首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 992 毫秒
1.
Cancer therapy using unconjugated monoclonal antibodies (mAb) has been limited by the lack of immune effector function of the mAb and antigenic modulation. JD118 is a cytotoxic murine IgM mAb with reactivity restricted to a subset of normal B cells, some monocytic series cells, and a large percentage of B cell hematopoietic neoplasms including acute and chronic leukemias and lymphomas. Specificity was determined on several hundred normal and neoplastic, hematopoietic and non-hematopoietic cells and tissues, as well as progenitor cells. JD118 was able to kill fresh human leukemias and lymphomas in the presence of human serum as a complement source with an LD50 of 100 ng/ml. At this mAb concentration, fewer than 4% of more than 105 available target sites were bound. Killing was not affected by changes in antigen expression observed during the cell cycle nor by loss of cell-surface targets via antigenic modulation. Cytotoxicity could be achieved with human serum diluted as low as 5%, suggesting that complement depletion in vivo should not limit activity. Autologous human serum could be used effectively as a complement source. The JD118 antigen target has not been identified, but it appears to be a glycoprotein. Up-regulation of antigen expression on normal B cells and chronic lymphocytic leukemia cells in vitro resulted in antigen-negative neoplasms becoming positive and thus targets for JD118 killing. The restricted expression, potent cytotoxic characteristics, and potential for up-regulation of its antigen make JD118 a possible candidate for ex vivo autologous bone marrow purging and in vivo therapeutic trials in patients with B cell neoplasms.This work was supported by ACS grants PRTF-135 and IM-551, the Michael and Ethel Cohen Fellowship Fund, and the Lucille P. Markey Trust. D. A. Scheinberg is a Lucille P. Markey Scholar Correspondence to: Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA  相似文献   

2.
Chimeric and humanized antibodies with specificity for the CD33 antigen.   总被引:6,自引:0,他引:6  
L and H chain cDNAs of M195, a murine mAb that binds to the CD33 Ag on normal and leukemic myeloid cells, were cloned. The cDNAs were used in the construction of mouse/human IgG1 and IgG3 chimeric antibodies. In addition, humanized antibodies were constructed which combined the complementarity-determining regions of the M195 antibody with human framework and constant regions. The human framework was chosen to maximize homology with the M195 V domain sequence. Moreover, a computer model of M195 was used to identify several framework amino acids that are likely to interact with the complementarity-determining regions, and these residues were also retained in the humanized antibodies. Unexpectedly, the humanized IgG1 and IgG3 M195 antibodies, which have reshaped V regions, have higher apparent binding affinity for the CD33 Ag than the chimeric or mouse antibodies.  相似文献   

3.
Expression of CD7 on normal human myeloid progenitors.   总被引:3,自引:0,他引:3  
Existence of biphenotypic leukemias co-expressing CD7 and CD34 has prompted the question of whether a similar population of cells is present in normal human bone marrow. As CD7 is considered to be a T cell-restricted Ag, the co-expression of CD7 with the "human stem cell Ag" CD34 may identify a bipotent stage within hemopoietic differentiation. Cells with this phenotype have previously been isolated from human thymus. In this report we provide evidence that human marrow mononuclear cells also contain a minor subpopulation of cells co-expressing CD7 and CD34. The CD7+/CD34+ cells were found to contain committed myeloid progenitors assayed both as CFU in semi-solid media and by their ability to produce granulocytes in long term marrow cultures. Expression of CD7 on myeloid committed progenitors was further confirmed in a C-mediated cytotoxic assay. We conclude that CD7 expression is not restricted to T cells but is also expressed during early stages of myeloid differentiation.  相似文献   

4.
5.
Despite therapeutic advances, the long-term survival rates for acute myeloid leukemia (AML) are estimated to be 10% or less, pointing to the need for better treatment options. AML cells express the myeloid marker CD33, making it amenable to CD33-targeted therapy. Thus, the in vitro and in vivo anti-tumor activities of lintuzumab (SGN-33), a humanized monoclonal anti-CD33 antibody undergoing clinical evaluation, were investigated. In vitro assays were used to assess the ability of lintuzumab to mediate effector functions and to decrease the production of growth factors from AML cells. SCID mice models of disseminated AML with the multi-drug resistance (MDR)-negative HL60 and the MDR+, HEL9217 and TF1-α, cell lines were developed and applied to examine the in vivo antitumor activity. In vitro, lintuzumab significantly reduced the production of TNFα-induced pro-inflammatory cytokines and chemokines by AML cells. Lintuzumab promoted tumor cell killing through antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) activities against MDR and MDR+ AML cell lines and primary AML patient samples. At doses from 3 to 30 mg/kg, lintuzumab significantly enhanced survival and reduced tumor burden in vivo, regardless of MDR status. Survival of the mice was dependent upon the activity of resident macrophages and neutrophils. The results suggest that lintuzumab may exert its therapeutic effects by modulating the cytokine milieu in the tumor microenvironment and through effector mediated cell killing. Given that lintuzumab induced meaningful responses in a phase 1 clinical trial, the preclinical antitumor activities defined in this study may underlie its observed therapeutic efficacy in AML patients.  相似文献   

6.
Although recent studies suggest that hyperlipidemia is a risk factor for osteoarthritis (OA), the link between OA and hyperlipidemia is not fully understood. As the number of activated, circulating myeloid cells is increased during hyperlipidemia, we speculate that myeloid cells contribute to the pathology of OA. Here, we characterized myeloid cells in STR/Ort mice, a murine osteoarthritis model, under hyperlipidemic conditions. Ratios of myeloid cells in bone marrow, the spleen, and peripheral blood were determined by flow cytometry. To examine the influence of the hematopoietic environment, including abnormal stem cells, on the hematopoietic profile of STR/Ort mice, bone marrow transplantations were performed. The relationship between hyperlipidemia and abnormal hematopoiesis was examined by evaluating biochemical parameters and spleen weight of F2 animals (STR/Ort x C57BL/6J). In STR/Ort mice, the ratio of CD11b+Gr1+ cells in spleens and peripheral blood was increased, and CD11b+Gr1+ cells were also present in synovial tissue. Splenomegaly was observed and correlated with the ratio of CD11b+Gr1+ cells. When bone marrow from GFP-expressing mice was transplanted into STR/Ort mice, no difference in the percentage of CD11b+Gr1+ cells was observed between transplanted and age-matched STR/Ort mice. Analysis of biochemical parameters in F2 mice showed that spleen weight correlated with serum total cholesterol. These results suggest that the increase in circulating and splenic CD11b+Gr1+ cells in STR/Ort mice originates from hypercholesterolemia. Further investigation of the function of CD11b+Gr1+ cells in synovial tissue may reveal the pathology of OA in STR/Ort mice.  相似文献   

7.
AIM: To evaluate quantitatively and qualitatively the different CD34+cell subsets after priming by chemotherapy granulocyte colony-stimulating factor(± G-CSF)in patients with acute myeloid leukemia.METHODS: Peripheral blood and bone marrow sampleswere harvested in 8 acute myeloid leukemia patients during and after induction chemotherapy. The CD34/CD38 cell profile was analyzed by multi-parameter flow cytometry. Adhesion profile was made using CXC chemokine receptor 4(CXCR4)(CD184), VLA-4(CD49d/CD29) and CD47.RESULTS: Chemotherapy ± G-CSF mobilized immature cells(CD34+CD38 population), while the more mature cells(CD34+CD38lowand CD34+CD38+populations) decreased progressively after treatment. Circulating CD34+cells tended to be more sensitive to chemotherapy after priming with G-CSF. CD34+cell mobilization was correlated with a gradual increase in CXCR4 and CD47expression, suggesting a role in cell protection and the capacity of homing back to the marrow.CONCLUSION: Chemotherapy ± G-CSF mobilizes into the circulation CD34+bone marrow cells, of which, the immature CD34+CD38-cell population. Further manipulations of these interactions may be a means with which to control the trafficking of leukemia stem cells to improve patients’ outcomes.  相似文献   

8.
Jiang D  Schwarz H 《PloS one》2010,5(12):e15565

Background

Granulocytes and monocytes/macrophages differentiate from common myeloid progenitor cells. Granulocyte colony-stimulating factor (G-CSF) and CD137 (4-1BB, TNFRSF9) are growth and differentiation factors that induce granulocyte and macrophage survival and differentiation, respectively. This study describes the influence of G-CSF and recombinant CD137-Fc protein on myelopoiesis.

Methodology/Principal Findings

Both, G-CSF and CD137 protein support proliferation and survival of murine bone marrow cells. G-CSF enhances granulocyte numbers while CD137 protein enhances macrophage numbers. Both growth factors together give rise to more cells than each factor alone. Titration of G-CSF and CD137 protein dose-dependently changes the granulocyte/macrophage ratio in bone marrow cells. Both factors individually induce proliferation of hematopoietic progenitor cells (lin-, c-kit+) and differentiation to granulocytes and macrophages, respectively. The combination of G-CSF and CD137 protein further increases proliferation, and results in a higher number of macrophages than CD137 protein alone, and a lower number of granulocytes than G-CSF alone demonstrating that CD137 protein-induced monocytic differentiation is dominant over G-CSF-induced granulocytic differentiation. CD137 protein induces monocytic differentiation even in early hematopoietic progenitor cells, the common myeloid progenitors and the granulocyte macrophage progenitors.

Conclusions/Significance

This study confirms earlier data on the regulation of myelopoiesis by CD137 receptor - ligand interaction, and extends them by demonstrating the restriction of this growth promoting influence to the monocytic lineage.  相似文献   

9.

Background

Non adherent bone marrow derived cells (NA-BMCs) have recently been described to give rise to multiple mesenchymal phenotypes and have an impact in tissue regeneration. Therefore, the effects of murine bone marrow derived NA-BMCs were investigated with regard to engraftment capacities in allogeneic and syngeneic stem cell transplantation using transgenic, human CD4+, murine CD4−/−, HLA-DR3+ mice.

Methodology/Principal Findings

Bone marrow cells were harvested from C57Bl/6 and Balb/c wild-type mice, expanded to NA-BMCs for 4 days and characterized by flow cytometry before transplantation in lethally irradiated recipient mice. Chimerism was detected using flow cytometry for MHC-I (H-2D[b], H-2K[d]), mu/huCD4, and huHLA-DR3). Culturing of bone marrow cells in a dexamethasone containing DMEM medium induced expansion of non adherent cells expressing CD11b, CD45, and CD90. Analysis of the CD45+ showed depletion of CD4+, CD8+, CD19+, and CD117+ cells. Expanded syngeneic and allogeneic NA-BMCs were transplanted into triple transgenic mice. Syngeneic NA-BMCs protected 83% of mice from death (n = 8, CD4+ donor chimerism of 5.8±2.4% [day 40], P<.001). Allogeneic NA-BMCs preserved 62.5% (n = 8) of mice from death without detectable hematopoietic donor chimerism. Transplantation of syngeneic bone marrow cells preserved 100%, transplantation of allogeneic bone marrow cells 33% of mice from death.

Conclusions/Significance

NA-BMCs triggered endogenous hematopoiesis and induced faster recovery compared to bone marrow controls. These findings may be of relevance in the refinement of strategies in the treatment of hematological malignancies.  相似文献   

10.
Although serious human diseases have been correlated with human herpesvirus 6A (HHV-6A) and HHV-6B, the lack of animal models has prevented studies which would more definitively link these viral infections to disease. HHV-6A and HHV-6B have recently been classified as two distinct viruses, and in this study we focused specifically on developing an in vivo model for HHV-6A. Here we show that Rag2−/−γc−/− mice humanized with cord blood-derived human hematopoietic stem cells produce human T cells that express the major HHV-6A receptor, CD46. Both cell-associated and cell-free viral transmission of HHV-6A into the peritoneal cavity resulted in detectable viral DNA in at least one of the samples (blood, bone marrow, etc.) analyzed from nearly all engrafted mice. Organs and cells positive for HHV-6A DNA were the plasma and cellular blood fractions, bone marrow, lymph node, and thymic samples; control mice had undetectable viral DNA. We also noted viral pathogenic effects on certain T cell populations. Specific thymocyte populations, including CD3 CD4+ CD8 and CD3+ CD4 cells, were significantly modified in humanized mice infected by cell-associated transmission. In addition, we detected significantly increased proportions of CD4+ CD8+ cells in the blood of animals infected by cell-free transmission. These findings provide additional evidence that HHV-6A may play a role in human immunodeficiencies. These results indicate that humanized mice can be used to study HHV-6A in vivo infection and replication as well as aspects of viral pathogenesis.  相似文献   

11.
 Progressive growth of metastatic Lewis lung carcinoma (LLC-LN7) tumors is associated with increased levels of bone-marrow-derived CD34+ cells having natural suppressor (NS) activity toward T cells. The present studies determined whether tumor-derived products are responsible for this induction of NS activity. Culturing normal bone marrow cells with LLC-LN7-conditioned medium (LLC-CM) or with recombinant granulocyte/macrophage-colony-stimulating factor (GM-CSF) resulted in the appearance of NS activity. The development of NS activity coincided with a prominent increase in the levels of CD34+ cells. That the CD34+ cells were responsible for the NS activity of the bone marrow cultures containing LLC-CM was shown by the loss of NS activity when CD34+ cells were depleted. The stimulation of CD34+ NS cells by LLC-CM was attributed to tumor production of GM-CSF, since neutralization of GM-CSF within the LLC-CM reduced its capacity to increase CD34+ cell levels. Studies also showed that the induction of CD34+ NS cells by LLC-CM and GM-CSF could be overcome by including in the cultures an inducer of myeloid differentiation, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3]. These results demonstrate that the mechanism by which the LLC-LN7 tumors stimulate increased levels of CD34+ NS cells from normal bone marrow is by their production of GM-CSF and that this can be blocked with the myeloid differentiation inducer 1,25(OH)2D3. Received: 8 December 1997 / Accepted: 27 February 1998  相似文献   

12.
Critical functions of the immune system are maintained by the ability of myeloid progenitors to differentiate and mature into macrophages. We hypothesized that the cytoprotective gas molecule carbon monoxide (CO), generated endogenously by heme oxygenases (HO), promotes differentiation of progenitors into functional macrophages. Deletion of HO-1, specifically in the myeloid lineage (Lyz-Cre:Hmox1flfl), attenuated the ability of myeloid progenitors to differentiate toward macrophages and decreased the expression of macrophage markers, CD14 and macrophage colony-stimulating factor receptor (MCSFR). We showed that HO-1 and CO induced CD14 expression and efficiently increased expansion and differentiation of myeloid cells into macrophages. Further, CO sensitized myeloid cells to treatment with MCSF at low doses by increasing MCSFR expression, mediated partially through a PI3K-Akt-dependent mechanism. Exposure of mice to CO in a model of marginal bone marrow transplantation significantly improved donor myeloid cell engraftment efficiency, expansion and differentiation, which corresponded to increased serum levels of GM-CSF, IL-1α and MCP-1. Collectively, we conclude that HO-1 and CO in part are critical for myeloid cell differentiation. CO may prove to be a novel therapeutic agent to improve functional recovery of bone marrow cells in patients undergoing irradiation, chemotherapy and/or bone marrow transplantation.  相似文献   

13.
Connexin45 is a gap junction protein which forms channels with unique characteristics. RNA blots demonstrated that connexin45 is expressed in a number of cell lines including WB, SK Hepl, BHK, A7r5, CLEM, and BWEM cells. Connexin45 was further studied in BWEM cells using specific affinity-purified antibodies directed against a synthetic peptide representing amino acids 285–298 of its sequence. Immunofluorescence experiments demonstrated that the BWEM cells expressed both connexin43 and connexin45 and that these connexins colocalized. Connexin45 polypeptide, immunoprecipitated from BWEM cells metabolically labeled with [35S]-methionine, consisted of a predominant 48 kD polypeptide. Connexin45 and connexin43 contained radioactive phosphate when immunoprecipitated from BWEM cells metabolically labeled with [32P]-orthophosphoric acid. This phosphate label was removed from connexin45 by alkaline phosphatase digestion. Treatment of BWEM cells with the tumor promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited intercellular passage of microinjected Lucifer yellow. While TPA treatment induced phosphorylation of connexin43 in these cells, it reduced the expression of connexin45. Furthermore, the connexin45 expressed after TPA treatment was not phosphorylated. These results suggest that treatments which alter protein phosphorylation may regulate connexin43 and connexin45 in BWEM cells by different mechanisms.These studies were supported by National Institutes of Health grants HL45466 and EY08368. J.G.L. is supported by a fellowship from the Lucille P. Markey Foundation. E.C.B. is an Established Investigator of the American Heart Association.  相似文献   

14.
We have previously reported the identification of a unique thymocyte-specific surface molecule, JL1, which was detected using the monoclonal antibody (mAb), anti-JL1. Interestingly, JL1 was shown to be expressed in most leukemias, irrespective of their immunophenotype, and subpopulations of normal bone marrow (BM) mononuclear cells (MNCs). Here we investigated the potential usefulness of the anti-JL1 mAb as a therapeutic tool for leukemia. We demonstrated that the proliferation of cultured human leukemia cells was dramatically inhibited in vitro by anti-JL1 mAb conjugated with the polypeptide toxin, gelonin, but not by gelonin alone. We then systematically investigated the reactivity of the anti-JL1 mAb against normal human tissues to evaluate possible side effects along with various hematopoietic and nonhematopoietic tumor cell lines. All of 33 types of normal tissues except thymus and subpopulation of BM MNCs were clearly devoid of JL1 expression. Among tumor cell lines, all the nonhematopoietic cell lines tested were negative for JL1 expression, while some hematopoietic cell lines contained JL1 antigen. Collectively, the results showed the cytotoxic effects of anti-JL1-based immunotoxin against JL1-positive leukemic cells, sparing most normal tissues other than thymocytes and some BM MNCs. Therefore, we strongly suggest that gelonin-conjugated anti-JL1 mAb immunotoxin could be developed as a potential immunotherapeutic agent in the treatment of various types of JL1-positive acute leukemias.  相似文献   

15.
Modelling of ex vivo expansion/maintenance of hematopoietic stem cells   总被引:1,自引:0,他引:1  
In this study, we described the modelling of the expansion/maintenance of human hematopoietic stem/progenitor cells from adult human bone marrow. CD 34(+)-enriched cell populations from bone marrow were cultured in the presence and absence of human stroma in serum-free media containing bFGF, SCF, LIF and Flt-3 ligand for several days. The cells in the culture were analysed for expansion and phenotype by flow cytometry. Although significant expansion of bone marrow cultures occurred in the presence and absence of human stroma, the results of expansion were effectively better in the presence of a stromal layer. In both situations the phenotypic analysis demonstrated a great expansion of CD 34(+)38(-) cells. The differentiative potential of bone marrow CD 34(+) cells co-cultured with human stroma was primarily shifted towards the myeloid lineage with the presence of CD 15 and CD 33.  相似文献   

16.
Summary The effect of feeder cells on oncolytic activity of lymphocyte subsets and their growth was evaluated in long-term human bone marrow interleukin-2 (IL-2) cultures. Two B-lymphoblastoid cell lines (Daudi and Epstein-Barr-virus-transformed BSM) and two human leukemias, AML-M5, were used as feeder cells. The most prominent effects were seen in cultures stimulated with Daudi cells. In these cultures, cytotoxic activity was 100–1000 times increased against a broad range of target cells and the total cellular expansion was more than 40 times higher than in control cultures. This Daudi-related effect appeared to be mediated by natural killer (NK) cells, since cellular expansion occurred mostly in the CD16+ and CD56+ CD3 NK cell subset. In cultures stimulated with BSM and acute myelogenous leukemia (AML) feeder cells, the increase in proliferation was similar, but the enhancement of cytotoxicity, even though significant, was less prominent. Although all feeder cells were effective in stimulation of bone marrow reactivity, the highest cytotoxicity was always observed with feeder cells autologous to the targets, indicating some degree of specificity. This was especially evident in cultures stimulated with autologous versus allogeneic AML feeder cells. In contrast to Daudistimulated IL-2 cultures, in which the highest expansion of CD3 CD56+ NK cells was observed, in BSM and AML cultures, the CD3+ CD56+/- T cell subsets were more prolific. This indicates that the response and phenotypic heterogeneity of bone marrow cultures depends on the type of feeder cells used. This observation indicates that the preferential stimulation of a pertinent lymphocyte subset for therapeutic purposes may be possible.Recipient of Florence Maude Thomas Cancer Research Professorship  相似文献   

17.
Phenotypically different osteoclasts may be generated from different subsets of precursors. To what extent the formation of these osteoclasts is influenced or mediated by the inflammatory cytokine TNF‐α, is unknown and was investigated in this study. The osteoclast precursors early blasts (CD31hiLy‐6C?), myeloid blasts (CD31+Ly‐6C+), and monocytes (CD31?Ly‐6Chi) were sorted from mouse bone marrow using flow cytometry and cultured with M‐CSF and RANKL, with or without TNF‐α. Surprisingly, TNF‐α prevented the differentiation of TRAcP+ osteoclasts generated from monocytes on plastic; an effect not seen with early blasts and myeloid blasts. This inhibitory effect could not be prevented by other cytokines such as IL‐1β or IL‐6. When monocytes were pre‐cultured with M‐CSF and RANKL followed by exposure to TNF‐α, a stimulatory effect was found. TNF‐α also stimulated monocytes’ osteoclastogenesis when the cells were seeded on bone. Gene expression analysis showed that when TNF‐α was added to monocytes cultured on plastic, RANK, NFATc1, and TRAcP were significantly down‐regulated while TNF‐αR1 and TNF‐αR2 were up‐regulated. FACS analysis showed a decreased uptake of fluorescently labeled RANKL in monocyte cultures in the presence of TNF‐α, indicating an altered ratio of bound‐RANK/unbound‐RANK. Our findings suggest a diverse role of TNF‐α on monocytes’ osteoclastogenesis: it affects the RANK‐signaling pathway therefore inhibits osteoclastogenesis when added at the onset of monocyte culturing. This can be prevented when monocytes were pre‐cultured with M‐CSF and RANKL, which ensures the binding of RANKL to RANK. This could be a mechanism to prevent unfavorable monocyte‐derived osteoclast formation away from the bone.
  相似文献   

18.
19.
20.

Background

Aldehyde dehydrogenase (ALDH) is a cytosolic enzyme highly expressed in hematopoietic precursors from cord blood and granulocyte-colony stimulating factor mobilized peripheral blood, as well as in bone marrow from patients with acute myeloblastic leukemia. As regards human normal bone marrow, detailed characterization of ALDH+ cells has been addressed by one single study (Gentry et al, 2007). The goal of our work was to provide new information about the dissection of normal bone marrow progenitor cells based upon the simultaneous detection by flow cytometry of ALDH and early hematopoietic antigens, with particular attention to the expression of ALDH on erythroid precursors. To this aim, we used three kinds of approach: i) multidimensional analytical flow cytometry, detecting ALDH and early hematopoietic antigens in normal bone marrow; ii) fluorescence activated cell sorting of distinct subpopulations of progenitor cells, followed by in vitro induction of erythroid differentiation; iii) detection of ALDH+ cellular subsets in bone marrow from pure red cell aplasia patients.

Results

In normal bone marrow, we identified three populations of cells, namely ALDH+CD34+, ALDH-CD34+ and ALDH+CD34- (median percentages were 0.52, 0.53 and 0.57, respectively). As compared to ALDH-CD34+ cells, ALDH+CD34+ cells expressed the phenotypic profile of primitive hematopoietic progenitor cells, with brighter expression of CD117 and CD133, accompanied by lower display of CD38 and CD45RA. Of interest, ALDH+CD34- population disclosed a straightforward erythroid commitment, on the basis of three orders of evidences. First of all, ALDH+CD34- cells showed a CD71bright, CD105+, CD45- phenotype. Secondly, induction of differentiation experiments evidenced a clear-cut expression of glycophorin A (CD235a). Finally, ALDH+CD34- precursors were not detectable in patients with pure red cell aplasia (PRCA).

Conclusion

Our study, comparing surface antigen expression of ALDH+/CD34+, ALDH-/CD34+ and ALDH+/CD34- progenitor cell subsets in human bone marrow, clearly indicated that ALDH+CD34- cells are mainly committed towards erythropoiesis. To the best of our knowledge this finding is new and could be useful for basic studies about normal erythropoietic differentiation as well as for enabling the employment of ALDH as a red cell marker in polychromatic flow cytometry characterization of bone marrow from patients with aplastic anemia and myelodysplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号