首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for generation of the majority of the cholesteryl esters (CE) in human plasma. Although most plasma cholesterol esterification occurs on high-density lipoprotein (HDL), via alpha-LCAT activity, esterification also occurs on low-density lipoprotein (LDL) via the beta-activity of the enzyme. Computer threading techniques have provided a three-dimensional model for use in the structure-function analysis of the core and catalytic site of the LCAT protein, but the model does not extend to the N-terminal region of the enzyme, which may mediate LCAT interaction with lipoprotein substrates. In the present study, we have examined the functional consequences of deletion of the highly conserved hydrophobic N-terminal amino acids (residues 1-5) of human LCAT. Western blot analysis showed that the mutant proteins (Delta 1-Delta 5) were synthesized and secreted from transfected COS-7 cells at levels approximately equivalent to those of wild-type hLCAT. The secreted proteins had apparent molecular weights of 67 kDa, indicating that they were correctly processed and glycosylated during cellular transit. However, deletion of the first residue of the mature LCAT protein (Delta 1 mutant) resulted in a dramatic loss of alpha-LCAT activity (5% of wild type using reconstituted HDL substrate, rHDL), although this mutant retained full beta-LCAT activity (108% of wild-type using human LDL substrate). Removal of residues 1 and 2 (Delta 2 mutant) abolished alpha-LCAT activity and reduced beta-LCAT activity to 12% of wild type. Nevertheless, LCAT Delta 1 and Delta 2 mutants retained their ability to bind to rHDL and LDL lipoprotein substrates. The dramatic loss of enzyme activity suggests that the N-terminal residues of LCAT may be involved in maintaining the conformation of the lid domain and influence activation by the alpha-LCAT cofactor apoA-I (in Delta 1) and/or loss of enzyme activity (in Delta 1-Delta 5). Since the Delta 1 and Delta 2 mutants retain their ability to bind substrate, other factor(s), such as decreased access to the substrate binding pocket, may be responsible for the loss of enzyme activity.  相似文献   

2.
In order to test the hypothesis that fish-eye disease (FED) is due to a deficient activation of lecithin:cholesterol acyltransferase (LCAT) by its co-factor apolipoprotein (apo) A-I, we overexpressed the natural mutants T123I, N131D, N391S, and other engineered mutants in Cos-1 cells. Esterase activity was measured on a monomeric phospholipid enelogue, phospholipase A(2) activity was measured on reconstituted high density lipoprotein (HDL), and acyltransferase activity was measured both on rHDL and on low density lipoprotein (LDL). The natural FED mutants have decreased phospholipase A(2) activity on rHDL, which accounts for the decreased acyltransferase activity previously reported. All mutants engineered at positions 131 and 391 had decreased esterase activity on a monomeric substrate and decreased acyltransferase activity on LDL. In contrast, mutations at position 123 preserved these activities and specifically decreased phospholipase A(2) and acyltransferase activites on rHDL. Mutations of hydrophilic residues in amphipathic helices alpha 3;-4 and alpha His to an alanine did not affect the mutants' activity on rHDL. Based upon the 3D model built for human LCAT, we designed a new mutant F382A, which had a biochemical phenotype similar to the natural T123I FED mutant.These data suggest that residues T123 and F382, located N-terminal of helices alpha 3-4 and alpha His, contribute specifically to the interaction of LCAT with HDL and possibly with its co-factor apoA-I. Residues N131 and N391 seem critical for the optimal orientation of the two amphipathic helices necessary for the recognition of a lipoprotein substrate by the enzyme.  相似文献   

3.
The enzyme cholesterol lecithin acyl transferase (LCAT) shares the Ser/Asp-Glu/His triad with lipases, esterases and proteases, but the low level of sequence homology between LCAT and these enzymes did not allow for the LCAT fold to be identified yet. We, therefore, relied upon structural homology calculations using threading methods based on alignment of the sequence against a library of solved three-dimensional protein structures, for prediction of the LCAT fold. We propose that LCAT, like lipases, belongs to the alpha/beta hydrolase fold family, and that the central domain of LCAT consists of seven conserved parallel beta-strands connected by four alpha-helices and separated by loops. We used the conserved features of this protein fold for the prediction of functional domains in LCAT, and carried out site-directed mutagenesis for the localization of the active site residues. The wild-type enzyme and mutants were expressed in Cos-1 cells. LCAT mass was measured by ELISA, and enzymatic activity was measured on recombinant HDL, on LDL and on a monomeric substrate. We identified D345 and H377 as the catalytic residues of LCAT, together with F103 and L182 as the oxyanion hole residues. In analogy with lipases, we further propose that a potential "lid" domain at residues 50-74 of LCAT might be involved in the enzyme-substrate interaction. Molecular modeling of human LCAT was carried out using human pancreatic and Candida antarctica lipases as templates. The three-dimensional model proposed here is compatible with the position of natural mutants for either LCAT deficiency or Fish-eye disease. It enables moreover prediction of the LCAT domains involved in the interaction with the phospholipid and cholesterol substrates.  相似文献   

4.
Lecithin–cholesterol acyltransferase (LCAT) is a key enzyme in reverse cholesterol transport and catalyzes the esterification of cholesterol in human plasma. Human LCAT is a glycosylated protein, containing 416 amino acids and a proline-rich region at the C-terminus. To address the function of the C-terminal region of LCAT as well as that of the proline-rich region, we constructed and expressed LCAT mutants with C-terminal truncations at different positions. The expression of wild-type LCAT in COS-1 cells resulted in an enzymatically active protein that was secreted by the cells. The mutants lacking the proline-rich region at the C-terminus were expressed and secreted at levels comparable to those of wild-type (∼50% of wild-type concentrations in cell media). The proline-deletion mutants were similar to wild-type LCAT in terms of phospholipase or transferase activities with various interfacial substrates, including reconstituted HDL, proteoliposomes, LDL, and micelles of platelet activating factor. Thus, the binding of LCAT to the diverse interfaces is not affected by the removal of its C-terminal region. Also, the activation by apolipoproteins and access of water-insoluble substrates to the active site are not significantly affected by the deletion of the proline-rich region. However, deletions of the proline-rich region, including the five amino acids nearest to the C-terminus, resulted in approximately an 8-fold increase in the specific activity of LCAT towards the water-soluble substrate, p-nitrophenylbutyrate. This suggests that the C-terminal proline-rich region may interfere with the access of this water-soluble substrate to the active site of LCAT, and may form part of a protective covering of the active site of LCAT while in solution. Further deletions at the C-terminus, beyond the proline-rich region, impaired the secretion of the enzyme, implying that this region may play a critical role in either the secretion or folding of LCAT in COS-1 cells.  相似文献   

5.
The first step in the reaction of lecithin cholesterol acyltransferase (LCAT) with lipoproteins is the interfacial binding of the enzyme to the lipid surfaces. In this study the equilibrium dissociation constants (Kds) for the interaction of pure human plasma LCAT with LDL, HDL2, HDL3, and a reconstituted discoidal HDL (rHDL) were determined by the activity-inhibition method. In addition, enzyme kinetics were measured with each of the lipoprotein substrates. Based on phospholipid concentrations, the Kd values (0.9 x 10(-5) to 4.6 x 10(-5) M) increased in the order rHDL = HDL3 相似文献   

6.
Several amino acids in the active center of the 6-phospho-beta-galactosidase from Lactococcus lactis were replaced by the corresponding residues in homologous enzymes of glycosidase family 1 with different specificities. Three mutants, W429A, K435V/Y437F and S428D/ K435V/Y437F, were constructed. W429A was found to have an improved specificity for glucosides compared with the wild-type, consistent with the theory that the amino acid at this position is relevant for the distinction between galactosides and glucosides. The k(cat)/K(m) for o-nitrophenyl-beta-D-glucose-6-phosphate is 8-fold higher than for o-nitrophenyl-beta-D-galactose-6-phosphate which is the preferred substrate of the wild-type enzyme. This suggests that new hydrogen bonds are formed in the mutant between the active site residues, presumably Gln19 or Trp421 and the C-4 hydroxyl group. The two other mutants with the exchanges in the phosphate-binding loop were tested for their ability to bind phosphorylated substrates. The triple mutant is inactive. The double mutant has a dramatically decreased ability to bind o-nitrophenyl-beta-D-galactose-6-phosphate whereas the interaction with o-nitrophenyl-beta-D-galactose is barely altered. This result shows that the 6-phospho-beta-galactosidase and the related cyanogenic beta-glucosidase from Trifolium repens have different recognition mechanisms for substrates although the structures of the active sites are highly conserved.  相似文献   

7.
A hyperthermostable endoglucanase from Pyrococcus horikoshii with the capability of hydrolyzing crystalline cellulose was analyzed. A protein engineering study was carried out to obtain a reduced-size mutant. Five amino acid residues at both the N- and C-terminus were found to be removable without any loss of activity or thermal stability. Site-directed mutagenesis was also performed on R102, N200, E201, H297, Y299, E342, and W377, residues possibly involved in the active center or in the recognition and binding of a cellulose substrate. The activity of the resulting mutants was considerably decreased, confirming that the mutated residues were all important for activity. A reduced-size enzyme, as active as the wild-type endoglucanase, was successfully obtained, plus the residues critical for its activity and specificity were confirmed. Consequently, an engineered enzyme with a reduced size was obtained, and the amino acids essential for activity were confirmed by site-directed mutagenesis and comparison with a known three-dimensional structure.  相似文献   

8.
Jin L  Shieh JJ  Grabbe E  Adimoolam S  Durbin D  Jonas A 《Biochemistry》1999,38(47):15659-15665
Binding of lecithin cholesterol acyltransferase (LCAT) to lipoprotein surfaces is a key step in the reverse cholesterol transport process, as the subsequent cholesterol esterification reaction drives the removal of cholesterol from tissues into plasma. In this study, the surface plasmon resonance method was used to investigate the binding kinetics and affinity of LCAT for lipoproteins. Reconstituted high-density lipoproteins (rHDL) containing apolipoprotein A-I or A-II, (apoA-I or apoA-II), low-density lipoproteins (LDL), and small unilamellar phosphatidylcholine vesicles, with biotin tags, were immobilized on biosensor chips containing streptavidin, and the binding kinetics of pure recombinant LCAT were examined as a function of LCAT concentration. In addition, three mutants of LCAT (T123I, N228K, and (Delta53-71) were examined in their interactions with LDL. For the wild-type LCAT, binding to all lipid surfaces had the same association rate constant, k(a), but different dissociation rate constants, k(d), that depended on the presence of apoA-I (k(d) decreased) and different lipids in LDL. Furthermore, increased ionic strength of the buffer decreased k(a) for the binding of LCAT to apoA-I rHDL. For the LCAT mutants, the Delta53-71 (lid-deletion mutant) exhibited no binding to LDL, while the LCAT-deficiency mutants (T123I and N228K) had nearly normal binding to LDL. In conclusion, the association of LCAT to lipoprotein surfaces is essentially independent of their composition but has a small electrostatic contribution, while dissociation of LCAT from lipoproteins is decreased due to the presence of apoA-I, suggesting protein-protein interactions. Also, the region of LCAT between residues 53 and 71 is essential for interfacial binding.  相似文献   

9.
Fluorescence spectroscopy has been used to investigate the conformational changes that occur upon binding of wild type (WT) and mutant (Thr123Ile) lecithin:cholesterol acyltransferase (LCAT) to the potential substrates (dioleoyl-phosphatidyl choline [DOPC] and high density lipoprotein [HDL]). For a detailed analysis of structural differences between WT and mutant LCAT, we performed decompositional analysis of a set of tryptophan fluorescence spectra, measured at increasing concentrations of external quenchers (acrylamide and KI). The data obtained show that Thr123Ile mutation in LCAT leads to a conformation that is likely to be more rigid (less mobile/flexible) than that of the WT protein with a redistribution of charged residues around exposed tryptophan fluorophores. We propose that the redistribution of charged residues in mutant LCAT may be a major factor responsible for the dramatically reduced activity of the enzyme with HDL and reconstituted high density lipoprotein (rHDL).  相似文献   

10.
PLC(Bc) is a 28.5 kDa monomeric enzyme that catalyzes the hydrolysis of the phosphodiester bond of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine to provide a diacylglycerol and the corresponding phosphorylated headgroup. Because single replacements of Glu4, Tyr56, and Phe66 in the headgroup binding pocket led to changes in substrate specificity [Martin et al. (2000) Biochemistry 39, 3410-3415], a combinatorial library of approximately 6000 maltose binding protein-PLC(Bc) fusion protein mutants containing random permutations of these three residues was generated to identify PLC(Bc) mutants with altered specificity profiles and high catalytic activities. Members of this library were screened for hydrolytic activity toward the water soluble substrates C6PC, C6PE, and C6PS using a novel protocol that was conducted in a 96-well format and featured the in situ cleavage of the fusion protein to release the mutant PLC(Bc)s. Ten mutant enzymes that exhibited significant preferences toward C6PE or C6PS were selected and analyzed by steady-state kinetics to determine their specificity constants, k(cat)/K(M). The C6PS selective clones E4G, E4Q/Y56T/F66Y, and E4K/Y56V exhibited higher specificity constants toward C6PS than wt, whereas Y56T, F66Y, and Y56T/F66Y were C6PE selective and had comparable or higher specificity constants than wt for C6PE. The corresponding wt residues were singly reinserted back into the E4Q/Y56T/F66Y and E4K/Y56V mutants via site-directed mutagenesis, and the E4Q/F66Y mutant thus obtained exhibited a 10-fold higher specificity constant toward C6PS than wt, a value significantly higher than other PLC(Bc) mutants. On the basis of available data, an aromatic residue at position 66 appears important for significant catalytic activity toward all three substrates, especially C6PC and C6PE. The charge of residue 4 also appears to be a determinant of enzyme specificity as a negatively charged residue at this position endows the enzyme with C6PC and C6PE preference, whereas a polar neutral or positively charged residue results in C6PS selectivity. Replacing Tyr56 with Val, Ala, Thr, or Ser greatly reduces activity toward C6PC. Thus, the substrate specificity of PLC(Bc) can be modulated by varying three of the amino acid residues that constitute the headgroup binding pocket, and it is now apparent that this enzyme is not evolutionarily optimized to hydrolyze phospholipids with ethanolamine or serine headgroups.  相似文献   

11.
To separate the interfacial and catalytic reactions of lecithin cholesterol acyltransferase (LCAT), we carried out the first investigation of its reaction with water-soluble substrates. We used a continuous spectrophotometric assay for the hydrolysis of p-nitrophenyl esters of fatty acids to determine the chain length specificity of the enzyme and its modulation by anions and apolipoproteins in solution. By chemical modification of amino acid residues, we demonstrated that the active site serine and histidine residues participate in both the esterase and acyltransferase reactions but that cysteine residues are not involved in the esterase reaction. The kinetics of the LCAT reaction were measured for p-nitrophenyl esters of fatty acids having up to six (C-6) carbons in length. With increasing acyl chain lengths the optimal reaction rates occurred for the C-5 ester and Km and Vmax values decreased progressively, while the specificity constant, kcat/Km, increased. The same series of substrates and longer chain esters, up to C-16, were also reacted with LCAT in the presence of Triton X-100 in order to determine the general trends for the reaction rates as a function of chain length. The observed trends for the reaction rates and kinetic constants were attributed to an increasing binding affinity for the longer acyl chains in a large hydrophobic cavity, with a concomitant restriction in the motions of the substrates and a decreased probability for the correct positioning of the ester bond for hydrolysis, resulting in a decreased substrate turnover. Since the kinetics of the interfacial reactions of LCAT are very sensitive to the presence of anions and apolipoproteins, in particular apoA-I, we investigated the effects of these modulators on the reactions of LCAT in solution. Unlike the interfacial reactions, the hydrolysis of the p-nitrophenyl esters was not affected by 0.1 M concentrations of anions nor by water-soluble apolipoproteins (apoA-I, apoA-II, and apoCs). Thus the regulation of the activity of LCAT is mediated largely by the interfaces on which it acts.  相似文献   

12.
Mutations of the tryptophan residues in the tryptophan-track of the N-terminal domain (W33F/Y and W69F/Y) and in the catalytic domain (W245F/Y) of Serratia sp. TU09 Chitinase 60 (CHI60) were constructed, as single and double point substitutions to either phenylalanine or tyrosine. The enzyme-substrate interaction and mode of catalysis, exo/endo-type, of wild type CHI60 and mutant enzymes on soluble (partially N-acetylated chitin), amorphous (colloidal chitin), and crystalline (β-chitin) substrates were studied. All CHI60 mutants exhibited a reduced substrate binding activity on colloidal chitin. CHI60 possesses a dual mode of catalysis with both exo- and endo-type activities allowing the enzyme to work efficiently on various substrate types. CHI60 preferentially uses the endo-type mode on soluble and amorphous substrates and the exo-type mode on crystalline substrate. However, the prevalent mode of hydrolysis mediated by CHI60 is regulated by ionic strength. Slightly elevated ionic strength, 0.1-0.2 M NaCl, which promotes enzyme-substrate interactions, enhances CHI60 hydrolytic activity on amorphous substrate and, interestingly, on partially N-acetylated chitin. High ionic strength, 0.5-2.0 M NaCl, prevents the enzyme from dissociating from amorphous substrate, occupying the enzyme in an enzyme-substrate non-productive complex. However, on crystalline substrates, the activity of CHI60 was only inhibited approximately 50% at high ionic strength, suggesting that the enzyme hydrolyzes crystalline substrates with an exo-type mode processively while remaining tightly bound to the substrate. Moreover, substitution of Trp-33 to either phenylalanine or tyrosine reduced the activity of the enzyme at high ionic strength, suggesting an important role of Trp-33 on enzyme processivity.  相似文献   

13.
On the basis of structural homology calculations, we previously showed that lecithin:cholesterol acyltransferase (LCAT), like lipases, belongs to the alpha/beta hydrolase fold family. As there is higher sequence conservation in the N-terminal region of LCAT, we investigated the contribution of the N- and C-terminal conserved basic residues to the catalytic activity of this enzyme. Most basic, and some acidic residues, conserved among LCAT proteins from different species, were mutated in the N-terminal (residues 1;-210) and C-terminal (residues 211;-416) regions of LCAT. Measurements of LCAT-specific activity on a monomeric substrate, on low density lipoprotein (LDL), and on reconstituted high density lipoprotein (rHDL) showed that mutations of N-terminal conserved basic residues affect LCAT activity more than those in the C-terminal region. This agrees with the highest conservation of the alpha/beta hydrolase fold and structural homology with pancreatic lipase observed for the N-terminal region, and with the location of most of the natural mutants reported for human LCAT. The structural homology between LCAT and pancreatic lipase further suggests that residues R80, R147, and D145 of LCAT might correspond to residues R37, K107, and D105 of pancreatic lipase, which form the salt bridges D105-K107 and D105-R37. Natural and engineered mutations at residues R80, D145, and R147 of LCAT are accompanied by a substantial decrease or loss of activity, suggesting that salt bridges between these residues might contribute to the structural stability of the enzyme.  相似文献   

14.
A multifamily sequence alignment of the rabbit CYP4A members with the known structure of CYP102 indicates amino acid differences falling within the so-called substrate recognition site(s) (SRS). Chimeric proteins constructed between CYP4A4 and CYP4A7 indicate that laurate activity is affected by the residues within SRS1 and prostaglandin activity is influenced by SRS2-3. Site-directed mutant proteins of CYP4A7 found laurate and arachidonate activity markedly diminished in the R90W mutant (SRS1) and somewhat decreased in W93S. While PGE(1) activity was only slightly increased, the mutant proteins H206Y and S255F (SRS2-3), on the other hand, exhibited remarkable increases in laurate and arachidonate metabolism (3-fold) above wild-type substrate metabolism. Mutant proteins H206Y, S255F, and H206Y/S255F but not R90W/W93S, wild-type CYP4A4, or CYP4A7 metabolized arachidonic acid in the absence of cytochrome b(5). Stopped-flow kinetic experiments were performed in a CO-saturated environment performed to estimate interaction rates of the monooxygenase reaction components. The mutant protein H206Y, which exhibits 3-fold higher than wild-type substrate activity, interacts with CPR at a rate at least 10 times faster than that of wild-type CYP4A7. These experimental results provide insight regarding the residues responsible for modulation of substrate specificity, affinity, and kinetics, as well as possible localization within the enzyme structure based on comparisons with homologous, known cytochrome P450 structures.  相似文献   

15.
Feng B  Shu Y  Giacomini KM 《Biochemistry》2002,41(28):8941-8947
Organic anion transporters (OATs, SLC21) are important in the excretion of endogenous and exogenous compounds in the kidney. The rat organic anion transporter, rOAT3, mediates the transport of organic anions such as p-aminohippurate (PAH) and estrone sulfate as well as the basic compound, cimetidine. In the present study, we examined the role of conserved transmembrane aromatic amino acid residues of rOAT3 in substrate recognition and transport. Alanine scanning followed by amino acid replacements was used to construct mutants of rOAT3. The uptake of model compounds was studied in Xenopus laevis oocytes expressing the mutant transporters. We observed that four mutants in transmembrane domain 7 (TMD 7), W334A, F335A, Y341A, and Y342Q, and one mutant in transmembrane domain 8 (TMD 8), F362S, exhibited a less than 2-fold enhanced uptake of PAH and cimetidine in comparison to wild-type rOAT3, which exhibited a 16-fold enhanced uptake of PAH and an 8-fold enhanced uptake of cimetidine. Estrone sulfate uptake in oocytes expressing any one of these five mutants remained at least 8-fold enhanced. The data suggest that the five residues, W334, F335, Y341, Y342, and F362, contribute differently to the transport of the small hydrophilic organic substrates PAH and cimetidine in comparison to the large hydrophobic organic substrate estrone sulfate. The effects of side chains of these five residues on transporter functions were also evaluated by constructing conservative mutations. We observed that the residues contribute to PAH and cimetidine transport in different ways: the -OH group of Y342, the indole ring of W334, and the aromatic rings of F335, Y341, and F362 are important for PAH and cimetidine transport by rOAT3. These data suggest that there is an aromatic pocket composed mainly of residues in TMD 7 in the translocation pathway of rOAT3, which is important for the transport of PAH and cimetidine. Aromatic residues in this pocket may interact directly with substrates of rOAT3 through hydrogen bonds and pi-pi interactions.  相似文献   

16.
The functional residues of z-class glutathione S-transferase were identified by screening inactive point mutants from a random mutagenesis library. First, a random mutant library was constructed using error-prone polymerase chain reaction, and then candidate inactive mutants were screened by a high-throughput colorimetric assay. Twenty-five mutants were obtained, and 12 that formed inclusion bodies were discarded. The remaining 13 mutants that expressed soluble protein were used for accurate quantification of enzymatic activity and sequencing. The mutants W15R, C19Y, R22H/K83E, P61S, S73P, S109P, and Q112R were found to have activity lower than 1% of the wild-type and were considered as “inactive mutants”, whereas the mutants K83E, Q102R, and L147F still have a large fraction of the activity and were thus considered as “partially inactivated mutants”. Molecular modeling experiments disclosed that mutations resulting in inactivation of the enzyme were found in or near the binding pocket, whereas mutations resulting in partial inactivation were distant from both substrates. The role of the residue Ser73 in the enzyme was verified by site-directed mutagenesis. The result suggested that screening inactive point mutants from a random mutagenesis library is an efficient way of identifying functional residues in enzymes.  相似文献   

17.
Lecithin:cholesterol acyltransferase (LCAT), the major cholesterol esterifying enzyme in plasma, plays an important role in the removal of cholesterol from peripheral tissues. This study in rat focuses upon the effects of hypothyroidism and cholesterol feeding on serum activity and hepatic LCAT secretion. To obviate the effect that inclusion of high concentrations of cholesterol in the rat serum may have on the proteoliposome used in the assay of LCAT, very low and low density lipoproteins (VLDL and LDL) were removed by ultracentrifugation at d 1.063 g/ml. The molar esterification rate in the euthyroid VLDL + LDL-free serum was found to be 0.94 +/- 0.06 compared to 0.67 +/- 0.05 in hypothyroid rats and 1.56 +/- 0.14 in hypercholesterolemic rats. LCAT secretion by suspension cultures of hepatocytes from hypercholesterolemic rats was found to be significantly depressed when compared to that for euthyroid and hypothyroid animals. Secretion by hepatocytes from hypothyroid rats was depressed for the first 0-4 hr, but rapidly recovered. The depressed secretion of LCAT by hepatocytes from hypercholesterolemic rats correlates with the appearance in the media of apoE-rich, discoidal HDL. Discoidal HDL was six times more effective as a substrate for purified human LCAT than HDL from hypercholesterolemic serum, and twice as effective as serum and nascent HDL from euthyroid animals. It is concluded that the depressed LCAT activity in serum from hypothyroid rats is due to a depressed hepatic secretion of the enzyme and that the elevated serum activity of hypercholesterolemic rats may be related to a defect in LCAT clearance. Finally, the appearance of discoidal HDL in the medium upon culture of hepatocytes from hypercholesterolemic rats appears to be due to an inhibition of LCAT secretion by these cells.  相似文献   

18.
We identified two regions of human LCAT (hLCAT) that when mutated separately to the corresponding rat sequence (E149A and Y292H/W294F) and transiently expressed in COS-1 cells increased phospholipase A2 (PLA2) activity by 5.5- and 2.8-fold, respectively, and increased cholesteryl ester (CE) formation by 2.9- and 1.4-fold, respectively, relative to hLCAT using substrate particles containing 1-16:0,2-20:4-sn-glycero-3-phosphocholine (PAPC). In contrast, both activities with 1-16:0,2-18:1-sn-glycero-3-phosphocholine (POPC) substrate were similar among the three LCAT proteins. The triple mutant (E149A/Y292H/W294F) had increased PLA2 activity with PAPC similar to that observed with the E149A mutation alone; however, unlike E149A, the triple mutant demonstrated a 50% decrease in activity with POPC for both PLA2 activity and CE formation, suggesting an interaction between the two regions of LCAT. Additional mutagenesis studies demonstrated that W294F, but not Y292H, increased PLA2 activity by 3-fold with PAPC without affecting activity with POPC. The E149A/W294F double mutation mimicked the LCAT activity phenotype of the triple mutant (more activity with PAPC, less with POPC). In conclusion, separate mutation of two amino acids in hLCAT to the corresponding rat sequence increases activity with PAPC, whereas the combined mutations increase PAPC and decrease POPC activity, suggesting that these amino acids participate in the LCAT PC binding site and affect fatty acyl specificity.  相似文献   

19.
Bacterial fructansucrase enzymes belong to glycoside hydrolase family 68 and catalyze transglycosylation reactions with sucrose, resulting in the synthesis of fructooligosaccharides and/or a fructan polymer. Significant differences in fructansucrase enzyme product specificities can be observed, i.e. in the type of polymer (levan or inulin) synthesized, and in the ratio of polymer versus fructooligosaccharide synthesis. The Lactobacillus reuteri 121 inulosucrase enzyme produces a diverse range of fructooligosaccharide molecules and a minor amount of inulin polymer [with beta(2-1) linkages]. The three-dimensional structure of levansucrase (SacB) of Bacillus subtilis revealed eight amino acid residues interacting with sucrose. Sequence alignments showed that six of these eight amino acid residues, including the catalytic triad (D272, E523 and D424, inulosucrase numbering), are completely conserved in glycoside hydrolase family 68. The other three completely conserved residues are located at the -1 subsite (W271, W340 and R423). Our aim was to investigate the roles of these conserved amino acid residues in inulosucrase mutant proteins with regard to activity and product profile. Inulosucrase mutants W340N and R423H were virtually inactive, confirming the essential role of these residues in the inulosucrase active site. Inulosucrase mutants R423K and W271N were less strongly affected in activity, and displayed an altered fructooligosaccharide product pattern from sucrose, synthesizing a much lower amount of oligosaccharide and significantly more polymer. Our data show that the -1 subsite is not only important for substrate recognition and catalysis, but also plays an important role in determining the size of the products synthesized.  相似文献   

20.
Y Snitko  S K Han  B I Lee  W Cho 《Biochemistry》1999,38(24):7803-7810
To identify the residues essential for interfacial binding and substrate binding of human pancreatic phospholipase A2 (hpPLA2), several ionic residues in the putative interfacial binding surface (R6E, K7E, K10E, and K116E) and substrate binding site (D53K and K56E) were mutated. Interfacial affinity of these mutants was measured using anionic polymerized liposomes, and their enzymatic activity was measured using various substrates including phospholipid monomers, zwitterionic and anionic micelles, and anionic polymerized mixed liposomes. Similar mutations (R6E, K10E, K56E, and K116E) were made to porcine pancreatic phospholipase A2 (ppPLA2), and the properties of mutants were measured by the same methods. Results indicate that hpPLA2 and ppPLA2 have similar interfacial binding mechanisms in which cationic residues in the amino terminus and Lys-116 in the carboxy terminus are involved in binding to anionic lipid surfaces. Small but definite differences between the two enzymes were observed in overall interfacial affinity and activity and the effects of the mutations on interfacial enzyme activity. The interfacial binding of hpPLA2 and ppPLA2 is distinct from that of bovine pancreatic phospholipase A2 in that Lys-56 is involved in the interfacial binding of the latter enzyme. The unique phospholipid headgroup specificity of hpPLA2 derives from the presence of Asp-53 in the substrate binding site. This residue appears to participate in stabilizing electrostatic interactions with the cationic ethanolamine headgroup, hence the phosphatidylethanolamine preference of hpPLA2. Taken together, these studies reveal the similarities and the differences in the mechanisms by which mammalian pancreatic phospholipases A2 interact with lipid aggregates and perform interfacial catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号