首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unusual anticodon loop structure found in E.coli lysine tRNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
Although both tRNA(Lys) and tRNA(Glu) of E. coli possess similar anticodon loop sequences, with the same hypermodified nucleoside 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the first position of their anticodons, the anticodon loop structures of these two tRNAs containing the modified nucleoside appear to be quite different as judged from the following observations. (1) The CD band derived from the mnm5s2U residue is negative for tRNA(Glu), but positive for tRNA(Lys). (2) The mnm5s2U monomer itself and the mnm5s2U-containing anticodon loop fragment of tRNA(Lys) show the same negative CD bands as that of tRNA(Glu). (3) The positive CD band of tRNA(Lys) changes to negative when the temperature is raised. (4) The reactivity of the mnm5s2U residue toward H2O2 is much lower for tRNA(Lys) than for tRNA(Glu). These features suggest that tRNA(Lys) has an unusual anticodon loop structure, in which the mnm5s2U residue takes a different conformation from that of tRNA(Glu); whereas the mnm5s2U base of tRNA(Glu) has no direct bonding with other bases and is accessible to a solvent, that of tRNA(Lys) exists as if in some way buried in its anticodon loop. The limited hydrolysis of both tRNAs by various RNases suggests that some differences exist in the higher order structures of tRNA(Lys) and tRNA(Glu). The influence of the unusual anticodon loop structure observed for tRNA(Lys) on its function in the translational process is also discussed.  相似文献   

2.
Methyl and methylene protons of dihydrouridine 17 (hU), 6-methyladenosine 37 (M6A), 7-methylguanosine 46 (m7G), and ribothymidine 54 (rT) give clearly resolved peaks (220 MHz) for tRNA1val (coli solutions in D2O, 0.25 m NaCl, at 27 degrees C. Chemical shifts are generally consistent with a solution structure of tRNA1val similar to the crystal structure of tRNAphe (yeast). At least 3 separate transitions are observed as the temperature is raised. The earliest involves disruption of native tertiary structure and formation of intermediate structures in the m7G and rT regions. A second transition results in a change in structure of the anticodon loop, containing m6A. The final step involves unfolding of the m7G and rT intermediates and melting of the TpsiC helix. Low salt concentrations produce multiple, partially denatured conformations, rather than a unique form, for tRNA1val. Native structure is almost completely reformed by addition of Na+ but Mg2+ is required for correct conformation in the vicinity of m7G.  相似文献   

3.
The 2'-5' RNA ligase family members are bacterial and archaeal RNA ligases that ligate 5' and 3' half-tRNA molecules with 2',3'-cyclic phosphate and 5'-hydroxyl termini, respectively, to the product containing the 2'-5' phosphodiester linkage. Here, the crystal structure of the 2'-5' RNA ligase protein from an extreme thermophile, Thermus thermophilus HB8, was solved at 2.5A resolution. The structure of the 2'-5' RNA ligase superimposes well on that of the Arabidopsis thaliana cyclic phosphodiesterase (CPDase), which hydrolyzes ADP-ribose 1",2"-cyclic phosphate (a product of the tRNA splicing reaction) to the monoester ADP-ribose 1"-phosphate. Although the sequence identity between the two proteins is remarkably low (9.3%), the 2'-5' RNA ligase and CPDase structures have two HX(T/S)X motifs in their corresponding positions. The HX(T/S)X motifs play important roles in the CPDase activity, and are conserved in both the CPDases and 2'-5' RNA ligases. Therefore, the catalytic mechanism of the 2'-5' RNA ligase may be similar to that of the CPDase. On the other hand, the electrostatic potential of the cavity of the 2'-5' RNA ligase is positive, but that of the CPDase is negative. Furthermore, in the CPDase, two loops with low B-factors cover the cavity. In contrast, in the 2'-5' RNA ligase, the corresponding loops form an open conformation and are flexible. These characteristics may be due to the differences in the substrates, tRNA and ADP-ribose 1",2"-cyclic phosphate.  相似文献   

4.
Y Mizuno  S Kitano    A Nomura 《Nucleic acids research》1975,2(12):2193-2207
Nine dinucleoside phosphates containing 1-deaza-(1A) and 3-deazaadenosine (3A) were prepared. Hypochromicity and CD spectra of these dimers were determined. It was found that varying degrees of base-stacking are operative with these oligonucleotides and their CD spectra fall into three classes. The first class CD spectra which are more or less similar in profile to those of adenylyl-(3'-5')-adenosine includes the CD spectra of 1A2'p5'A, 1A3'p5A, 3A2'p5'A and 3A3'p5'A. The second class includes the CD spectra of A2'p5'1A and A3'p5'1A whose characteristic is that the positive Cotton band appears in the range of 280-310 nm. The third type CD spectra has the characteristics that the negative Cotton band appears in the longer wavelength region and th CD spectra are similar in profile to those of L-adenylyl-(3'-5')-L-adenosine which has the "left-handed helical" conformation. The CD spectra of A2'p5'3A, A3'p5'3A and 3A3'p5'A belong to this class. Another salient observation emerging from the CD-determination is that 3A3'p5'3A has the spectrum quite different from that of poly 3-deazaadenylic acid.  相似文献   

5.
rRNA(Gm)methyltransferase from an extreme thermophile, Thermus thermophilus HB 27 specifically methylates the 2'-OH of the ribose ring of G18 in the invariant G18-G19 sequence in the D loop of tRNA. The interaction site on tRNA was presumed to be the D loop and stem structure. Destruction of tertiary structure of tRNA caused by heat resulted in a great decrease in the acceptor activity of methyl group. It was suggested by CD measurement that a conformational change of tRNA occurs when it forms an equimolar complex with Gm-methylase.  相似文献   

6.
The nucleotide sequence of D. melanogaster histidine tRNA gamma was determined to be: pG-G-C-C-G-U-G-A-U-C-G-U-C-psi-A-G-D-G-G-D-D-A-G-G-A-C-C-C-C-A-C-G-psi-U-G-U-G- m1G-C-C-G-U-G-G-U-A-A-C-C-m5C-A-G-G-U-psi-C-G-m1A-A-U-C-C-U-G-G-U-C-A-C-G-G-m5C -A-C-C-AOH. An additional unpaired G is found at the 5' end, and the T in the TpsiC loop is replaced by a U.  相似文献   

7.
8.
The Interaction of the cro protein of lambda phage with a synthetic OR3 operator having 17 base pairs in length and with its 9 bp fragment has been studied using the circular dichroism (CD) method. In both cases, a considerable change in the CD of the samples was found in the region 260-300 nm upon the addition of the cro protein. The stoichiometry obtained by the CD titration was identical for OR3 and its 9 bp fragment: one duplex per dimeric cro. NaCl addition makes the complexes dissociate so that the 9 bp fragment becomes free at [NaCl] greater than 0.2 M while the whole OR3 becomes free at [NaCl] greater than 0.5 M. The CD spectra of both the free duplexes show a typical B-form conservative pattern with a positive CD band (270 nm) and a negative one (250 nm). The specific complexing of both the duplexes results in a substantial CD depression in the positive band. The most pronounced effect occurs at 280 nm. This spectral change is quite distinct from those in the B to A transition and in the non-cooperative winding of the DNA within the B-family of forms. The interaction of the cro protein with the non-operator DNAs, calf thymus DNA and a synthetic 10 bp duplex, reveals no visible CD changes at all. An inference is drawn that the CD change in the specific complexes is mainly due to the induced CD in tyr-26 upon its interaction with a specific base pair in the operator or its fragment, the operator DNA conformation being conserved in a B-like form as a whole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A58, the conserved adenosine residue in the T psi C loop of tRNAs, is methylated to m1A 58 in an extreme thermophile, Thermus thermophilus HB27. The enzyme catalyzing this methyltransfer reaction was purified from the thermophle. The substrate specificity of the enzyme was investigated by using tRNA fragments. The enzyme can transfer the methyl group to the 3'-half fragment of E. coli initiator tRNA, indicating that the main recognition site of the enzyme exists in the 3' half of tRNA including the T-loop and the T-stem.  相似文献   

10.
The CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase] catalyzes the addition and regeneration of the 3'-terminal CCA sequence of tRNAs. We show that the CCA-adding enzyme will specifically add a CCA terminus to synthetic full-length tDNA and to DNA oligonucleotides corresponding to the "top half" of tRNA-the acceptor stem and TpsiC stem-loop of tRNA. CCA addition to the top half tDNA minihelices requires a 2' as well as a 3' OH at the 3' terminus of the tDNA. Addition also depends on the length of the base paired stem, and is facilitated by, but is not dependent upon, the presence of a TpsiC loop. These results provide further evidence for independent functions of the top and bottom halves of tRNA, and support the hypothesis that these two structurally distinct and functionally independent domains evolved independently.  相似文献   

11.
tRNA (adenine-1) methyltransferase occurs in Bacillus subtilis. Eucaryotic tRNAThr and tRNATyr from yeast in which 1-methyladenosine (m1A) is already present in the TpsiC loop, can be methylated in vitro with S-adenosylmethionine and B. subtilis extracts. Each of the specific tRNAs accepts 1 mol of methyl groups per mol tRNA. The enzyme transforms into m1A the 3'-terminal adenylic acid residue of the dihydrouridine loop, a new position for a modified adenosine residue in tRNA. Both tRNAs have the sequence Py-A-A-G-G-C-m2(2)G in the D-loop and D-stem region. Other tRNAs with the same sequence in this region also serve as substrates for the tRNA (adenine-1) methyltransferase.  相似文献   

12.
The interaction of ethidium-labeled tRNAPhe from yeast with ribosomes from yeast and Escherichia coli was studied by stead-state measurements of fluorescence intensity and polarization. The ethidium label was covalently inserted into either the anticodon or the dihydrouridine loop of the tRNA. The codon-independent formation of a tRNA-ribosome complex led to only a moderate increase of the observed fluorescence polarization indicating a considerable internal mobility of the labeled parts of the tRNA molecule in the ribosome complex. When the ribosome complex was formed in the presence of poly(U), the probes both in the dihydrouridine loop and in the anticodon loop were strongly immobilized, the latter exhibiting a substantial increase in fluorescence intensity. A smaller intensity change was observed when E. coli ribosomes were used, although the extent of immobilization was found to be similar in this case. Competition experiments with non-labeled tRNAPhe showed that the labeled tRNAPheEtd was readily released from the complex with yeast ribosomes when poly(U) was absent, whereas in the presence of poly(U) it was bound practically irreversibly. The finding that the mobility of a probe in the dihydrouridine loop is affected by the codon-anticodon interaction on the ribosome suggests a conformational change of the ribosome-bound tRNA which may involve opening of the tertiary structure interactions between the dihydrouridine and the TpsiC loop.  相似文献   

13.
Ribonuclease T2, nuclease S1, and snake venom phosphodiesterase were used as a structural probe for investigation of the interaction between Escherichia coli tRNAfMet and methionyl-tRNA synthetase, and the cleavage sites were analyzed by a rapid sequencing gel electrophoresis of 5'-32P-labeled tRNA. Both endonucleases cleaved the D-loop of synthetase-bound tRNA much more extensively than that of the free tRNA. Positions of A14, G15, A22, and G23 in the D-loop and C35 in the anticodon of the synthetase-bound tRNA were more susceptible to RNase T2. The synthetase-bound tRNA was predominantly cleaved by nuclease S1 at position of G15, G19, G20, and G23 in the D-loop and G2 in the acceptor stem. In contrast, the synthetase-bound tRNA was more resistant to the 3'-exonuclease, snake venom phosphodiesterase, than was the free tRNA molecule. These results suggest conformational change of the tRNA by the synthetase binding which weakened tertiary interaction between the D-loop and T psi C-loop/extra-loop. Production of acid-soluble radioactivity was also examined in the limited digestion of 5'-32P-labeled tRNA or 3'-14C-labeled methionyl-tRNA. The synthetase enhanced the release of acid-soluble oligonucleotides from the 5'-end of the tRNA but suppressed that from the 3'-end of the molecule. These results are consistent with that obtained by gel electrophoresis.  相似文献   

14.
Ribosome complexes containing deacyl-tRNA1(Val) or biotinylvalyl-tRNA1(Val) and an mRNA analog have been irradiated with wavelengths specific for activation of the cmo5U nucleoside at position 34 in the tRNA1(Val) anticodon loop. The major product for both types of tRNA is the cross-link between 16S rRNA (C1400) and the tRNA (cmo5U34) characterized already by Ofengand and his collaborators [Prince et al. (1982) Proc. Natl Acad. Sci. USA, 79, 5450-5454]. However, in complexes containing deacyl-tRNA1(Val), an additional product is separated by denaturing PAGE and this is shown to involve C1400 and m5C967 of 16S rRNA and cmo5U34 of the tRNA. Puromycin treatment of the biotinylvalyl-tRNA1(Val) -70S complex followed by irradiation, results in the appearance of the unusual photoproduct, which indicates an immediate change in the tRNA interaction with the ribosome after peptide transfer. These results indicate an altered interaction between the tRNA anticodon and the 30S subunit for the tRNA in the P/E hybrid state compared with its interaction in the classic P/P state.  相似文献   

15.
The effects of ribosomal proteins L18, L25 and L5 on the conformation of 5S RNA have been studied by circular dichroism and temperature dependent ultraviolet absorbance. The circular dichroism spectrum of native 5S RNA is characterized in the near ultraviolet by a large positive band at 267 nm and a small negative band at 298 nm. The greatest perturbation in the spectrum was produced by protein L18 which induced a 20% increase in the 267 nm band and no change in the 298 nm band. By contrast, protein L25 caused a small decrease in both bands. No effect was observed with protein L5. Simultaneous binding of proteins L18 and L25 resulted in CD changes equivalent to the sum of their independent effects. The UV absorbance thermal denaturation profile of the 5S RNA L18 complex lacked the pre-melting behavior characteristic of 5S RNA. Protein L25 had no effect on the 5S RNA melting profile. We concluded that protein L18 increases the secondary, and possible the tertiary structure of 5S RNA, and exerts a minor stabilizing effect on its conformation while protein L25 causes a small decrease in 5S RNA secondary structure. The implications of these findings for ribosome assembly and function are discussed.  相似文献   

16.
Recent hydrogen exchange experiments on native cytochrome c implicate a sequential unfolding pathway in contrast to a simple two-state process. We have studied the heat-induced unfolding of this protein by using spectroscopic measurements to detect changes in conformation and proteolytic enzyme digestion to identify regions of the protein that are labile. Several spectroscopic profiles were monitored: CD at 222 nm, a measurement of secondary structure change in the protein, the absorbance at 280 nm, involving the local environment of Trp 59, and absorbance at 420 nm, the Soret band of the heme. The apparent Tm values for these probes differ, consistent with an unfolding pathway containing intermediates. The limited digestion by proteinase K is consistent with population of an intermediate state in unfolding. We find a single strong region of cleavage at low temperature with retention of structure in each fragment. Proteins 30:435–441, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Direct laser excitation of aqueous Eu(III) bound to specific RNA fragments was used to probe the metal-binding sites of the anticodon loop of tRNA(Phe) from E. coli and of a tetraloop containing a GNRA consensus sequence. Binding of Mg(II) or Eu(III) to either RNA fragment resulted in a higher melting transition, but no global change in structure was observed. Aqueous Eu(III) exhibits a single weak excitation peak at 17273 cm(-1), the intensity of which increased upon addition of the tRNA loop fragment. Analysis of incremental increases in the luminescence intensity upon complexation with the tRNA loop indicated a stoichiometry of one high-affinity Eu(III)-binding site per loop fragment, with a Kd of 1.3 +/- 0.2 microM. Competition experiments between Eu(III) and Mg(II) were consistent with the two metal ions binding to a common site and with an approximately 30-fold lesser affinity of the tRNA loop for Mg(II) than for Eu(III). The rate of luminescence decay following excitation of Eu(III) bound to the tRNA loop corresponded to displacement of up to 4-5 (of a possible 9) waters of hydration on binding to the tRNA loop. By comparison, Eu(III) binds to the DNA analogue of the tRNA loop with an 8-fold lesser affinity and one fewer direct coordination site than to the RNA sequence, suggesting that a 2'OH of RNA is one of the direct ligands. In contrast with the absence of a shift in the excitation peak of aqueous Eu(III) upon formation of the tRNA loop complex, direct excitation of Eu(III) bound to a GNRA tetraloop fragment resulted in a substantially blue-shifted excitation peak (17290 cm(-1)). The tetraloop fragment also has a single Eu(III)-binding site, with a Kd of 12 +/- 3 microM. The bound Eu(III) was competed by Mg(II), although the relative affinity for Mg(II) was approximately 150-450-fold less than that for Eu(III). The Eu(III)-binding site of the tetraloop site is highly dehydrated, with approximately 7 water molecules displaced upon binding by RNA ligands, suggesting that the blue-shift of the excitation peak is the result of Eu(III) specifically bound in a nonpolar site within the GNRA loop structure.  相似文献   

18.
Recognition sites of tRNA by tRNA(guanosine-2'-)-methyltransferase (Gm-methylase) [EC 2.1.1.34] from an extreme thermophile, Thermus thermophilus HB27, were studied by two independent methods--fragment reactions and footprinting analyses, using yeast tRNA(Phe) and Escherichia coli tRNA(fMet) as substrates. None of the tRNA-derived oligonucleotides which have the G-G sequence but are not long enough to form the "stem-loop" structure could be methylated by Gm-methylase. The 5'-half fragments having the intact D-"stem-loop" structure served as substrates for Gm-methylase, with a similar Vmax but 6-8 times larger Km, as compared with the intact tRNAs. The results of footprinting analyses were consistent with the foregoing findings. Gm-methylase protected only the D-loop region of tRNA from RNase T1 attack, but other parts of tRNA extending from the amino acid stem to the T arm became more sensitive to RNase T1, suggesting a considerable change of tRNA tertiary structure due to complex formation with Gm-methylase. These results indicate that a D-"stem-loop" structure is a prerequisite for recognition by Gm-methylase.  相似文献   

19.
Abstract

The Interaction of the cro protein of λ phage with a synthetic OR3 operator having 17 base pairs in length and with its 9 bp fragment has been studied using the circular dichroism (CD) method. In both cases, a considerable change in the CD of the samples was found in the region 260-300 nm upon the addition of the cro protein. The stoichiometry obtained by the CD titration was identical for OR3 and its 9 bp fragment: one duplex per dimeric cro.

NaCl addition makes the complexes dissociate so that the 9 bp fragment becomes free at [NaCl]>0.2 M while the whole OR3 becomes free at [NaCl]>0.5 M.

The CD spectra of both the free duplexes show a typical B-form conservative pattern with a positive CD band (270 nm) and a negative one (250 nm). The specific complexing of both the duplexes results in a substantial CD depression in the positive band. The most pronounced effect occurs at 280 nm. This spectral change is quite distinct from those in the B to A transition and in the non-cooperative winding of the DNA within the B-family of forms.

The interaction of the cro protein with the non-operator DNAs, calf thymus DNA and a synthetic 10 bp duplex, reveals no visible CD changes at all.

An inference is drawn that the CD change in the specific complexes is mainly due to the induced CD in tyr-26 upon its interaction with a specific base pair in the operator or its fragment, the operator DNA conformation being conserved in a B-like form as a whole. However, some local distortions such as kinks cannot be ruled out on the basis of the CD data.  相似文献   

20.
The inhibition of anion exchange in human erythrocyte membrane by eosin-5-maleimide (EMI) was examined at various pH values. At the pH region between pH 6.0 and 8.0, EMI inhibited the sulfate efflux by about 90%. Further, the interaction of EMI molecules with erythrocyte ghosts was studied by induced circular dichroism (CD). At acidic pH, the EMI-ghost system showed a positive band at about 552 nm and negative bands at about 523 and 505 nm. When the ghosts had been preincubated with N-ethylmaleimide, which is a modifying reagent for cysteine residues, the intensity of the CD bands was decreased. On the other hand, when the ghosts had been preincubated with 4,4'-diisothiocyanostilbene-2,2'-disulfonate or eosin-5-isothiocyanate, which inhibit the anion exchange by binding to membrane from outside of the cell, EMI CD was not influenced. These results and the experiment of trypsin digestion, suggested that the induced CD originated from the complexation of EMI molecules with SH groups on band 3 protein. A conventional Gaussian analysis of the CD spectrum at pH 6.0 revealed that the CD spectrum was composed of three components; one of them may be from EMI monomers bound to a cryptic SH group on the 17K fragment and two of them were coupling-type CD bands originating from EMI dimer and/or trimer. The EMI dimer and trimer, which should be located predominantly on the cytoplasmic SH groups on the 43K fragment, were considered as 'stacking' and/or 'head to tail' arrangements. At pH 7.4, the CD spectrum originating from EMI monomers, which showed a negative band at about 560 nm and a positive band at about 535 nm, could be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号