首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
【目的】研究金霉素产生菌中SARP家族转录调控基因ctc B的作用。【方法】利用大肠杆菌、链霉菌的属间接合转移和同源重组双交换的方法,构建ctc B基因缺失突变株。通过c DNA在相邻同转录方向的基因间隔进行PCR验证,确定金霉素生物合成基因簇中的转录单元。利用荧光定量RT-PCR方法进行突变株金霉素生物合成基因簇的转录水平检测。随后,生物信息学预测分析了金霉素生物合成基因簇内Ctc B与DNA的结合位点。【结果】获得了ctc B基因缺失的双交换突变株。发酵结果显示,该突变株失去产生金霉素与四环素的能力。金霉素生物合成基因簇内有6个共转录单元,其中4个共转录单元在ctc B基因缺失突变株中转录水平明显下降。软件分析预测到一致性较高的Ctc B结合重复序列。【结论】ctc B正调控金霉素生物合成结构基因ctc G-D、ctc H-K、ctc N-P、ctc W-T 4个转录单元和ctc Q,为进一步研究ctc B调控机制奠定了基础。  相似文献   

8.
9.
10.
Sequencing of a 4.3-kb DNA region from the chromosome of Streptomyces argillaceus, a mithramycin producer, revealed the presence of two open reading frames (ORFs). The first one (orfA) codes for a protein that resembles several transport proteins. The second one (mtmR) codes for a protein similar to positive regulators involved in antibiotic biosynthesis (DnrI, SnoA, ActII-orf4, CcaR, and RedD) belonging to the Streptomyces antibiotic regulatory protein (SARP) family. Both ORFs are separated by a 1.9-kb, apparently noncoding region. Replacement of the mtmR region by an antibiotic resistance cassette completely abolished mithramycin biosynthesis. Expression of mtmR in a high-copy-number vector in S. argillaceus caused a 16-fold increase in mithramycin production. The mtmR gene restored actinorhodin production in Streptomyces coelicolor JF1 mutant, in which the actinorhodin-specific activator ActII-orf4 is inactive, and also stimulated actinorhodin production by Streptomyces lividans TK21. A 241-bp region located 1.9 kb upstream of mtmR was found to be repeated approximately 50 kb downstream of mtmR at the other end of the mithramycin gene cluster. A model to explain a possible route for the acquisition of the mithramycin gene cluster by S. argillaceus is proposed.  相似文献   

11.
Tylosin is a macrolide antibiotic used as veterinary drug and growth promoter. Attempts were made for hyper production of tylosin by a strain of Streptomyces fradiae NRRL-2702 through irradiation mutagenesis. Ultraviolet (UV) irradiation of wild-type strain caused development of six morphologically altered colony types on agar plates. After screening using Bacillus subtilis bioassay only morphological mutants indicated the production of tylosin. An increase of 2.7±0.22-fold in tylosin production (1500 mg/l) in case of mutant UV-2 in complex medium was achieved as compared to wild-type strain (550 mg/l). Gamma irradiation of mutant UV-2 using 60Co gave one morphologically altered colony type γ-1, which gave 2500 mg/l tylosin yield in complex medium. Chemically defined media promoted tylosin production upto 3800 mg/l. Maximum value of qp (3.34 mg/gh) was observed by mutant γ-1 as compared to wild strain (0.81 mg/gh). Moreover, UV irradiation associated changes were unstable with loss of tylosin activity whereas mutant γ-1 displayed high stability on subsequent culturing.  相似文献   

12.
Summary The exposure of a wild-type tylosin producing strain ofStreptomyces fradiae to mutagenic agents resulted in the isolation of several tylosin over-producing strains. Examination of three mutants, T4310, 612 and 3204 showed that improved tylosin production was associated with increased hydrolytic enzyme activity and cell growth. The wild-type strain showed lower levels of hydrolytic activity including, protease, amylase, lipase and esterase activities and attained a lower cell density than the mutants.  相似文献   

13.
Inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics in Streptomyces spp. comprises a family of diverse phenotypes in which characteristic subsets of the macrolide-lincosamide-streptogramin antibiotics induce resistance mediated by mono- or dimethylation of adenine, or both, in 23S ribosomal ribonucleic acid. In these studies, diverse patterns of induction specificity in Streptomyces and associated ribosomal ribonucleic acid changes are described. In Streptomyces fradiae NRRL 2702 erythromycin induced resistance to vernamycin B, whereas in Streptomyces hygroscopicus IFO 12995, the reverse was found: vernamycin B induced resistance to erythromycin. In a Streptomyces viridochromogenes (NRRL 2860) model system studied in detail, tylosin induced resistance to erythromycin associated with N6-monomethylation of 23S ribosomal ribonucleic acid, whereas in Staphylococcus aureus, erythromycin induced resistance to tylosin mediated by N6-dimethylation of adenine. Inducible macrolide-lincosamide-streptogramin resistance was found in S. fradiae NRRL 2702 and S. hygroscopicus IFO 12995, which synthesize the macrolides tylosin and maridomycin, respectively, as well as in the lincosamide producer Streptomyces lincolnensis NRRL 2936 and the streptogramin type B producer Streptomyces diastaticus NRRL 2560. A wide range of different macrolides including chalcomycin, tylosin, and cirramycin induced resistance when tested in an appropriate system. Lincomycin was active as inducer in S. lincolnensis, the organism by which it is produced, and streptogramin type B antibiotics induced resistance in S. fradiae, S. hygroscopicus, and the streptogramin type B producer S. diastaticus. Patterns of adenine methylation found included (i) lincomycin-induced monomethylation in S. lincolnensis (and constitutive monomethylation in a mutant selected with maridomycin), (ii) concurrent equimolar levels of adenine mono- plus dimethylation in S. hygroscopicus, (iii) monomethylation in S. fradiae (and dimethylation in a mutant selected with erythromycin), and (iv) adenine dimethylation in S. diastaticus induced by ostreogrycin B.  相似文献   

14.
In a search for activators of secondary metabolism we isolated a 12.6-kb DNA fragment from a genomic library of Streptomyces ambofaciens NRRL 2240 (the spiramycin producer ). Sequencing of 6 kb of the cloned fragment revealed a cluster of four ORFs (ORF1–4) whose deduced products showed similarities to those of other genes involved in polyketide biosynthesis, including a pathway-specific regulatory gene of the SARP family. The results of insertional inactivation of some of the cloned genes clearly indicate that the isolated cluster does not code for spiramycin production, suggesting that some other polyketide compound might well be produced by this strain. Received: 14 May 1999 / Accepted: 28 July 1999  相似文献   

15.
太空搭载泰乐菌素高产菌株的选育   总被引:1,自引:0,他引:1  
研究了弗氏链霉菌(Streptomyces fradiae)9904S -86经过空间搭载(第十八颗返回式科学与技术试验卫星),经受太空中的特殊复杂条件(高真空、微重力、强辐射、交变磁场等)诱发菌株发生诱变,并且进行分离筛选,最终选育出一株高产泰乐菌素菌株T1-156-84-23-s67,该菌株摇瓶效价达到15266u/mL,比出发菌株9904S -86(8742u/mL)提高74.6%。并对高产菌株的菌落形态特征、培养特征等方面进行了研究,通过菌株的全细胞蛋白SDS—聚丙烯酰胺凝胶分析,发现搭载菌株与出发菌株的全细胞蛋白指纹图谱也有显著差异。结合菌株传代稳定性试验,说明该菌株已发生了遗传性变异,是经太空诱变后所选育的泰乐菌素高产菌株。  相似文献   

16.
17.
18.
Aims:  To develop solid-state fermentation system (SSF) for hyper production of tylosin from a mutant γ-1 of Streptomyces fradiae NRRL-2702 and its parent strain.
Methods and Results:  Various agro-industrial wastes were screened to study their effect on tylosin production in SSF. Wheat bran as solid substrate gave the highest production of 2500 μg of tylosin g−1 substrate by mutant γ-1 against parent strain (300 μg tylosin g−1 substrate). The tylosin yield was further improved to 4500 μg g−1 substrate [70% moisture, 10% inoculum (v/w), pH 9·2, 30°C, supplemental lactose and sodium glutamate on day 9]. Wild-type strain displayed less production of tylosin (655 μg of tylosin g−1 substrate) in SSF even after optimization of process parameters.
Conclusion:  The study has shown that solid-state fermentation system significantly enhanced the tylosin yield by mutant γ-1.
Significance and Impact of the Study:  This study proved to be very useful and resulted in 6·87 ± 0·30-fold increase in tylosin yield by this mutant when compared to that of wild-type strain.  相似文献   

19.
Hong JS  Park SJ  Parajuli N  Park SR  Koh HS  Jung WS  Choi CY  Yoon YJ 《Gene》2007,386(1-2):123-130
The DesVIII is an auxiliary protein which enhances the transfer of TDP-d-desosamine catalyzed by DesVII glycosyltransferase in the biosynthesis of macrolide antibiotics, neomethymycin, methymycin and pikromycin, in Streptomyces venezuelae ATCC 15439. Homologues of the desVIII gene are present in a number of aminosugar-containing antibiotic biosynthetic gene clusters including eryCII from the erythromycin producer Saccharopolyspora erythraea, oleP1 from the oleandomycin producer Streptomyces antibioticus, dnrQ from the doxorubicin producer Streptomyces peucetius, and tylMIII from the tylosin producer Streptomyces fradiae. In order to gain further insight into the function of these DesVIII homologues, interspecies complementation experiments were carried out by expressing each gene in a desVIII deletion mutant strain of S. venezuelae. Complementation by expressing EryCII, OleP1, and DnrQ in this mutant strain restored the production of glycosylated macrolides to an approximate level of 66%, 26% and 26%, respectively, compared to self-complementation by DesVIII. However, expression of TylMIII did not restore the antibiotic production. These results suggest that the DesVIII homologues (except for TylMIII) can functionally replace the native DesVIII for glycosylation to proceed in vivo and their functions are similar in acting as glycosyltransferase auxiliary proteins. The requirement of glycosyltransferase auxiliary protein seems to be more widespread in polyketide biosynthetic pathways than previously known.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号