbosum from Hungary, USSR, Canada and Germany. The seed set percentages in the intergeneric cross combinations ranged from 0.00% to 49.93%. Statistical analysis revealed that there were significant differences between the seed set percentages of wheat varieties. The crossability, with H. bulbosum might differed in different varieties of wheat from same country. 2. Various F1 hybrids resulting from 13 and 26 intervarietal cross combinations of wheat and their parents were crossed with H. bulbosum from Hungary and USSR respectively in different years. The mean seed set percentages of F1 hybrids, their male and female parents were 26.53%, 15.38%, 20.30% and 39.1%, 34.8%, 26.7% respectively. The results indicated that when some wheat varieties having poor-crossability with H. bulbosum were hybridized with other varieties especially with those varieties having high- crossability, the crossability of their F, hybrids probably had higher crossability than their parents having poor-crossability. Six F1 hybrids of wheat obtained from six com- binations of reciprocal crosses, in which the completely non-crossable varieties Hope, Xiao- Bai-Mang and high-crossable varieties Chinese Spring, Fortunate were used as male or female parent alternately, were crossed as female parents with H. bulbosum. All of 6 F1 hybrids were crossable and gave the percentage of seed set from 7.00% to 42.57%, although they ought to carry the dominant Kr genes responsible for non-crossability, which were passed on to F1 hybrids by non-crossable varieties, the parent Hope or Xiao-Bai- Mang. Clearly that is due to the gene interaction between female and male parents. Be- sides Kr loci in wheat, probably other genes can influence the crossability. 3. There were significant differences between clones of H. bulbosum in the crossa- bilities with wheat. In conclusion F1 hybrids of wheat have higher crossability with H. bulbosum than their parents having poor-crossability. This could be advantageous for exploitation of this technique. By selecting even more efficient clones of H. bulbosum and improving embryo culture techniques, the H. bulbosum technique will be used in wheat breeding program- mes probably.  相似文献   

7.

Background

The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete.

Methodology/Principal Findings

Isofemale strains of D. mojavensis vary significantly in their production of sterile F1 sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F1 hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F1 is complex, involving multiple QTL, epistasis, and cytoplasmic effects.

Conclusions/Significance

The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.  相似文献   

8.
To assess proliferating activity, DNA ploidy changes of lung cancer cells before and after chemotherapy, we performed a flow cytometry analysis (FC) using fresh bronchoscopy specimens from 38 patients with lung cancer. Among 33 males and 5 females, squamous cell carcinoma (NSLC) was recognized in 12 males, 15 males had small cell lung cancer (SCLC) and 6 males had lung cancer with no histological type (LC) defined. Three women had SCLC, 1 had NSCLC and one had LC. Control consisted of 11 COPD patients. The percentage of diploid cells was significantly lower and cells with hypoploid cells were significantly higher in study group before treatment. High percentage of G2M cells characterised NSCLC and LC groups, whether high number of S phase cells characterised NSCLC and SCLC group before treatment. The treatment lowered percentage of G2M cells in NSCLC and CA group, whether diploid, hypoploid and S phase cells did not differ than those from before treatment.  相似文献   

9.
Seventy-one wild-isolated strains of Neurospora crassa were examined for their ability to support repeat-induced point mutation (RIP) in the erg-3 locus. RIP was exceptionally inefficient but detectable in crosses with the strain FGSC 430 from Adiopodoume, Ivory Coast. We could find no consistent differences in ascospore yields when wild isolates identified as "low-RIP" or "high-RIP" strains were crossed with strains bearing the segmental duplication Dp(IIIR > [I; II])AR17. This suggested that RIP may not be responsible for the barren phenotype of crosses involving segmental duplication strains.  相似文献   

10.
Crossover homeostasis in yeast meiosis   总被引:5,自引:0,他引:5  
Martini E  Diaz RL  Hunter N  Keeney S 《Cell》2006,126(2):285-295
Crossovers produced by homologous recombination promote accurate chromosome segregation in meiosis and are controlled such that at least one forms per chromosome pair and multiple crossovers are widely spaced. Recombination initiates with an excess number of double-strand breaks made by Spo11 protein. Thus, crossover control involves a decision by which some breaks give crossovers while others follow a predominantly noncrossover pathway(s). To understand this decision, we examined recombination when breaks are reduced in yeast spo11 hypomorphs. We find that crossover levels tend to be maintained at the expense of noncrossovers and that genomic loci differ in expression of this "crossover homeostasis." These findings define a previously unsuspected manifestation of crossover control, i.e., that the crossover/noncrossover ratio can change to maintain crossovers. Our results distinguish between existing models of crossover control and support the hypothesis that an obligate crossover is a genetically programmed event tied to crossover interference.  相似文献   

11.
We have determined the complete nucleotide sequence of a 3564 bp EcoRI fragment which represents a major component of the human Y-chromosome specific repeated DNA family (DYZ1). Sequencing result showed a tandem array of pentanucleotides after five nucleotides were inserted or deleted at four positions. 229 out of the 713 pentanucleotides were TTCCA, and 297 were its single-base substituents. Southern hybridization analyses of male genomic DNAs showed that several endonuclease cleavage sites were located at intervals of 3.56kb in the DYZ1 locus. This indicates that the DYZ1 repeated DNA family evolved and expanded by unequal crossovers which occurred at distances of 3.56kb. As there is a uniformly distributed array of pentanucleotides on this locus, it is not a sequence homology that determines the distance of unequal crossovers. A higher order of chromatin structure may be involved in the determination of distance in unequal crossovers.  相似文献   

12.
Although genetic distances are often assumed to be proportional to physical distances, chromosomal regions with unusually high (hotspots) or low (coldspots) levels of meiotic recombination have been described in a number of genetic systems. In general, the DNA sequences responsible for these effects have not been determined. We report that the 5' region of the beta-lactamase (ampR) gene of the bacterial transposon Tn3 is a hotspot for meiotic recombination when inserted into the chromosomes of the yeast Saccharomyces cerevisiae. When these sequences are homozygous, both crossing over and gene conversion are locally stimulated. The 5' end of the beta-lactamase gene is about 100-fold "hotter" for crossovers than an average yeast DNA sequence.  相似文献   

13.
During meiosis, recombination ensures allelic exchanges through crossovers (COs) between the homologous chromosomes. Advances in our understanding of the rules of COs have come from studies of mutations including structural chromosomal rearrangements that, when heterozygous, are known to impair COs in various organisms. In this work, we investigate the effect of a large heterozygous pericentric inversion on male and female recombination in Arabidopsis. The inversion was discovered in the Atmcc1 mutant background and was characterized through genetic and next‐generation sequencing analysis. Reciprocal backcross populations, each consisting of over 400 individuals, obtained from the mutant and the wild type, both crossed with Landsberg erecta, were analyzed genome‐wide by 143 single‐nucleotide polymorphisms. The negative impact of inversion became evident in terms of CO loss in the rearranged chromosome in both male and female meiosis. No single‐CO event was detected within the inversion, consistent with a post‐meiotic selection operating against unbalanced gametes. Cytological analysis of chiasmata in F1 plants confirmed that COs were reduced in male meiosis in the chromosome with inversion. Crossover suppression on the rearranged chromosome is associated with a significant increase of COs in the other chromosomes, thereby maintaining unchanged the number of COs per cell. The CO pattern observed in our study is consistent with the interchromosomal (IC) effect as first described in Drosophila. In contrast to male meiosis, in female meiosis no IC effect is visible. This may be related to the greater strength of interference that constrains the CO number in excess of the minimum value imposed by CO assurance in Arabidopsis female meiosis.  相似文献   

14.
The genetics and cytology of a mutator factor in Drosophila melanogaster   总被引:15,自引:0,他引:15  
A Drosophila melanogaster mutator factor is described whose effects include the induction of unique chromosomal aberrations and male crossing over. Results of experiments to map the factor suggest that genetic transmission is somehow chromosomally associated but not localizable to the X, Y, second or third chromosome. There appears to be a good correlation between the distributions of male crossover exchange points and unique aberration breakpoints for the second chromosome but not for the third chromosome. The male crossovers, which occur more frequently in the centromeric region, occur in euchromatin rather than in the centric heterochromatin. The male crossovers tend to be rather precise reciprocal exchanges, since cytologically detectable deletions and duplications are only infrequently produced. It is suggested that the present mutator may be identical to earlier reported mutators of D. melanogaster.  相似文献   

15.
朱云国  王学德 《西北植物学报》2008,28(12):2374-2379
对转gst基因棉花恢复系浙大强恢"配制的杂种F1(三系杂交棉)的成熟花药和花粉育性进行了研究.结果表明,在花药的长、宽、鲜重和成熟花粉粒的育性方面,浙大强恢"所配的F1和保持系DES-HAB277"接近,无显著性差异,但比受体恢复系DES-HAF277"所配的F1分别提高47.7%、61.8%、28.5%和39.6%.以不育系DES-HAMS277"和保持系DES-HAB277"的花药为对照,对浙大强恢"和受体恢复系所配的F1的小孢子发生进行了细胞学观察发现,不育系小孢子败育主要发生在造孢细胞增殖期和小孢子母细胞形成期,且在减数分裂期彻底败育,不能形成四分体;受体恢复系所配的F1在小孢子发生和雄配子形成的各个发育时期都有部分败育,平均败育率约为20%,且主要发生在小孢子母细胞减数分裂期和小孢子单核期;而浙大强恢"所配的F1与保持系一样,花药的发育、小孢子的发生以及雄配子的形成均正常.研究结果从细胞形态学方面证明gst基因对三系杂交棉具有防止部分小孢子败育和提高花粉育性的功能.  相似文献   

16.
In eukaryotes, crossovers in mitotic cells can have deleterious consequences and therefore must be suppressed. Mutations in BLM give rise to Bloom syndrome, a disease that is characterized by an elevated rate of crossovers and increased cancer susceptibility. However, simple eukaryotes such as Saccharomyces cerevisiae have multiple pathways for suppressing crossovers, suggesting that mammals also have multiple pathways for controlling crossovers in their mitotic cells. We show here that in mouse embryonic stem (ES) cells, mutations in either the Bloom syndrome homologue (Blm) or the Recql5 genes result in a significant increase in the frequency of sister chromatid exchange (SCE), whereas deleting both Blm and Recql5 lead to an even higher frequency of SCE. These data indicate that Blm and Recql5 have nonredundant roles in suppressing crossovers in mouse ES cells. Furthermore, we show that mouse embryonic fibroblasts derived from Recql5 knockout mice also exhibit a significantly increased frequency of SCE compared with the corresponding wild-type control. Thus, this study identifies a previously unknown Recql5-dependent, Blm-independent pathway for suppressing crossovers during mitosis in mice.  相似文献   

17.

Background

Tuning of the olfactory system of male moths to conspecific female sex pheromones is crucial for correct species recognition; however, little is known about the genetic changes that drive speciation in this system. Moths of the genus Ostrinia are good models to elucidate this question, since significant differences in pheromone blends are observed within and among species. Odorant receptors (ORs) play a critical role in recognition of female sex pheromones; eight types of OR genes expressed in male antennae were previously reported in Ostrinia moths.

Methodology/Principal Findings

We screened an O. nubilalis bacterial artificial chromosome (BAC) library by PCR, and constructed three contigs from isolated clones containing the reported OR genes. Fluorescence in situ hybridization (FISH) analysis using these clones as probes demonstrated that the largest contig, which contained eight OR genes, was located on the Z chromosome; two others harboring two and one OR genes were found on two autosomes. Sequence determination of BAC clones revealed the Z-linked OR genes were closely related and tandemly arrayed; moreover, four of them shared 181-bp direct repeats spanning exon 7 and intron 7.

Conclusions/Significance

This is the first report of tandemly arrayed sex pheromone receptor genes in Lepidoptera. The localization of an OR gene cluster on the Z chromosome agrees with previous findings for a Z-linked locus responsible for O. nubilalis male behavioral response to sex pheromone. The 181-bp direct repeats might enhance gene duplications by unequal crossovers. An autosomal locus responsible for male response to sex pheromone in Heliothis virescens and H. subflexa was recently reported to contain at least four OR genes. Taken together, these findings support the hypothesis that generation of additional copies of OR genes can increase the potential for male moths to acquire altered specificity for pheromone components, and accordingly, facilitate differentiation of sex pheromones.  相似文献   

18.
Lim JG  Stine RR  Yanowitz JL 《Genetics》2008,180(2):715-726
It is generally considered that meiotic recombination rates increase with temperature, decrease with age, and differ between the sexes. We have reexamined the effects of these factors on meiotic recombination in the nematode Caenorhabditis elegans using physical markers that encompass >96% of chromosome III. The only difference in overall crossover frequency between oocytes and male sperm was observed at 16°. In addition, crossover interference (CI) differs between the germ lines, with oocytes displaying higher CI than male sperm. Unexpectedly, our analyses reveal significant changes in crossover distribution in the hermaphrodite oocyte in response to temperature. This feature appears to be a general feature of C. elegans chromosomes as similar changes in response to temperature are seen for the X chromosome. We also find that the distribution of crossovers changes with age in both hermaphrodites and females. Our observations indicate that it is the oocytes from the youngest mothers—and not the oldest—that showed a different pattern of crossovers. Our data enhance the emerging hypothesis that recombination in C. elegans, as in humans, is regulated in large chromosomal domains.  相似文献   

19.
Elements Causing Male Crossing over in DROSOPHILA MELANOGASTER   总被引:6,自引:6,他引:0       下载免费PDF全文
A second chromosome line of Drosophila melanogaster (Symbol: T-007) has previously been shown to be responsible for the induction of male recombination. In the present investigation, the genetic elements responsible for this phenomenon have been partially identified and mapped. A major element (Symbol: Mr, for Male recombination) locates on the second chromosome between the pr (2L-54.4) and c (2R-75.5) loci and is responsible for the large majority of male recombination. In addition, there appear to be "secondary elements" present which have the ability to induce male recombination in much reduced frequencies and which are diluted out through successive backcross generations when Mr is removed by recombination. The possible nature of these "secondary elements" is discussed.  相似文献   

20.

Background

Next-generation sequencing technology provides a means to study genetic exchange at a higher resolution than was possible using earlier technologies. However, this improvement presents challenges as the alignments of next generation sequence data to a reference genome cannot be directly used as input to existing detection algorithms, which instead typically use multiple sequence alignments as input. We therefore designed a software suite called REDHORSE that uses genomic alignments, extracts genetic markers, and generates multiple sequence alignments that can be used as input to existing recombination detection algorithms. In addition, REDHORSE implements a custom recombination detection algorithm that makes use of sequence information and genomic positions to accurately detect crossovers. REDHORSE is a portable and platform independent suite that provides efficient analysis of genetic crosses based on Next-generation sequencing data.

Results

We demonstrated the utility of REDHORSE using simulated data and real Next-generation sequencing data. The simulated dataset mimicked recombination between two known haploid parental strains and allowed comparison of detected break points against known true break points to assess performance of recombination detection algorithms. A newly generated NGS dataset from a genetic cross of Toxoplasma gondii allowed us to demonstrate our pipeline. REDHORSE successfully extracted the relevant genetic markers and was able to transform the read alignments from NGS to the genome to generate multiple sequence alignments. Recombination detection algorithm in REDHORSE was able to detect conventional crossovers and double crossovers typically associated with gene conversions whilst filtering out artifacts that might have been introduced during sequencing or alignment. REDHORSE outperformed other commonly used recombination detection algorithms in finding conventional crossovers. In addition, REDHORSE was the only algorithm that was able to detect double crossovers.

Conclusion

REDHORSE is an efficient analytical pipeline that serves as a bridge between genomic alignments and existing recombination detection algorithms. Moreover, REDHORSE is equipped with a recombination detection algorithm specifically designed for Next-generation sequencing data. REDHORSE is portable, platform independent Java based utility that provides efficient analysis of genetic crosses based on Next-generation sequencing data. REDHORSE is available at http://redhorse.sourceforge.net/.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1309-7) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号