首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuroadapted Sindbis virus (NSV) causes acute encephalitis and paralyzes and kills adult mice unless they are treated with primary immune serum after infection. To study the nature and specificity of curative antibodies, we gave mice 30 different monoclonal antibodies (MAbs) against Sindbis virus (SV) 24 h after lethal intracerebral inoculation of NSV. By the time of MAb treatment, NSV replication in the brain had been well established (7.5 X 10(7) PFU/g). Seventeen MAbs directed against multiple biological domains on the NSV E1 and E2 envelope glycoproteins prevented paralysis and death. Anticapsid MAbs failed to protect. Altogether, 15 of 17 curative MAbs either neutralized NSV infectivity or lysed NSV-infected cells with complement, but neither ability was necessary or sufficient to guarantee recovery. All 5 protective anti-E2 MAbs neutralized NSV infectivity; 6 of 10 protective anti-E1 MAbs neutralized NSV; 4 did not. Plaque assay or immunohistochemical staining showed that neutralizing and nonneutralizing curative MAbs decreased NSV in the brain, brainstem, and spinal cord. Despite high neutralization titers, hyperimmune anti-SV and anti-NSV mouse sera prevented only 6 and 30% of deaths, respectively, while primary immune sera prevented 50 (SV) and 90% (NSV) of deaths. Secondary intravenous immunization with a live virus apparently diminished, obscured, or failed to boost a class of protective antibodies. When separate mouse groups were given these 30 MAbs 24 h before lethal intracerebral inoculation of NSV, a slightly different set of 17 neutralizing or nonneutralizing anti-E1 and anti-E2 antibodies protected. Two nonneutralizing MAbs and hyperimmune anti-SV serum, which had failed to promote recovery, prophylactically protected 100% of the mice. The antibody requirements or mechanisms of prophylaxis and recovery may differ.  相似文献   

2.
Molecular basis of Sindbis virus neurovirulence in mice.   总被引:44,自引:37,他引:7       下载免费PDF全文
We examined a variety of strains of Sindbis virus for the genetic changes responsible for differences in neurovirulence in mice. SV1A (a low passage of the AR339 strain of Sindbis virus), a neuroadapted Sindbis virus (NSV), and two laboratory strains of Sindbis virus (HRSP and Toto1101) were examined. NSV causes severe encephalomyelitis with hind-limb paralysis and high mortality after intracerebral inoculation in weanling mice. In contrast, SV1A causes only mild, nonfatal disease in weanling mice; however, in suckling mice, SV1A causes a fatal encephalomyelitis after either intracerebral or subcutaneous inoculation. The two laboratory strains used have a greatly reduced neurovirulence for suckling mice and are avirulent for weanling mice. The nucleotide sequences and encoded amino acid sequences of the structural glycoproteins of these four strains were compared. Hybrid genomes were constructed by replacing restriction fragments in a full-length cDNA clone of Sindbis virus, from which infectious RNA can be transcribed in vitro, with fragments from cDNA clones of the various strains. These recombinant viruses allowed us to test the importance of each amino acid difference between the various strains for neurovirulence in weanling and suckling mice. Glycoproteins E2 and E1 were of paramount importance for neurovirulence in adult mice. Recombinant viruses containing the nonstructural protein region and the capsid protein region from an avirulent strain and the E1 and E2 glycoprotein regions from NSV were virulent, although they were less virulent than NSV. Furthermore, changes in either E2 (His-55 in NSV to Gln in SV1A) or E1 (Ala-72 in NSV to Val in SV1A and Asp-313 in NSV to Gly in SV1A) reduced virulence. For virulence in suckling mice, we found that a number of changes in E2 and E1 can lead to decreased virulence and that in fact, a gradient of virulence exists.  相似文献   

3.
Rapid penetration of baby hamster kidney cells was used as a selective pressure for the isolation of pathogenesis mutants of the S.A.AR86 strain of Sindbis virus. Unlike most Sindbis virus strains, S.A.AR86 is virulent in adult as well as neonatal mice. Two classes of mutants were defined. One class was attenuated in adult mice inoculated intracerebrally as well as in neonatal mice inoculated either intracerebrally or subcutaneously. Sequence analysis of the glycoprotein genes of the parent virus and three such mutant strains revealed a single point mutation which resulted in an amino acid change at position 1 in the E2 glycoprotein. The change from a serine in S.A.AR86 to an asparagine in the mutants created a new site for N-linked glycosylation which appeared to be utilized. This mutation did not retard release of infectious particles; however, mutant virions contained the E2 precursor protein (PE2) rather than the E2 glycoprotein itself. The mutants also lost the ability to bind two E2-specific monoclonal antibodies, R6 and R13. A second class of mutants was attenuated in neonatal mice upon subcutaneous inoculation but remained virulent in adults and in neonates when inoculated intracerebrally. Sequence analysis of three such strains revealed the substitution of an arginine residue for a serine at position 114 in the E2 glycoprotein. Reactivity with monoclonal antibodies R6 and R13 was reduced, yet members of this mutant class were more susceptible than S.A.AR86 to neutralization by these antibodies.  相似文献   

4.
Many alphaviruses cause more severe disease in young animals than in older animals. The age-dependent resistance to severe disease is determined primarily by maturation of the host, but strains of virus can be selected that overcome the increased resistance of mature animals. Sindbis virus (SV) strain AR339 causes fatal encephalitis in newborn mice and nonfatal encephalitis in weanling mice, whereas NSV, a neuroadapted strain of SV, causes fatal encephalitis in weanling as well as newborn mice. We have previously shown that the E2 glycoprotein of NSV contained His-55, whereas AR339 E2 had Gln-55 (S. Lustig, A. C. Jackson, C. S. Hahn, D. E. Griffin, E. G. Strauss, and J. H. Strauss, J. Virol. 62:2329-2336, 1988) and that SV with E2 containing Gly-172 was more virulent for newborn mice than SV with E2 containing Arg-172 (P. C. Tucker and D. E. Griffin, J. Virol. 65:1551-1557, 1991). Here we tested the virulence for both newborn and older mice of SV containing a number of different amino acids at E2 position 55 (His, Gln, Lys, Arg, Glu, Gly) in combination with both Gly-172 and Arg-172. All the viruses were virulent for newborn mice, but the residues at both 55 and 172 influenced the virulence of the virus, and there were differences in virulence observed among the various viruses. However, only viruses with His-55 were fully virulent for 14-day-old mice, and this virulence was independent of the residue at position 172. Virus with Lys-55 was virulent for 7-day-old mice, although slightly attenuated relative to His-55. Viruses with His-55 grew more rapidly and to higher titer in the brains of 7- and 14-day-old mice, in N18 neuroblastoma cells, and in BHK cells. Our data suggest that His-55 is important for neurovirulence in older mice and acts by increasing the efficiency of virus replication.  相似文献   

5.
To study important epitopes on glycoprotein E2 of Sindbis virus, eight variants selected to be singly or multiply resistant to six neutralizing monoclonal antibodies reactive against E2, as well as four revertants which had regained sensitivity to neutralization, were sequenced throughout the E2 region. To study antigenic determinants in glycoprotein E1, four variants selected for resistance to a neutralizing monoclonal antibody reactive with E1 were sequenced throughout the E2 and E1 regions. All of the salient changes in E2 occurred within a relatively small region between amino acids 181 and 216, a domain that encompasses a glycosylation site at residue 196 and that is rich in charged amino acids. Almost all variants had a change in charge, suggesting that the charged nature of this domain is important for interaction with antibodies. Variants independently isolated for resistance to the same antibody were usually altered in the same amino acid, and reversion to sensitivity occurred at the sites of the original mutations, but did not always restore the parental amino acid. The characteristics of this region suggest that this domain is found on the surface of E2 and constitutes a prominent antigenic domain that interacts directly with neutralizing antibodies. Previous studies have shown that this domain is also important for penetration of cells and for virulence of the virus. Resistance to the single E1-specific neutralizing monoclonal antibody resulted from changes of Gly-132 of E1 to either Arg or Glu. Analogous to the findings with E2, these changes result in a change in charge and are found near a glycosylation site at residue 139. This domain of E1 may therefore be found near the 181 to 216 domain of E2 on the surface of the E1-E2 heterodimer; together, they could form a domain important in virus penetration and neutralization.  相似文献   

6.
Virus-neutralizing monoclonal antibodies specific for 13 different genetically defined epitopes of glycoproteins gC, gB, and gD of herpes simplex virus type 1, strain KOS-321, were compared for their ability to provide passive immunity to DBA-2 mice challenged intracranially. Protection was highly specific, since individual monoclonal antibodies failed to protect against infection with monoclonal antibody-resistant (mar) mutants altered in the single epitope recognized by the injected antibody. The dose-response kinetics of passive immunity paralleled the in vitro neutralization titers for each antibody. No correlation was observed between immune protection and antibody isotype or complement-dependent in vitro neutralization titers. This suggests that virus neutralization was not the protective mechanism. In general, antibodies reactive with epitopes of gC were protective at the lowest antibody doses, antibodies specific for gB were less efficient in providing immunity, and antibodies against gD were the least effective. mar mutants with single epitope changes in gC and multiple epitope changes in gB showed highly reduced pathogenicity, requiring up to 5 X 10(6) PFU to kill 50% of infected animals. These findings indicated that antigenic variation affects virus growth and spread in the central nervous system. Thus, mutations which affect antigenic structure also can alter virus pathogenicity. The alteration of these epitopes does not, however, appreciably reduce the development of resistance to infection. Infection of mice with these mutants or inoculation of mice with UV-inactivated, mutant-infected cells before challenge rendered the animals resistant to infection with wild-type herpes simplex virus type 1.  相似文献   

7.
Sindbis virus variants evidencing a complex and bidirectional tendency toward spontaneous antigenic change were isolated and characterized. Variants were selected on the basis of their escape from neutralization by individual monoclonal antibodies to either of the two envelope glycoproteins, E2 and E1. Multisite variants, including one altered in three neutralization sites, were obtained by selecting mutants consecutively in the presence of different neutralizing monoclonal antibodies. Two phenotypic revertants, each of which reacquired prototype antigenicity, were back-selected on the basis of their reactivity with a neutralizing monoclonal antibody. An incidental oligonucleotide marker distinguished these and the variant from which they arose from parental Sindbis virus and other mutants, thereby confirming that the revertants were true progeny of the antigenic variant. Prototype Sindbis virus and variants derived from it were compared on the basis of their reactivities with each of a panel of monoclonal antibodies; patterns revealed a minimum of five independently mutable Sindbis virus neutralization epitopes, segregating as three antigenic sites (two E2 and one E1).  相似文献   

8.
Eighteen hybridoma lines obtained by immunization of mice with Newcastle disease virus (NDV) lentogenic strain La Sota or velogenic strain Italien produced hemagglutinating monoclonal antibodies. The 18 monoclones were divided into four groups according to their reactivity toward native hemagglutinin neuraminidase protein (HN), nonglycosylated HN precursor, and heat-denatured HN blotted on nitrocellulose membranes. Only group II reagents were reactive toward their targets in all conditions tested. They were considered sequence-specific antibodies. Group I antibodies did not require glycosylation but lacked reactivity towards the denatured glycosylated antigen. Monoclonal antibodies from group III recognized only the native HN. Group IV was made up of a single monoclone that lacked reactivity with NDV Italien but recognized the La Sota strain in hemagglutination inhibition and enzyme-linked immunosorbent assays. Five hybridoma lines produced monoclonal antibodies which neutralized viral infectivity but failed to inhibit hemagglutination. One monoclonal antibody obtained after immunization of mice with NDV La Sota showed a low neutralization index versus NDV Italien. Four monoclonal antibodies derived from mice immunized with NDV Italien showed higher neutralization indices towards this strain. Neither the denatured F protein nor its nonglycosylated precursor was reacted against by the five monoclonal antibodies.  相似文献   

9.
26株来自各种禽的网状内皮组织增生病毒(REV),用多克隆的抗REV鸡血清做交叉中和试验,用REV、T株,Coo1株所制备的单克隆抗体做免疫荧光试验,比较这些毒株之间的抗原关系,从交叉中和试验结果看,它们之间的抗原关系十分接近,可以认为同属于单一血清型;但也确实存在微小差异,因此又可以将它们分为三个血清亚型,这一结果巳被单克隆抗体检验所证实。  相似文献   

10.
Jan JT  Griffin DE 《Journal of virology》1999,73(12):10296-10302
Sindbis virus (SV) is an alphavirus that causes encephalitis in mice and can lead to the apoptotic death of infected cells. To determine the step in virus replication during which apoptosis is triggered, we used UV-inactivated SV, chemicals that block virus fusion or protein synthesis, and cells that do and do not express heparan sulfate, the initial binding molecule for SV infection of many cells. In initial experiments, UV-inactivated neuroadapted SV (NSV) induced apoptosis in Chinese hamster ovary (CHO) cells lacking heparan sulfate in the presence of cycloheximide. When fusion of prebound UV-inactivated NSV was rapidly induced at the plasma membrane by exposure to acidic pH, apoptosis was induced in CHO cells with or without heparan sulfate in the presence or absence of cycloheximide in a virus dose-dependent manner. In N18 neuroblastoma cells, the relative virulence of the virus strain was an important determinant of apoptosis induced by UV-inactivated SV. Treatment of N18 cells with monensin to prevent endosomal acidification an hour before, but not 2 h after, exposure to live NSV blocked the induction of cell death, as did treatment with NH(4)Cl or bafilomycin A1. These studies indicate that SV can induce apoptosis at the time of fusion with the cell membrane and that virus replication is not required.  相似文献   

11.
S Vrati  P J Kerr  R C Weir    L Dalgarno 《Journal of virology》1996,70(3):1745-1750
Previously we identified the locations of three neutralization epitopes (a, b1 and b2) of Ross River virus (RRV) by sequencing a number of variants resistant to monoclonal antibody neutralization which were found to have single amino acid substitutions in the E2 protein (S. Vrati, C.A. Fernon, L. Dalgarno, and R.C. Weir, Virology 162:346-353, 1988). We have now studied the biological properties of these variants in BHK cells and their virulence in mice. While variants altered in epitopes a and/or b1 showed no difference, variants altered in epitope b2, including a triple variant altered in epitopes a, b1, and b2, showed rapid penetration but retarded kinetics of growth and RNA and protein synthesis in BHK cells compared with RRV T48, the parent virus. Variants altered in epitopes a and/or b1 showed no change in mouse virulence. However, two of the six epitope b2 variants examined had attenuated mouse virulence. They had a four- to fivefold-higher 50% lethal dose (LD50), although no change in the average survival time of infected mice was observed. These variants grew to titers in mouse tissues similar to those of RRV T48. The ID50 of the triple variant was unchanged, but infected mice had an increased average survival time. This variant produced lower levels of viremia in infected mice. On the basis of these findings we propose that both the receptor binding site and neutralization epitopes of RRV are nearby or in the same domain of the E2 protein.  相似文献   

12.
In this study, we investigated in a flavivirus model (tick-borne encephalitis virus) the mechanisms of fusion inhibition by monoclonal antibodies directed to the different domains of the fusion protein (E) and to different sites within each of the domains by using in vitro fusion assays. Our data indicate that, depending on the location of their binding sites, the monoclonal antibodies impaired early or late stages of the fusion process, by blocking the initial interaction with the target membrane or by interfering with the proper formation of the postfusion structure of E, respectively. These data provide new insights into the mechanisms of flavivirus fusion inhibition by antibodies and their possible contribution to virus neutralization.  相似文献   

13.
Hepatitis C virus (HCV) exploits serum-dependent mechanisms that inhibit neutralizing antibodies. Here we demonstrate that high density lipoprotein (HDL) is a key serum factor that attenuates neutralization by monoclonal and HCV patient-derived polyclonal antibodies of infectious pseudo-particles (HCVpp) harboring authentic E1E2 glycoproteins and cell culture-grown genuine HCV (HCVcc). Over 10-fold higher antibody concentrations are required to neutralize either HCV-enveloped particles in the presence of HDL or human serum, and less than 3-5-fold reduction of infectious titers are obtained at saturating antibody concentrations, in contrast to complete inhibition in serum-free conditions. We show that HDL interaction with the scavenger receptor BI (SR-BI), a proposed cell entry co-factor of HCV and a receptor mediating lipid transfer with HDL, strongly reduces neutralization of HCVpp and HCVcc. We found that HDL activation of target cells strongly stimulates cell entry of viral particles by accelerating their endocytosis, thereby suppressing a 1-h time lag during which cell-bound virions are not internalized and can be targeted by antibodies. Compounds that inhibit lipid transfer functions of SR-BI fully restore neutralization by antibodies in human serum. We demonstrate that this functional HDL/SR-BI interaction only interferes with antibodies blocking HCV-E2 binding to CD81, a major HCV receptor, reflecting its prominent role during the cell entry process. Moreover, we identify monoclonal antibodies targeted to epitopes in the E1E2 complex that are not inhibited by HDL. Consistently, we show that antibodies targeted to HCV-E1 efficiently neutralize HCVpp and HCVcc in the presence of human serum.  相似文献   

14.
Monospecific (MSp-) antisera against E1 and E2 glycoproteins of western equine encephalitis (WEE) virus were prepared and examined for binding activities to whole virions, hemagglutination-inhibition (HI), neutralization (NT) and protection. Both anti-E1 and anti-E2 MSp-Abs protected mice against WEE virus challenge. A competition experiment with monoclonal antibodies showed that these MSp-antisera appear to lack the antibody population for some epitopes involved in viral neutralization.  相似文献   

15.
Cells producing neutralizing monoclonal antibodies to a serotype 3 human neonatal rotavirus strain RV-3 were derived by fusion of hyperimmunized mouse spleen cells with mouse myeloma cells. As ascites fluid, three rotavirus-neutralizing monoclonal antibodies were characterized by hemagglutination inhibition and reacted with 17 cultivable mammalian rotaviruses representing five virus serotypes, by fluorescent focus neutralization and enzyme immunoassay. Two antibodies, Mab RV-3:1 and Mab RV-3:2, reacted with the seven serotype 3 rotaviruses only. Mab RV-3:1 was shown to bind to the outer capsid glycoprotein gp34 of rotavirus when variants of SA 11 rotavirus were used, and it therefore appears to react with the major neutralization epitope of serotype 3 rotaviruses. The antibody Mab RV-3:3 was specific for an epitope of RV-3 rotavirus not present on any other rotavirus of any serotype tested, including another neonatal isolate of identical RNA electropherotype isolated from the same ward of the same hospital as RV-3 3 months earlier. These two viruses were also distinguishable by fluorescent focus neutralization, using antiserum to RV-3 virus. Western blot analysis showed binding of Mab RV-3:3 to the trypsin cleavage product of the outer capsid protein p86 of RV-3. This suggests that antigenic drift may have occurred among neonatal rotaviruses in Melbourne. These monoclonal antibodies will be useful in serotyping assays of rotaviruses directly in stool samples, and in further analysis of antigenic variation within the serotype.  相似文献   

16.
Monoclonal antibodies specific for herpes simplex virus type 1 (HSV-1) glycoproteins were used to demonstrate that HSV undergoes mutagen-induced and spontaneous antigenic variation. Hybridomas were produced by polyethylene glycol-mediated fusion of P3-X63-Ag8.653 myeloma cells with spleen cells from BALB/c mice infected with HSV-1 (strain KOS). Hybrid clones were screened for production of HSV-specific neutralizing antibody. The glycoprotein specificities of the antibodies were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoprecipitates of radiolabeled infected-cell extracts. Seven hybridomas producing antibodies specific for gC, one for gB, and one for gD were characterized. All antibodies neutralized HSV-1 but not HSV-2. Two antibodies, one specific for gB and one specific for gC, were used to select viral variants resistant to neutralization by monoclonal antibody plus complement. Selections were made from untreated and bromodeoxyuridine- and nitrosoguanidine-mutagenized stocks of a plaque-purified isolate of strain KOS. After neutralization with monoclonal antibody plus complement, surviving virus was plaque purified by plating at limiting dilution and tested for resistance to neutralization with the selecting antibody. The frequency of neutralization-resistant antigenic variants selected with monoclonal antibody ranged from 4 X 10(-4) in nonmutagenized stocks to 1 X 10(-2) in mutagenized stocks. Four gC and four gB antigenic variants were isolated. Two variants resistant to neutralization by gC-specific antibodies failed to express gC, accounting for their resistant phenotype. The two other gC antigenic variants and the four gB variants expressed antigenically altered glycoproteins and were designated monoclonal-antibody-resistant, mar, mutants. The two mar C mutants were tested for resistance to neutralization with a panel of seven gC-specific monoclonal antibodies. The resulting patterns of resistance provided evidence for at least two antigenic sites on glycoprotein gC.  相似文献   

17.
18.
Summary Baculovirus-derived recombinant simian virus 40 (SV40) large tumor antigen (SV40 T-Ag), a monoclonal antibody specific for SV40 T-Ag (Ab-1 preparation), and a monoclonal anti-idiotypic antibody (anti-Id), designated 58D, were used to analyze the humoral immune response of Balb/c mice either immunized with recombinant SV40 T-Ag or challenged with SV40-transformed cells. Inhibition assays indicated that antibodies from mice immunized with SV40 T-Ag and from those bearing SV40 tumor inhibited the SV40 T-Ag/Ab-1 reaction. These data suggested that the antibody response in immunized or tumorchallenged mice recognized similar epitope(s) on SV40 T-Ag to that detected by the monoclonal Ab-1. These anti-(SV40 T-Ag) response antibodies also inhibited the Ab-1/anti-Id reaction and recognized the anti-Id in direct binding assays. Together, these data indicate that murine anti-(SV40 T-Ag) responses shared an idiotope with a monoclonal anti-(SV40 T-Ag) Ab-1 preparation. This idiotope, which is recognized by the monoclonal anti-Id preparation, 58D, appears to be involved in the humoral immune response to SV40 T-Ag in both SV40-T-Ag-immunized and tumor-bearing mice. The monoclonal anti-Id preparation may represent a focal point for manipulating the humoral immune response to tumors induced by SV40-transformed cells.  相似文献   

19.
Troponin I switching in the developing heart   总被引:9,自引:0,他引:9  
Monoclonal antibodies identify two distinct isoforms of troponin I in rat cardiac muscle, one predominant in the embryonic and fetal heart and one predominant in the adult heart. The two isoforms can be resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with apparent molecular weights of 27,000 and 31,500, respectively. The adult isoform is specifically recognized by a monoclonal antibody that is unreactive with the embryonic variant, while two other monoclonal antibodies recognize both isoforms. A monoclonal antibody to cardiac troponin T was used to isolate by affinity chromatography the troponin complex from adult and neonatal rat heart. Affinity purified troponin from neonatal heart was found to contain both the embryonic and adult isoforms of troponin I. Comparative immunoblotting analysis with different muscle tissues shows that embryonic troponin I is identical with respect to electrophoretic mobility and pattern of immunoreactivity to the major troponin I isoform found in adult slow skeletal muscle. Troponin I switching may be implicated in developmental changes involving Ca2+ and pH sensitivity of the contractile system and response to beta-adrenergic stimulation.  相似文献   

20.
Ten monoclonal antibodies against Negishi virus were classified into 3 groups and 7 types according to the reaction patterns to Negishi virus by the hemagglutination inhibition (HI) test and by several kinds of neutralization tests. When kinetic neutralization was applied to these monoclonal antibodies at the same HI titer of 1:64, the initial slope and the persistent fraction of the kinetic curve was varied in each antibody. In the double-kinetic neutralization test, neutralization did not proceed further when the second antibody was the same type as the first one. When the second antibody was a different type from that of the first one, neutralization proceeded further. The mixtures of 4 monoclonal antibodies classified as different groups and types remarkably enhanced neutralization in the kinetic assay. These results suggested that an assortment of antibodies is needed for effective neutralization of Negishi virus and that a multi-hit model is likely operating in the neutralization of Negishi virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号