首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene transfer systems have proved effective for the transformation of a range of organisms for both fundamental and applied studies. Biolistic transformation is a powerful method for the gene transfer into various organisms and tissues that have proved recalcitrant to more conventional means. For fungi, the biolistic approach is particularly effective where protoplasts are difficult to obtain and/or the organisms are difficult to culture. This is particularly applicable to arbuscular mycorrhizal (AM) fungi, being as they are obligate symbionts that can only be propagated in association with intact plants or root explants. Furthermore, these fungi are aseptate and protoplasts cannot be released. Recent advancements in gene transformation systems have enabled the use of biolistic technology to introduce foreign DNA linked to molecular markers into these fungi. In this review we discuss the development of transformation strategies for AM fungi by biolistics and highlight the areas of this technology which require further development for the stable transformation of these elusive organisms.  相似文献   

2.
Fuchs B  Haselwandter K 《Mycorrhiza》2004,14(4):277-281
Since information concerning the mycorrhization of endangered plants is of major importance for their potential re-establishment, we determined the mycorrhizal status of Serratula tinctoria (Asteraceae), Betonica officinalis (Lamiaceae), Drosera intermedia (Droseraceae) and Lycopodiella inundata (Lycopodiaceae), occurring at one of two wetland sites (fen meadow and peat bog), which differed in soil pH and available P levels. Root colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) was quantified. Colonization by AMF appeared to be more frequent in the fen meadow than in the peat bog, and depended on the host plant. Roots of S. tinctoria and B. officinalis were well colonized by AMF in the fen meadow (35–55% root length) and both arbuscules and vesicles were observed to occur in spring as well as in autumn. In the peat bog, L. inundata showed a low level of root colonization in spring, when vesicles were found frequently but no arbuscules. In roots of D. intermedia from the peat bog, arbuscules and vesicles were observed, but AMF colonization was lower than in L. inundata. In contrast, the amount of AMF spores extracted from soil at the peat bog site was higher than from the fen meadow soil. Spore numbers did not differ between spring and autumn in the fen meadow, but they were higher in spring than in autumn in the peat bog. Acaulospora laevis or A. colossica and Glomus etunicatum were identified amongst the AMF spores extracted from soil at the two sites. S. tinctoria and B. officinalis roots were also regularly colonized by DSE (18–40% root length), while L. inundata was only rarely colonized and D. intermedia did not seem to be colonized by DSE at all.  相似文献   

3.
The aim of this study was to assess the feasibility of using temporal temperature gradient electrophoresis (TTGE) of PCR-amplified 18S rDNA fragments of different Glomus species for their detection and characterization. Screening of Glomus clarum, Glomus constrictum, Glomus coronatum, Glomus intraradices, Glomus mosseae and Glomus viscosum by PCR-TGGE revealed that the NS31-AM1 region of the 18S rRNA gene contained insufficient variation to discriminate between them. In contrast, TTGE analysis of the NS31-Glo1 region, which was obtained by nested PCR of the NS31-AM1 amplicon, showed that each species was characterized by a specific TTGE fingerprint. However, isolates of the same species could not be distinguished. The nested PCR-TTGE approach developed allowed identification of the Glomus species colonising the roots of different plant species.  相似文献   

4.
In French subalpine grasslands, cessation of mowing promotes dominance of Festuca paniculata, which alters plant diversity and ecosystem functioning. One of the mechanisms underpinning such effects may be linked to simultaneous changes in the abundance of fungal symbionts such as endophytes and arbuscular mycorrhizal fungi. In field conditions, mowing reduced the abundance of the endophyte Neotyphodium sp. in leaves of F. paniculata by a factor of 6, and increased mycorrhizal densities by a factor of 15 in the soil. In greenhouse experiments, the mycorrhizal colonization of Trifolium pratense and Allium porrum increased 3- fold and 3.8- fold respectively in mown vs unmown grassland soil. Significantly reduced growth of the two host plants was also observed on soil from the unmown grassland. Such opposite effects of mowing on the two functional groups of fungal symbionts could suggest interactions between these two groups, which in turn could contribute to structuring plant communities in subalpine grasslands.  相似文献   

5.
Genetic processes in arbuscular mycorrhizal fungi   总被引:2,自引:0,他引:2  
Arbuscular mycorrhizal (AM) fungi (Glomeromycota) colonize roots of the majority of land plants and facilitate their mineral nutrient uptake. Consequently, AM fungi play an important role in terrestrial ecosystems and are becoming a component of sustainable land management practices. The absence of sexual reproductive structures in modern Glomeromycota combined with their long evolutionary history suggest that these fungi may represent an ancient asexual lineage of great potential interest to evolutionary biology. However, many aspects of basic AM fungal biology, including genome structure, within-individual genetic variation, and reproductive mode are poorly understood. These knowledge gaps hinder research on the mechanisms of AM fungal interactions with individual plants and plant communities, and utilization of AM fungi in agricultural practices. I present here the current state of research on the reproduction in AM fungi and indicate what new findings can be expected in the future.  相似文献   

6.
7.
The association between arbuscular mycorrhizal fungi (AMF) and Rhynchrelyrum repens was investigated. In six abandoned quarries in the Pearl River Delta area, R. repens was found to be associated with nine AMF species, including Glomus versiforme, G. brohultii, G. microaggregatum, G. clarum and G. claroideum, Acaulospora delicata, A. mellea, A. mollowae and Entrophospora infrequens. The genus Glomus and the species G. brohultii were recorded at the highest frequencies. Three typical arbuscular mycorrhizal (AM) structures, i.e. hyphae, vesicles and arbuscules, were found in the roots of the R. repens specimens collected from all the quarries investigated. Vesicles were the most frequently recorded structure. Results of a container-based experiment showed that R. repens had very high mortality (83.3%) in the absence of AMF in soil containing sufficient P (phosphorus); this indicates that R. repens is an obligate mycotroph. The presence of AMF significantly increased the biomass accumulation of R. repens seedlings (p < 0.01). It was also observed that AMF colonization was related to soil P and K (potassium) utilization by R. repens seedlings. It is, therefore, important to inoculate with AMF when using R. repens for the restoration of damaged ecosystems.  相似文献   

8.
The arbuscular mycorrhizal status of fifteen mangroves and one mangrove associate was investigated from 27 sites of three inundation types namely, diurnal, usual springtide and summer springtide. Roots and rhizospheric soil samples were analysed for spore density, frequency of mycorrhizal colonization and some chemical characteristics of soil. Relative abundance, frequency and spore richness of AMF were assessed at each inundation type. All the plant species except Avicennia alba exhibited mycorrhizal colonization. The study demonstrated that mycorrhizal colonization and spore density were more influenced by host plant species than tidal inundation. Forty four AMF species belonging to six genera, namely Acaulospora, Entrophospora, Gigaspora, Glomus, Sclerocystis and Scutellospora, were recorded. Glomus mosseae exhibited highest frequency at all the inundation types; Glomus fistulosum, Sclerocystis coremioides and Glomus mosseae showed highest relative abundance at sites inundated by usual springtides, summer springtides and diurnal tides, respectively. Spore richness of AMF was of the order usual springtide > diurnal > summer springtide inundated sites. The mean spore richness was 3.27. Diurnally inundated sites had the lowest concentrations of salinity, available phosphorus, exchangeable potassium, sodium and magnesium. Statistical analyses indicated that mycorrhizal frequency and AMF spore richness were significantly negatively correlated to soil salinity. Spore richness was also significantly negatively correlated to available phosphorus. The soil parameters of the usual springtide inundated sites appeared to be favourable for the existence of maximum number of AMF. Glomus mosseae was the predominant species in terms of frequency in the soils of the Sundarbans.  相似文献   

9.
中国盐碱土壤中AM菌的生态分布   总被引:14,自引:0,他引:14  
对我国盐碱土壤中丛枝菌根(Arbuscular Mycorrhiza,AM) 菌的种属构成、生态分布状况进行了研究.结果表明,不同地区AM 菌种属构成不同,其种属组成、分布与土壤类型、碱化度和土壤有机质含量有关.盐渍化砂土、壤土和粘土中,Glomus 属的真菌数量最多,Acaulospora 属次之,而Glomus 属中的G.mosseae 则是分布最为广泛的菌种.随土壤碱化度的增加,Glomus mosseae 出现频率随之相对增加.在一定范围内有机质含量越高,土壤中AM 菌种和属的种类就越多.AM 菌的种属组成因不同寄主植物而异,其中豆科植物根围中AM 菌分布的种属数量最多.  相似文献   

10.
Bohrer KE  Friese CF  Amon JP 《Mycorrhiza》2004,14(5):329-337
The dynamics and role of arbuscular mycorrhizal fungi (AMF) have been well described in terrestrial ecosystems; however, little is known about how the dynamics of AMF are related to the ecology of wetland ecosystems. The seasonal dynamics of arbuscular mycorrhizal (AM) colonization within different wetland habitats were examined in this study to determine the factors that influence AM associations and to further assess the ecological role of AMF in wetlands. Fen and marsh habitats of four wetlands in west central Ohio were sampled monthly from March to September. AMF were found at all four sites for each month sampled and were present in all of the dominant plant species. A significant effect of month (P<0.001) on AM colonization did occur and was attributable to maximum colonization levels in the spring and minimum levels in late summer. This trend existed in all four wetlands in both fen and marsh habitats, regardless of variation in water levels, percent soil moisture, or available phosphorus levels. Because abiotic factors had minimal influence on AM colonization variation and the level of AM colonization paralleled plant growth patterns, we conclude that the AM seasonal dynamic was in response to plant phenology. Our data suggest that AM associations in temperate fen and marsh habitats are prevalent in the spring during new root and vegetative growth, even for plants experiencing flooded conditions. Evidence of an overriding AM seasonal trend indicates that future studies should include a seasonal component to better assess the role and distribution of AMF in wetland ecosystems.  相似文献   

11.
12.
Different species of arbuscular mycorrhizal fungi (AMF) can produce different amounts of extraradical mycelium (ERM) with differing architectures. They also have different efficiencies in gathering phosphate from the soil. These differences in phosphate uptake and ERM length or architecture may contribute to differential growth responses of plants and this may be an important contributor to plant species coexistence. The effects of the development of the ERM of AMF on the coexistence of two co-occurring plant species were investigated in root-free hyphal chambers in a rhizobox experimental unit. The dominant shrub (Salix atrocinerea Brot.) and herbaceous (Conyza bilbaoana J. Rémy) plant species found in a highly alkaline anthropogenic sediment were studied in symbiosis with four native AMF species (Glomus intraradices BEG163, Glomus mosseae BEG198, Glomus geosporum BEG199 and Glomus claroideum BEG210) that were the most abundant members of the AMF community found in the sediment. Different AMF species did not influence total plant productivity (sum of the biomass of C. bilbaoana and S. atrocinerea), but had a great impact on the individual biomass of each plant species. The AMF species with greater extracted ERM lengths (G. mosseae BEG198, G. claroideum BEG210 and the four mixed AMF) preferentially benefited the plant species with a high mycorrhizal dependency (C. bilbaoana), while the AMF species with the smallest ERM length (G. geosporum BEG199) benefited the plant species with a low mycorrhizal dependency (S. atrocinerea). Seed production of C. bilbaoana was only observed in plants inoculated with G. mosseae BEG198, G. claroideum BEG210 or the mixture of the four AMF. Our results show that AMF play an important role in the reproduction of C. bilbaoana coexisting with S. atrocinerea in the alkaline sediment and have the potential to stimulate or completely inhibit seed production. The community composition of native AMF and the length of the mycelium they produce spreading from roots into the surrounding soil can be determinant of the coexistence of naturally co-occurring plant species.  相似文献   

13.
 Plant phosphorus uptake via external hyphae of arbuscular mycorrhizal fungi has been measured using compartmented systems where a hyphal compartment is separated from a rooting compartment by a fine mesh. By labelling the soil within the hyphal compartment with a radioactive phosphorus (P) isotope, hyphal uptake of P into the plant can be traced. The objective of this growth chamber study was to test two hyphal compartments of different design with respect to their suitabilities for measurement of hyphal P uptake. One hyphal compartment was simply a nylon mesh bag filled with 32P-labelled soil. The labelled soil in the other hyphal compartment was completely surrounded by an 8–10 mm layer of unlabelled soil that served as a buffer zone. Mycorrhizal and non-mycorrhizal subterranean clover plants were grown in pots with a centrally positioned hyphal compartment. Uptake of radioactive P by non-mycorrhizal control plants was 25% of that by mycorrhizal plants with the mesh bag but only 3% when including the buffer zone. Based on this good control of non-mycorrhizal P uptake from within the hyphal compartment and its greater ease of handling once produced, we judged the hyphal compartment including a buffer zone to be superior to the mesh bag. Accepted: 15 September 1998  相似文献   

14.
A majority of plant species has roots that are colonized by both arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) fungi. The latter group may include plant mutualists, commensals, parasites and pathogens. The co-occurrence of these two broad groups may translate into competition for root volume as well as for plant-derived carbon (C). Here we provide evidence that the relative availability of soil nitrogen (N) and phosphorus (P) (i.e., soil nutrient stoichiometry) controls the competitive balance between these two fungal guilds. A decrease in the soil available N:P ratio resulted in a lower abundance of AM fungi and a corresponding increase in NM fungi. However, when the same fertilization treatments were applied in a soil in which AM fungi were absent, lowering the soil available N:P ratio did not affect NM fungal abundance. Taken collectively, our results suggest that the increase in NM fungal abundance was not a direct response to soil nutrient stoichiometry, but rather a competitive release from AM fungi responding negatively to higher soil P. We briefly discuss the mechanisms that may be responsible for this competitive release.  相似文献   

15.
Putative sites for nutrient uptake in arbuscular mycorrhizal fungi   总被引:2,自引:0,他引:2  
Berta Bago 《Plant and Soil》2000,226(2):263-274
Nutrition of the arbuscular mycorrhiza (AM) is addressed from a fungal point of view. Intraradical and extraradical structures proposed as preferential sites for nutrient acquisition in arbuscular mycorrhizal (AM) fungi are considered, and their main features compared. This comparison includes the formation and function of branched structures (either intra- or extraradical) as putative nutrient uptake sites with unique morphological and physiological features in the AM fungal colony. The morphology and functioning of these structures are further affected by intra- or extraradical environmental factors. A model is presented which portrays the intrinsic developmental and physiological duality of the AM fungus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
The presented experiments evaluated the symbiotic performance of soybean genotypes with contrasting salt stress tolerance to arbuscular mycorrhizal fungi (AMF) inoculation. In addition, the physiological stress tolerance mechanisms in plants derived from mutualistic interactions between AMF and the host plants were evaluated. Plant growth, nodulation, nitrogenase activity and levels of endogenous growth hormones, such as indole acetic acid and indole butyric acid, of salt-tolerant and salt-sensitive soybean genotypes significantly decreased at 200 mM NaCl. The inoculation of soybean with AMF improved the symbiotic performance of both soybean genotypes by improving nodule formation, leghemoglobin content, nitrogenase activity and auxin synthesis. AMF colonization also protected soybean genotypes from salt-induced membrane damage and reduced the production of hydrogen peroxide, subsequently reducing the production of TBARS and reducing lipid peroxidation. In conclusion, the results of the present investigation indicate that AMF improve the symbiotic performance of soybean genotypes regardless of their salt stress tolerance ability by mitigating the negative effect of salt stress and stimulating endogenous level of auxins that contribute to an improved root system and nutrient acquisition under salt stress.  相似文献   

17.
Gai JP  Christie P  Feng G  Li XL 《Mycorrhiza》2006,16(4):229-239
The biodiversity and distribution of arbuscular mycorrhizal fungi (AMF) in different ecosystems and plant communities in China has received increasing interest over the past decades. This has led to a steady increase in the number of scientific papers published on this topic. Studies have surveyed AMF-colonizing rhizospheres of most families of angiosperms, bryophytes, pteridophytes, and gymnosperms. China has about 30,000 plant species (one eighth of the plant species worldwide). A total of 104 AMF species within nine genera, including 12 new species, have been reported in environments such as croplands, grasslands, forests, and numerous disturbed environments. In this paper, we review data published over the past 20 years on AMF community composition and species distribution, the mycorrhizal status of plants, AMF spore communities in different habitats, and germplasm collections in China. Possible future trends in the study of the biodiversity of AMF are also briefly discussed. In particular, the aim of our review is to make some of the recent work published in the Chinese literature accessible to a wider international audience.  相似文献   

18.
Salinity is one of the serious abiotic stresses adversely affecting the majority of arable lands worldwide, limiting the crop productivity of most of the economically important crops. Sweet basil (Osmium basilicum) plants were grown in a non-saline soil (EC = 0.64 dS m−1), in low saline soil (EC = 5 dS m−1), and in a high saline soil (EC = 10 dS m−1). There were differences between arbuscular mycorrhizal (Glomus deserticola) colonized plants (+AMF) and non-colonized plants (−AMF). Mycorrhiza mitigated the reduction of K, P and Ca uptake due to salinity. The balance between K/Na and between Ca/Na was improved in +AMF plants. Growth enhancement by mycorrhiza was independent from plant phosphorus content under high salinity levels. Different growth parameters, salt stress tolerance and accumulation of proline content were investigated, these results showed that the use of mycorrhizal inoculum (AMF) was able to enhance the productivity of sweet basil plants under salinity conditions. Mycorrhizal inoculation significantly increased chlorophyll content and water use efficiency under salinity stress. The sweet basil plants appeared to have high dependency on AMF which improved plant growth, photosynthetic efficiency, gas exchange and water use efficiency under salinity stress. In this study, there was evidence that colonization with AMF can alleviate the detrimental salinity stress influence on the growth and productivity of sweet basil plants.  相似文献   

19.
20.
Fast growing woody species are increasingly used in vegetation filters for wastewater treatment. Their efficiency in phosphorus (P) removal notably depends on plant uptake and storage in aboveground tissues. In this study, Populus NM5 (P. nigra × P. maximowiczii), Salix miyabeana (SX64) and Salix viminalis (5027) were planted in pots to evaluate the influence of colonization by arbuscular mycorrhizal fungi (AMF) Glomus intraradices on P uptake using two different P concentrations in irrigation water. Based on analysis of the foliar and woody components, our results show that the two treatments (inoculation with G. intaradices and P-irrigation) interact differently with total P content. Foliar P content is principally enhanced by the P-irrigation concentration, whereas the mycorrhizal colonization increases stem P content. In the presence of G. intraradices, both S. miyabeana and S. viminalis showed a 33% increase in stem P content. The latter finding is mainly due to an increase in biomass production, without modification of the P concentration, indicating that AMF associations affect P use efficiency. Thus, using arbuscular mycorrhizal fungi for phytoremediation strategies may increase biomass productivity and hence improve pollutant uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号