首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Selective cyclo-oxygenase-2 (COX-2) inhibitors are nonsteroidal antiinflammatory drugs used in the management of inflammatory diseases. We demonstrate here that inhibition of the COX-2 enzyme impairs adipocyte differentiation. The inhibition of adipogenesis occurs in the early clonal expansion phase. In particular, COX-2 inhibition limits cell cycle reentry required before terminal adipocyte differentiation. This inhibition of adipogenesis is independent of the production of the peroxisome proliferator activated receptor gamma ligand prostaglandin J2, but dependent on the production of proliferative prostaglandins, such as prostaglandin E2. Modulation of the activity of the COX-2 enzyme via COX-2 selective inhibitors might open up new perspectives in the control of obesity and related metabolic diseases.  相似文献   

2.
The study of cyclooxygenases (COXs), targets of aspirin and related drugs, is rooted in the discovery of essential fatty acids (EFAs). There are two COXs that convert EFAs, primarily arachidonic acid, to prostaglandins. Each COX is involved with distinct biologies. COX-1 expression is constitutive while COX-2 is inducible. The two COXs might have evolved partly to permit prostaglandin formation at different tissue sites. However, COX-2 is sometimes induced in cells already expressing COX-1, and in these instances, COX-2 functions while COX-1 is latent. This can occur because of unique biochemical properties of COX-2 that enable cells to form prostaglandins when arachidonic acid comprises a small fraction of available fatty acids and the concentrations of peroxides that are necessary for COX to function are low.  相似文献   

3.
4.
Cyclooxygenase (COX) is the key enzyme in the production of prostaglandins, which are essential for the response of bone to mechanical loading. We determined which COX-isoform, COX-1 or COX-2, determines loading-induced prostaglandin production in primary bone cells in vitro. Mouse and human bone cells reacted to 1 h of pulsating fluid flow (PFF, 0.6+/-0.3 Pa at 5 Hz) with an increased prostaglandin E(2) production, which continued 24 h after cessation of PFF. Inhibition of COX-2 activity with NS-398 abolished the stimulating effect of PFF both at 1 h and at 24 h post-incubation, while inhibition of COX-1 by SC-560 affected neither the early nor the late response to flow. PFF rapidly stimulated COX-2 mRNA expression at 1 h but did not affect COX-1 mRNA expression. COX-2 mRNA expression was still significantly enhanced 24 h after cessation of PFF. We conclude that COX-2 is the mechanosensitive form of COX that determines the response of bone tissue to mechanical loading.  相似文献   

5.
Prostaglandin endoperoxide synthases (PTGS), commonly referred to as cyclooxygenases (COX-1 and COX-2), catalyze the key step in the synthesis of biologically active prostaglandins (PGs), the conversion of arachidonic acid (AA) into prostaglandin H2 (PGH2). Although COX and prostaglandins have been implicated in a wide variety of physiologic processes, an evaluation of the role of prostaglandins in early mammalian development has been difficult due to the maternal contribution of prostaglandins from the uterus: COX null mouse embryos develop normally during embryogenesis. Here, we verify that inhibition of COX-1 results in zebrafish gastrulation arrest and shows that COX-1 expression becomes restricted to the posterior mesoderm during somitogenesis and to posterior mesoderm organs at pharyngula stage. Inhibition of COX-1 signaling after gastrulation results in defective vascular tube formation and shortened intersomitic vessels in the posterior body region. These defects are rescued completely by PGE(2) treatment or, to a lesser extent, by PGF(2alpha), but not by other prostaglandins, such as PGI(2), TxB(2), or PGD(2). Functional knockdown of COX-1 using antisense morpholino oligonucleotide translation interference also results in posterior vessel defect in addition to enlarged posterior nephric duct, phenocopying the defects caused by inhibition of COX-1 activity. Together, we provide the first evidence that COX-1 signaling is required for development of posterior mesoderm organs, specifically in the vascular tube formation and posterior nephric duct development.  相似文献   

6.
Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis   总被引:11,自引:0,他引:11  
Cyclooxygenase (COX)-2 and the prostaglandins resulting from its enzymatic activity have been shown to play a role in modulating cell growth and development of human neoplasia. Evidence includes a direct relationship between COX-2 expression and cancer incidence in humans and animal models, increased tumorigenesis after genetic manipulation of COX-2, and significant anti-tumor properties of non-steroidal anti-inflammatory drugs in animal models and in some human cancers. Recent data showed that COX-2 and the derived prostaglandins are involved in control of cellular growth, apoptosis, and signal through a group of nuclear receptors named peroxisome proliferator-activated receptors (PPARs). In this article we will review some of the findings suggesting that COX-2 is involved in multiple cellular mechanisms that lead to tumorigenesis.  相似文献   

7.
Cyclooxygenases (COX) are a family of enzymes involved in the biosynthesis of prostaglandin (PG) and thromboxanes. The inducible enzyme cyclooxygenase-2 (COX-2) is the major isoform found in normal brain, where it is constitutively expressed in neurons and is further up-regulated during several pathological events, including seizures and ischaemia. Emerging evidence suggests that COX-2 is implicated in excitotoxic neurodegenerative phenomena. It remains unclear whether PGs or other products associated to COX activity take part in these processes. Indeed, it has been suggested that reactive oxygen species, produced by COX, could mediate neuronal damage. In order to obtain direct evidence of free radical production during COX activity, we undertook an in vivo microdialysis study to monitor the levels of PGE(2) and 8-epi-PGF(2alpha) following infusion of N-methyl-D-aspartate (NMDA). A 20-min application of 1 mm NMDA caused an immediate, MK-801-sensitive increase of both PGE(2) and 8-epi-PGF(2alpha) basal levels. These effects were largely prevented by the specific cytosolic phospholipase A(2) (cPLA(2) ) inhibitor arachidonyl trifluoromethyl ketone (ATK), by non- selective COX inhibitors indomethacin and flurbiprofen or by the COX-2 selective inhibitor NS-398, suggesting that the NMDA-evoked prostaglandin synthesis and free radical-mediated lipid peroxidation are largely dependent on COX-2 activity. As several lines of evidence suggest that prostaglandins may be potentially neuroprotective, our findings support the hypothesis that free radicals, rather than prostaglandins, mediate the toxicity associated to COX-2 activity.  相似文献   

8.
Partial hepatectomy (PH) triggers a rapid regenerative response in the remaining tissue to reinstate the organ function and the cell numbers. Among the molecules that change in the course of regeneration is an accumulation of prostaglandin E2 in the sera of rats with PH. Analysis of the cyclooxygenase (COX) isoenzymes in the remnant liver showed the preferential expression of COX-2 in hepatocytes. Cultured regenerating hepatocytes expressed significant levels of COX-2, a process that was not observed in the sham counterparts. Maximal expression of COX-2 was detected 16 h after PH with increased levels present even at 96 h. Pharmacological inhibition of COX-2 activity with NS398 shunted the up-regulation of cell proliferation after PH, which suggests a positive interaction of prostaglandins with the progression of the cell cycle. Similar results were obtained after PH of mice lacking the COX-2 gene. The expression of COX-2 in regenerating liver was concomitant with a decrease in CCAAT-enhancer binding protein (C/EBP-a) level and an increase in the expression of C/EBP-b and C/EBP-d. These results suggest a contribution of the enhanced synthesis of prostaglandins to liver regeneration observed after PH.  相似文献   

9.
10.
11.
12.
Cyclooxygenase (COX), existing as the COX-1 and COX-2 isoforms, converts arachidonic acid to prostaglandin H2, which is then further metabolized to various prostaglandins. Vascular endothelial growth factor (VEGF) has been shown to play important roles in inflammation and is upregulated by the prostaglandin E series through COX-2 in several cell types. Here, we have investigated the effects of VEGF on the COX isoform expressed in human umbilical vein endothelial cells (HUVEC). The signalling mechanism of the COX isoform expressed in endothelial cells activated with VEGF will be also investigated using the tyrosine kinase inhibitor, genistein, and protein kinase C inhibitor, staurosporine. The activity of COX-2 was assessed by measuring the production of 6-keto-prostaglandin F1alpha in the presence of exogenous arachidonic acids (10 microM, 10 min) by enzyme immunoassay. The expression of COX isoform protein was detected by immunoblot using specific antibodies. Untreated HUVEC contained no COX-2 protein. In HUVEC treated with VEGF (0.01-50 ng/ml), COX-2 protein, but not COX-1, and COX activity were increased in a dose-dependent manner. Interestingly, the increased COX-2 protein and activity in response to VEGF (10 ng/ml) was inhibited by the tyrosine kinase inhibitor, genistein (0.05-5 microg/ml), but not by the protein kinase C inhibitor, staurosporine (0.1-10 ng/ml). Thus, the induction of COX-2 by VEGF in endothelial cells was mediated through protein tyrosine kinase, and the uses of specific COX-2 inhibitors in these conditions, in which VEGF was involved, might have a role.  相似文献   

13.
14.
15.
Non-redundant functions of cyclooxygenases: oxygenation of endocannabinoids   总被引:1,自引:0,他引:1  
The two cyclooxygenase (COX) enzymes catalyze the oxygenation of arachidonic acid to prostaglandin endoperoxides, which are the common intermediates in the biosynthesis of the bioactive lipids prostaglandins and thromboxane. COX-1 and COX-2 are approximately 60% identical in amino acid sequence, exhibit highly homologous three-dimensional structures, and appear functionally similar at the biochemical level. Recent work has uncovered a subtle functional difference between the two enzymes, namely the ability of COX-2 to efficiently utilize neutral derivatives (esters and amides) of arachidonic acid as substrates. Foremost among these neutral substrates are the endocannabinoids 2-arachidonoylglycerol and arachidonoylethanolamide. This raises the possibility that COX-2 oxygenation plays a role in a novel signaling pathway dependent on agonist-induced release of endocannabinoids and their selective oxygenation by COX-2. Among the products of COX-2 oxygenation of endocannabinoids are glyceryl prostaglandins, some of which (e.g. glyceryl prostaglandin E(2) and glyceryl prostaglandin I(2)) exhibit interesting biological activities in inflammatory, neurological, and vascular systems. These compounds are produced in intact cells stimulated with physiological agonists and have been isolated from in vivo sources. Important concepts relevant to the hypothesis of a COX-2-selective signaling pathway are presented.  相似文献   

16.
17.
Cyclooxygenase (COX)-dependent prostaglandins are necessary for normal kidney function. These prostaglandins are associated with inflammation, maintenance of sodium and water homeostasis, control of renin release, renal vasodilation, vasoconstriction attenuation, and prenatal renal development. COX-2 expression is regulated by the renin-angiotensin system, glucocorticoids or mineralcorticoids, and aldosterone, supporting a role for COX-2 in kidney function. Indeed, COX-2 mRNA and protein levels as well as enzyme activity are increased, along with PGE2, during kidney failure. In addition, changes in COX-2 expression are associated with increased blood pressure, urinary volume, sodium and protein and decreased urinary osmolarity. Intrarenal mechanisms such as angiotensin II (Ang II) production, increased sodium delivery, glomerular hypertension, and renal tubular inflammation have been suggested to be responsible for the increase in COX-2 expression. Although, specific COX-2 pharmacological inhibition has been related to the prevention of kidney damage, clinical studies have reported that COX-2 inhibition may cause side effects such as edema or a modest elevation in blood pressure and could possibly interfere with antihypertensive drugs and increase the risk of cardiovascular complications. Thus, administration of COX-2 inhibitors requires caution, especially in the presence of underlying cardiovascular disease.  相似文献   

18.
Cyclooxygenase (COX) synthesizes bioactive prostaglandins from arachidonic acid, and there are COX-1 and COX-2 isoforms with distinct pathophysiological functions. Recent studies demonstrated that COX-2 expression was up-regulated in the brain of patients with Alzheimer's disease. We established mouse neuroblastoma x rat glioma hybrid NG108-15 cells stably expressing human COX-2. The COX-2-expressing cells showed 3- to 4-fold increases in both COX activity and prostaglandin E(2) production. The mRNA level of amyloid precursor protein (APP) was elevated by approximately 2-fold in the COX-2-expressing cells compared with mock-transfected cells. Amyloid beta-peptide and a secreted form of APP, both derived from APP by proteolysis was also increased. Interestingly, neurite outgrowth was stimulated in the COX-2-expressing cells with concomitant reduction of the cell proliferation rate. A selective COX-2 inhibitor (JTE-522) and a nonselective COX inhibitor (indomethacin) suppressed production of amyloid beta-peptide and a secreted form of APP by inhibition of APP mRNA level, suggesting that COX-2 plays important roles in the neurodegenerative processes of Alzheimer's disease.  相似文献   

19.
20.
The cyclooxygenases (COX)-1 and COX-2 are key enzymes in the conversion of arachidonic acid to prostaglandins and other eicosanoids. Whereas COX-1 is expressed ubiquitously, COX-2 is an immediate-early gene often associated with malignant transformation, and a role for the COX enzymes in tumor initiation and promotion is discussed. Nonsteroidal anti-inflammatory drugs (NSAIDs) like aspirin and indomethacin that block COX-1 and -2 have been shown to have beneficial effects for tumor patients. Therefore, these compounds have gained interest also among oncologists. However, the molecular mechanism by which NSAIDs inhibit carcinogenesis is not clearly understood. The prostaglandin-dependent and -independent effect may both account for their antineoplastic action. We show here that tumor cells derived from different tumors regularly produce prostaglandin E(2) (PGE(2)) interfering with the function of monocytes. In particular, PGE(2) inhibits the potential of monocytes to migrate in the direction of a chemotactic stimulus and to adhere to endothelial cell. This inhibition is most probably due to a modulation of the chemokine receptor CCR5 and the beta2-integrin Mac-1. Both down-regulation of CCR5 and reduced expression of Mac-1 may diminish the potential of peripheral blood monocytes to leave blood vessels and invade target tissues. Since both dysfunctions can be restored with NSAIDs, our findings help to explain the molecular chemopreventive action of NSAIDs on tumor formation and progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号