首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We humans have many characteristics that are different from those of the great apes. These human-specific characters must have arisen through mutations accumulated in the genome of our direct ancestor after the divergence of the last common ancestor with chimpanzee. Gene trees of human and great apes are necessary for extracting these human-specific genetic changes. We conducted a systematic analysis of 103 protein-coding genes for human, chimpanzee, gorilla, and orangutan. Nucleotide sequences for 18 genes were newly determined for this study, and those for the remaining genes were retrieved from the DDBJ/EMBL/GenBank database. The total number of amino acid changes in the human lineage was 147 for 26,199 codons (0.56%). The total number of amino acid changes in the human genome was, thus, estimated to be about 80,000. We applied the acceleration index test and Fisher's synonymous/nonsynonymous exact test for each gene tree to detect any human-specific enhancement of amino acid changes compared with ape branches. Six and two genes were shown to have significantly higher nonsynonymous changes at the human lineage from the acceleration index and exact tests, respectively. We also compared the distribution of the differences of the nonsynonymous substitutions on the human lineage and those on the great ape lineage. Two genes were more conserved in the ape lineage, whereas one gene was more conserved in the human lineage. These results suggest that a small proportion of protein-coding genes started to evolve differently in the human lineage after it diverged from the ape lineage.  相似文献   

2.
3.
The Human Genome Project has generated both the information and technological infrastructure needed to accelerate genetic comparisons between humans and the African great apes (chimpanzees and gorillas). Sequence and chromosomal organization differences between these highly related genomes will provide clues to the genetic basis for recently evolved, specifically human traits such as bipedal gait and advanced cognitive function. Recent studies comparing the primate genomes have the potential to affect many aspects of human biomedical research and could benefit primate conservation efforts.  相似文献   

4.
Ancestry of a human endogenous retrovirus family.   总被引:6,自引:2,他引:4       下载免费PDF全文
The human endogenous retrovirus type II (HERVII) family of HERV genomes has been found by Southern blot analysis to be characteristic of humans, apes, and Old World monkeys. New World monkeys and prosimians lack HERVII proviral genomes. Cellular DNAs of humans, common chimpanzees, gorillas, and orangutans, but not lesser ape lar gibbons, appear to contain the HERVII-related HLM-2 proviral genome integrated at the same site (HLM-2 maps to human chromosome 1). This suggests that the ancestral HERVII retrovirus(es) entered the genomes of Old World anthropoids by infection after the divergence of New World monkeys (platyrrhines) but before the evolutionary radiation of large hominoids.  相似文献   

5.
6.
7.
Primary comparative data on the hominoid brain are scarce and major neuroanatomical differences between humans and apes have not yet been described satisfactorily, even at the gross level. Basic questions that involve the evolution of the human brain cannot be addressed adequately unless the brains of all extant hominoid species are analyzed. Contrary to the scarcity of original data, there is a rich literature on the topic of human brain evolution and several debates exist on the size of particular sectors of the brain, e.g., the frontal lobe.In this study we applied a non-invasive imaging technique (magnetic resonance) on living human, great ape and lesser ape subjects in order to investigate the overall size of the hominoid brain. The images were reconstructed in three dimensions and volumetric estimates were obtained for the brain and its main anatomical sectors, including the frontal and temporal lobes, the insula, the parieto-occipital sector and the cerebellum.A remarkable homogeneity is present in the relative size of many of the large sectors of the hominoid brain, but interspecific and intraspecific variation exists in certain parts of the brain. The human cerebellum is smaller than expected for an ape brain of human size. It is suggested that the cerebellum increased less than the cerebrum after the split of the human lineage from the African ancestral hominoid stock. In contrast, humans have a slightly larger temporal lobe and insula than expected, but differences are not statistically significant.Humans do not have a larger frontal lobe than expected for an ape brain of human size and gibbons have a relatively smaller frontal lobe than the rest of the hominoids. Given the fact that the frontal lobe in humans and great apes has similar relative size, it is parsimonious to suggest that the relative size of the whole of the frontal lobe has not changed significantly during hominid evolution in the Plio-Pleistocene.  相似文献   

8.
9.
Adenoviruses are important human pathogens that have been developed as vectors for gene therapies and genetic vaccines. Previous studies indicated that human infections with adenoviruses are self-limiting in immunocompetent hosts with evidence of some persistence in adenoid tissue. We sought to better understand the natural history of adenovirus infections in various non-human primates and discovered that healthy populations of great apes (chimpanzees, bonobos, gorillas, and orangutans) and macaques shed substantial quantities of infectious adenoviruses in stool. Shedding in stools from asymptomatic humans was found to be much less frequent, comparable to frequencies reported before. We purified and fully sequenced 30 novel adenoviruses from apes and 3 novel adenoviruses from macaques. Analyses of the new ape adenovirus sequences (as well as the 4 chimpanzee adenovirus sequences we have previously reported) together with 22 complete adenovirus genomes available from GenBank revealed that (a) the ape adenoviruses could clearly be classified into species corresponding to human adenovirus species B, C, and E, (b) there was evidence for intraspecies recombination between adenoviruses, and (c) the high degree of phylogenetic relatedness of adenoviruses across their various primate hosts provided evidence for cross species transmission events to have occurred in the natural history of B and E viruses. The high degree of asymptomatic shedding of live adenovirus in non-human primates and evidence for zoonotic transmissions warrants caution for primate handling and housing. Furthermore, the presence of persistent and/or latent adenovirus infections in the gut should be considered in the design and interpretation of human and non-human primate studies with adenovirus vectors.  相似文献   

10.
The appearance of a forefoot push-off mechanism in the hominin lineage has been difficult to identify, partially because researchers disagree over the use of the external skeletal morphology to differentiate metatarsophalangeal joint functional differences in extant great apes and humans. In this study, we approach the problem by quantifying properties of internal bone architecture that may reflect different loading patterns in metatarsophalangeal joints in humans and great apes. High-resolution x-ray computed tomography data were collected for first and second metatarsal heads of Homo sapiens (n = 26), Pan paniscus (n = 17), Pan troglodytes (n = 19), Gorilla gorilla (n = 16), and Pongo pygmaeus (n = 20). Trabecular bone fabric structure was analyzed in three regions of each metatarsal head. While bone volume fraction did not significantly differentiate human and great ape trabecular bone structure, human metatarsal heads generally show significantly more anisotropic trabecular bone architectures, especially in the dorsal regions compared to the corresponding areas of the great ape metatarsal heads. The differences in anisotropy between humans and great apes support the hypothesis that trabecular architecture in the dorsal regions of the human metatarsals are indicative of a forefoot habitually used for propulsion during gait. This study provides a potential route for predicting forefoot function and gait in fossil hominins from metatarsal head trabecular bone architecture.  相似文献   

11.
Recent studies on molecular evolution using nucleotide sequence data to clarify phylogenetic relationships among humans and the African great apes, have revealed that humans are more closely related to chimpanzees than to gorillas. However, the genetic basis of human uniqueness remains unclear. This is because phylogenetic studies have merely evaluated the degree of similarity by calculating the accumulation of nucleotide substitutions that have occurred in neutral DNA regions commonly present in all the species examined. In contrast, the genome subtraction method recently developed by us has revealed dissimilarity even among the genomes of the most closely related species. Here we describe the characteristics of the DNA sequences obtained by genome subtraction between humans and chimpanzees.  相似文献   

12.
The initial human and chimpanzee genome sequences have been published, and additional primate genomes, including those of gorilla and orang-utan, are in progress. With these new resources, we can now address what makes our species unique, by focusing on the underlying genetic differences associated with phenotypes. Comparative primate population genomics, including studies of structural changes, mobile elements, gene expression and functional analyses, will shed light on how natural selection and population demography are involved in the processes that lead to differences among great apes. Historically, this research has focused on the human perspective; however, we will learn much about ourselves with a focus on genomic diversity in hominoids as a group.  相似文献   

13.
Comparisons of genetic variation between humans and great apes are hampered by the fact that we still know little about the demographics and evolutionary history of the latter species. In addition, characterizing ape genetic variation is important because they are threatened with extinction, and knowledge about genetic differentiation among groups may guide conservation efforts. We sequenced multiple intergenic autosomal regions totaling 22,400 base pairs (bp) in ten individuals each from western, central, and eastern chimpanzee groups and in nine bonobos, and 16,000 bp in ten Bornean and six Sumatran orangutans. These regions are analyzed together with homologous information from three human populations and gorillas. We find that whereas orangutans have the highest diversity, western chimpanzees have the lowest, and that the demographic histories of most groups differ drastically. Special attention should therefore be paid to sampling strategies and the statistics chosen when comparing levels of variation within and among groups. Finally, we find that the extent of genetic differentiation among "subspecies" of chimpanzees and orangutans is comparable to that seen among human populations, calling the validity of the "subspecies" concept in apes into question.  相似文献   

14.
The common sialic acids of mammalian cells are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Humans are an exception, because of a mutation in CMP-sialic acid hydroxylase, which occurred after our common ancestor with great apes. We asked if the resulting loss of Neu5Gc and increase in Neu5Ac in humans alters the biology of the siglecs, which are Ig superfamily members that recognize sialic acids. Human siglec-1 (sialoadhesin) strongly prefers Neu5Ac over Neu5Gc. Thus, humans have a higher density of siglec-1 ligands than great apes. Siglec-1-positive macrophages in humans are found primarily in the perifollicular zone, whereas in chimpanzees they also occur in the marginal zone and surrounding the periarteriolar lymphocyte sheaths. Although only a subset of chimpanzee macrophages express siglec-1, most human macrophages are positive. A known evolutionary difference is the strong preference of mouse siglec-2 (CD22) for Neu5Gc, contrasting with human siglec-2, which binds Neu5Ac equally well. To ask when the preference for Neu5Gc was adjusted in the human lineage, we cloned the first three extracellular domains of siglec-2 from all of the great apes and examined their preference. In fact, siglec-2 had evolved a higher degree of recognition flexibility before Neu5Gc was lost in humans. Human siglec-3 (CD33) and siglec-6 (obesity-binding protein 1) also recognize both Neu5Ac and Neu5Gc, and siglec-5 may have some preference for Neu5Gc. Others showed that siglec-4a (myelin-associated glycoprotein) prefers Neu5Ac over Neu5Gc. Thus, the human loss of Neu5Gc may alter biological processes involving siglec-1, and possibly, siglec-4a or -5.  相似文献   

15.
Koga A  Notohara M  Hirai H 《Genetica》2011,139(2):167-175
Subterminal satellite (StSat) repeats, consisting of 32-bp-long AT-rich units (GATATTTCCATGTT(T/C)ATACAGATAGCGGTGTA), were first found in chimpanzee and gorilla (African great apes) as one of the major components of heterochromatic regions located proximal to telomeres of chromosomes. StSat repeats have not been found in orangutan (Asian great ape) or human. This patchy distribution among species suggested that the StSat repeats were present in the common ancestor of African great apes and subsequently lost in the lineage leading to human. An alternative explanation is that the StSat repeats in chimpanzee and gorilla have different origins and the repeats did not occur in human. The purpose of the present study was quantitative evaluation of the above alternative possibilities by analyzing the nucleotide variation contained in the repeats. We collected large numbers of sequences of repeat units from genome sequence databases of chimpanzee and gorilla, and also bonobo (an African great ape phylogenetically closer to chimpanzee). We then compared the base composition of the repeat units among the 3 species, and found statistically significant similarities in the base composition. These results support the view that the StSat repeats had already formed multiple arrays in the common ancestor of African great apes. It is thus suggested that humans lost StSat repeats which had once grown to multiple arrays.  相似文献   

16.
Most blood plasma proteins are glycosylated. These glycoproteins typically carry sialic acid-bearing sugar chains, which can modify the observed molecular weights and isoelectric points of those proteins during electrophoretic analyses. To explore changes in protein expression and glycosylation that occurred during great ape and human evolution, we subjected multiple blood plasma samples from all these species to high-resolution proteomic analysis. We found very few species-specific differences, indicating a remarkable degree of conservation of plasma protein expression and glycosylation during approximately 12 million years of evolution. A few lineage-specific differences in protein migration were noted among the great apes. The only obvious differences between humans and all great apes were an apparent decrease in transthyretin (prealbumin) and a change in haptoglobin isoforms (the latter was predictable from prior genetic studies). Quantitative studies of transthyretin in samples of blood plasma (synthesized primarily by the liver) and of cerebrospinal fluid (synthesized locally by the choroid plexus of the brain) confirmed approximately 2-fold higher levels in chimpanzees compared to humans. Since transthyretin binds thyroid hormones, we next compared plasma thyroid hormone parameters between humans and chimpanzees. The results indicate significant differences in the status of thyroid hormone metabolism, which represent the first known endocrine difference between these species. Notably, thyroid hormones are known to play major roles in the development, differentiation, and metabolism of many organs and tissues, including the brain and the cranium. Also, transthyretin is known to be the major carrier of thyroid hormone in the cerebrospinal fluid, likely regulating delivery of this hormone to the brain. A potential secondary difference in retinoid (vitamin A) metabolism is also noted. The implications of these findings for explaining unique features of human evolution are discussed.  相似文献   

17.
There is general agreement that the hominoid primates form a monophyletic group, that the extant great apes and humans form a second clade within that group with the gibbons as the sister group, and that the African apes and humans form a third clade. Although it has recently been proposed that humans and orang utans are sister taxa and also that the great apes form a clade to the exclusion of humans, our analysis, particularly of the molecular evidence, supports the existence of an African ape and human clade. The major problem in hominoid phylogeny at present is the relationships of the species within this clade: morphological data generally support the existence of an African ape clade which is the sister group to humans; some molecular data also support this conclusion, but most molecular evidence indicates the existence of a chimpanzee/human clade. We have cladistically re-analysed the DNA and protein sequence data for which apomorphic character states can be assessed. It is clear that there is a high degree of homoplasy whichever branching pattern is produced, with some characters supporting the existence of a chimpanzee/human clade and others supporting an African ape clade. When the cladistic analyses of morphological and molecular data are combined we believe that the most parsimonious interpretation of the data is that the African apes form a clade which is the sister taxon of the human (i.e., Australopithecus, Homo and Paranthropus) clade.This paper is not intended as a survey of all hominoid fossils but as a study of branching points in hominoid evolution and fossils are included which are relevant to this branching pattern. The analysis of fossil taxa in this study leads us to conclude that Proconsul is the sister taxon to the later Hominoidea. A number of middle Miocene forms such as Dryopithecus, Kenyapithecus, Heliopithecus and Afropithecus are shown to share derived characters with great apes and humans and provide evidence for the divergence of that clade from the gibbon lineage prior to 18 Ma. The position that Sivapithecus represents the sister group of the orang utan clade is supported here and shows that the orang utan lineage had diverged from the African ape and human lineage prior to 11·5 Ma. There is unfortunately no definitive fossil cvidence on branching sequences within the African ape and human clade, although a new specimen from Samburu, Kenya may be related to the gorilla.  相似文献   

18.
Modern humans are characterized by their large, complex, and specialized brain. Human brain evolution can be addressed through direct evidence provided by fossil hominid endocasts (i.e. paleoneurology), or through indirect evidence of extant species comparative neurology. Here we use the second approach, providing an extant comparative framework for hominid paleoneurological studies. We explore endocranial size and shape differences among great apes and humans, as well as between sexes. We virtually extracted 72 endocasts, sampling all extant great ape species and modern humans, and digitized 37 landmarks on each for 3D generalized Procrustes analysis. All species can be differentiated by their endocranial shape. Among great apes, endocranial shapes vary from short (orangutans) to long (gorillas), perhaps in relation to different facial orientations. Endocranial shape differences among African apes are partly allometric. Major endocranial traits distinguishing humans from great apes are endocranial globularity, reflecting neurological reorganization, and features linked to structural responses to posture and bipedal locomotion. Human endocasts are also characterized by posterior location of foramina rotunda relative to optic canals, which could be correlated to lesser subnasal prognathism compared to living great apes. Species with larger brains (gorillas and humans) display greater sexual dimorphism in endocranial size, while sexual dimorphism in endocranial shape is restricted to gorillas, differences between males and females being at least partly due to allometry. Our study of endocranial variations in extant great apes and humans provides a new comparative dataset for studies of fossil hominid endocasts.  相似文献   

19.
LINE-1-mediated retrotransposition of protein-coding mRNAs is an active process in modern humans for both germline and somatic genomes. Prior works that surveyed human data mostly relied on detecting discordant mappings of paired-end short reads, or exon junctions contained in short reads. Moreover, there have been few genome-wide comparisons between gene retrocopies in great apes and humans. In this study, we introduced a more sensitive and accurate method to identify processed pseudogenes. Our method utilizes long-read assemblies, and more importantly, is able to provide full-length retrocopy sequences as well as flanking regions which are missed by short-read based methods. From 22 human individuals, we pinpointed 40 processed pseudogenes that are not present in the human reference genome GRCh38 and identified 17 pseudogenes that are in GRCh38 but absent from some input individuals. This represents a significantly higher discovery rate than previous reports (39 pseudogenes not in the reference genome out of 939 individuals). We also provided an overview of lineage-specific retrocopies in chimpanzee, gorilla, and orangutan genomes.  相似文献   

20.
Chimpanzees and gorillas are among man's closest living relatives, sharing most of the human genetic code and having many similarities to humans in anatomy, physiology, and behavior. Like humans, these apes make and use tools and have strong family bonds. Chimpanzees even show population-specific behaviors similar to those of human cultures. However, chimpanzee and gorilla populations are in dramatic decline due to bushmeat hunting, habitat loss, and the varied risks of small, isolated populations. The first step in conserving the world's ape populations in the wild is to recognize and understand the complexities of these threats. Mitigating the risks takes a deeper understanding of ape behavior. This article provides examples of how gorilla and chimpanzee behavioral studies intersect with, and are critical to, conservation efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号