首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malolactic fermentation (MLF) is the bacterially driven decarboxylation of l-malic acid to l-lactic acid and carbon dioxide, and brings about deacidification, flavour modification and microbial stability of wine. The main objective of MLF is to decrease wine sourness by a small increase in wine pH via the metabolism of l-malic acid. Oenococcus oeni is the main lactic acid bacterium to conduct MLF in virtually all red wine and an increasing number of white and sparkling wine bases. Over the last decade, it is becoming increasingly recognized that O. oeni exhibits a diverse array of secondary metabolic activities during MLF which can modify the sensory properties of wine. These secondary activities include the metabolism of organic acids, carbohydrates, polysaccharides and amino acids, and numerous enzymes such as glycosidases, esterases and proteases, which generate volatile compounds well above their odour detection threshold. Phenotypic variation between O. oeni strains is central for producing different wine styles. Recent studies using array-based comparative genome hybridization and genome sequencing of three O. oeni strains have revealed the large genomic diversity within this species. This review will explore the links between O. oeni metabolism, genomic diversity and wine sensory attributes.  相似文献   

2.
During malolactic fermentation (MLF), lactic acid bacteria influence wine aroma and flavour by the production of volatile metabolites and the modification of aroma compounds derived from grapes and yeasts. The present study investigated the impact of different MLF inoculation strategies with two different Oenococcus oeni strains on cool climate Riesling wines and the volatile wine aroma profile. Four different timings were chosen for inoculation with bacteria to conduct MLF in a Riesling must/wine with a high acidity (pH 2.9–3.1). Treatments with simultaneous inoculation showed a reduced total fermentation time (alcoholic and malolactic) compared to the sequential inoculations. No negative impact of simultaneous alcoholic and malolactic fermentation on fermentation success and on the final wine volatile aroma composition was observed. Compared to sequential inoculation, wines with co-inoculation tended to have higher concentrations of ethyl and acetate esters, including acetic acid phenylethylester, acetic acid 3-methylbutylester, butyric acid ethylester, lactic acid ethylester and succinic acid diethylester. Results of this study provide some alternatives to diversify the number of wine styles by safely conducting MLF in low-pH, cool-climate white musts with potential high alcohol content.  相似文献   

3.
In this research work we investigated changes in volatile aroma composition associated with four commercial Oenococcus oeni malolactic fermentation (MLF) starter cultures in South African Shiraz and Pinotage red wines. A control wine in which MLF was suppressed was included. The MLF progress was monitored by use of infrared spectroscopy. Gas chromatographic analysis and capillary electrophoresis were used to evaluate the volatile aroma composition and organic acid profiles, respectively. Significant strain-specific variations were observed in the degradation of citric acid and production of lactic acid during MLF. Subsequently, compounds directly and indirectly resulting from citric acid metabolism, namely diacetyl, acetic acid, acetoin, and ethyl lactate, were also affected depending on the bacterial strain used for MLF. Bacterial metabolic activity increased concentrations of the higher alcohols, fatty acids, and total esters, with a larger increase in ethyl esters than in acetate esters. Ethyl lactate, diethyl succinate, ethyl octanoate, ethyl 2-methylpropanoate, and ethyl propionate concentrations were increased by MLF. In contrast, levels of hexyl acetate, isoamyl acetate, 2-phenylethyl acetate, and ethyl acetate were reduced or remained unchanged, depending on the strain and cultivar evaluated. Formation of ethyl butyrate, ethyl propionate, ethyl 2-methylbutryate, and ethyl isovalerate was related to specific bacterial strains used, indicating possible differences in esterase activity. A strain-specific tendency to reduce total aldehyde concentrations was found at the completion of MLF, although further investigation is needed in this regard. This study provided insight into metabolism in O. oeni starter cultures during MLF in red wine.  相似文献   

4.
Selected starter cultures of Oenococcus oeni are widely used to initiate malolactic fermentation (MLF) in wine. Nevertheless, the inoculated culture does not always develop as expected and undesired strains can grow causing wine spoilage. Therefore, methods that can reliably differentiate Ooeni strains are essential to monitor the population dynamics of MLF. This work presents a new multiplex PCR method that allows the simultaneous species identification and strain typification of Ooeni, based on the combined use of species-specific PCR primers and a Random Polymorphic DNA (RAPD)-PCR primer. This method represents an useful tool for the control of wine MLF.  相似文献   

5.
Esters are an important group of volatile compounds that can contribute to wine flavour. Wine lactic acid bacteria (LAB) have been shown to produce esterases capable of hydrolysing ester substrates. This study aims to characterise the esterase activities of nine LAB strains under important wine conditions, namely, acidic conditions, low temperature (to 10°C) and in the presence of ethanol (2–18% v/v). Esterase substrate specificity was also examined using seven different ester substrates. The bacteria were generally found to have a broad pH activity range, with the majority of strains showing maximum activity close to pH 6.0. Exceptions included an Oenococcus oeni strain that retained most activity even down to a pH of 4.0. Most strains exhibited highest activity across the range 30–40°C. Increasing ethanol concentration stimulated activity in some of the strains. In particular, O. oeni showed an increase in activity up to a maximum ethanol concentration of around 16%. Generally, strains were found to have greater activity towards short-chained esters (C2–C8) compared to long-chained esters (C10–C18). Even though the optimal physicochemical conditions for enzyme activity differed from those found in wine, these findings are of potential importance to oenology because significant activities remained under wine-like conditions.  相似文献   

6.
Using molecular techniques and sequencing, we studied the intraspecific diversity of Oenococcus oeni, a lactic acid bacterium involved in red winemaking. A relationship between the phenotypic and genotypic characterization of 16 O. oeni strains isolated from wine with different levels of enological potential was shown. The study was based on the comparative genomic analysis by subtractive hybridization between two strains of O. oeni with opposite enological potential. The genomic sequences obtained from subtractive hybridization were amplified by polymerase chain reaction and sequenced for the 16 strains. A considerable diversity among strains of O. oeni was observed.  相似文献   

7.
Entrapment of Oenococcus oeni into a polymeric matrix based on polyvinyl alcohol (PVA) (Lentikats®) was successfully used to get a better development of malolactic fermentation (MLF) in wine. The incubation of immobilized cells in a nutrient medium before starting the MLF, did not improve the degradation of malic acid. In only one day, 100% of conversion of malic acid was achieved using a high concentration of immobilized cells (0.35 g gel/ml of wine with a cell‐loading of 0.25 mg cells/mg of gel). While a low concentration of 0.21 g gel/ml of wine (cell‐loading of 0.25 mg cells/mg of gel) needed 3 days to get a reduction of 40%. The entrapped cells could be reused through six cycles (runs of 3 days), retaining 75% of efficacy for the conversion of malic acid into lactic acid. The immobilized cells in PVA hydrogels gave better performance than free cells because of the increase of the alcohol toleration. Consequently, the inhibitory effect of ethanol for developing MLF could be reduced using immobilized cells into PVA hydrogels. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

8.
AIMS: During malolactic fermentation (MLF), the secondary metabolisms of lactic acid bacteria (LAB) contribute to the organoleptic modification of wine. To understand the contribution of MLF, we evaluated the capacity of various wine LAB to metabolize methionine. METHODS AND RESULTS: Using gas chromatography (GC) coupled either with mass spectrometry (MS) or a flame photometry detector in sulphur mode (FPD), we studied this metabolism in laboratory media and wine. In laboratory media, several LAB isolated from wine were able to metabolize methionine. They formed methanethiol, dimethyl disulphide, 3-(methylsulphanyl)propan-1-ol and 3-(methylsulphanyl)propionic acid. These are known to have powerful characteristic odours and play a role in the aromatic complexity of wine. In various red wines, after MLF only the 3-(methylsulphanyl)propionic acid concentration increased significantly, as verified with several commercial starter cultures. This compound, which is characterized by chocolate and roasted odours, could contribute to the aromatic complexity produced by MLF. CONCLUSIONS: This study shows that LAB isolated from wine, especially OEnococcus oeni strains, the major species in MLF, are able to metabolize methionine to form volatile sulphur compounds. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate the capacity of wine LAB to metabolize methionine.  相似文献   

9.
Polymerase chain reaction (PCR)–denaturing gradient gel electrophoresis was the most relevant method to follow the diversity of lactic acid bacteria during winemaking. By targeting the rpoB gene, two types of Oenococcus oeni strains were distinguished resulting from a single mutation in the rpoB region targeted in PCR and generating two different electrophoresis profiles. The first one prevailed during fermentation and the second during ageing. Some strains of each type were isolated during winemaking and were studied using several genetic methods (real-time PCR, PCR-random amplified polymorphic DNA, multiple locus sequence typing and the presence of gene markers). Physiological characters related to environmental conditions were examined. The results confirmed the relevance of the rpoB mutation for characterising the two O. oeni subgroups. The relationship between the physiological response to stress and the rpoB genetic groups raised the question of O. oeni intraspecies grouping. A possible division within this species, of great technological interest to the wine industry, was also raised.  相似文献   

10.
Lactic acid bacteria (LAB) are responsible for olfactory changes in wine during malolactic fermentation (MLF). A side characteristic of MLF is the release of grape derived aroma compounds from their glycosylated precursors by β-glycosidase activities of these bacteria. Apart from Oenococcus oeni, which is regarded as the most promising species for MLF, glycosidic activities have also been observed in wine related members of the genera Lactobacillus and Pediococcus. Nevertheless, information on the involved enzymes including their potential use in winemaking is limited. In this study we report that β-glucosidases with similar protein sequences can be identified in the genomes of Lactobacillus brevis, O. oeni and Leuconostoc mesenteroides. TTG serves as start codon for the glucosidase gene of O. oeni. The β-glucosidase of O. oeni ATCC BAA-1163 was expressed in E. coli and partially characterized. The enzyme displayed characteristics similar to β-glucosidases isolated from L. brevis and L. mesenteroides. A pH optimum between 5.0 and 5.5, and a K m of 0.17 mmol L−1 pNP-β-d-glucopyranoside were determined. A glycosyltransferase activity was observed in the presence of ethanol. The enzyme from O. oeni was capable to hydrolyze glycosides extracted from Muskat wine. This study also contains a report on glycosidase activities of several LAB species including Oenococcus kitaharae.  相似文献   

11.
This study reports on monitoring Oenococcus oeni intraspecific diversity evolution during winemaking. Three different wines were monitored. The proportion of O. oeni species was determined by species-specific PCR and O. oeni strains were distinguished by multiplex PCR-RAPD. Each strain was tested by PCR for 16 significant markers revealed by a previous genetic comparison between a strong oenological potential strain and one with poor oenological potential. Population levels and diversity changed according to winemaking stages, oenological practices and the chemical properties of the wine. In all situations, O. oeni was the best-adapted species. Within the O. oeni group, intraspecific strain diversity decreased and the malolactic fermentation was the result of the most resistant strains with the highest number of markers.  相似文献   

12.
The initial conversion of grape must to wine is an alcoholic fermentation (AF) largely carried out by one or more strains of yeast, typically Saccharomyces cerevisiae. After the AF, a secondary or malolactic fermentation (MLF) which is carried out by lactic acid bacteria (LAB) is often undertaken. The MLF involves the bioconversion of malic acid to lactic acid and carbon dioxide. The ability to metabolise l-malic acid is strain specific, and both individual Oenococcus oeni strains and other LAB strains vary in their ability to efficiently carry out MLF. Aside from impacts on acidity, LAB can also metabolise other precursors present in wine during fermentation and, therefore, alter the chemical composition of the wine resulting in an increased complexity of wine aroma and flavour. Recent research has focused on three main areas: enzymatic changes during MLF, safety of the final product and mechanisms of stress resistance. This review summarises the latest research and technological advances in the rapidly evolving study of MLF and investigates the directions that future research may take.  相似文献   

13.
Aims: To isolate indigenous Oenococcus oeni strains suitable as starters for malolactic fermentation (MLF), using a reliable polyphasic approach. Methods and Results: Oenococcus oeni strains were isolated from Nero di Troia wines undergoing spontaneous MLF. Samples were taken at the end of alcoholic fermentation and during MLF. Wine samples were diluted in a sterile physiological solution and plated on MRS and on modified FT80. Identification of O. oeni strains was performed by a polymerase chain reaction (PCR) experiment using strain‐specific primers. Strains were further grouped using a multiplex RAPD‐PCR analysis. Then, six strains were inoculated in two wine‐like media with two different ethanol concentrations (11 and 13% vol/vol) with a view to evaluate their capacity to grow and to perform MLF. In addition, a quantitative PCR (qRT‐PCR) approach was adapted to monitor the physiological state of the strains selected. Conclusion: A positive correlation between the malolactic activity performance and the ability to develop and tolerate stress conditions was observed for two selected O. oeni strains. Significance and Impact of the Study: The results reported are useful for the selection of indigenous MLF starter cultures with desired oenological traits from typical regional wines. It should be the base for the improvement in organoleptic quality of typical red wine.  相似文献   

14.
Yin B  Yang X  Wei G  Ma Y  Wei D 《Molecular biotechnology》2008,38(3):241-245
Two genes that encode proteins which share 30–35% sequence identity with yeast OYE (Old Yellow Enzyme, an NAD(P)H FMN-oxidoreductase), the well-studied archetype of the OYE protein family, have been identified in Gluconobacter oxydans M5. The two genes are localized in the chromosome and plasmid, respectively. Comparison of the deduced amino acid sequences of the enzymes with database entries revealed 75.1% similarity and 64.9% identity to that of the Pseudomonas syringae pv. glycinea NAD(P)H-dependent 2-cyclohexen-1-one reductase. The two proteins were expressed as His-tag fusion proteins in Escherichia coli and purified. The ability of the purified proteins to hydrogenate citral was identified. The results showed that the α,β-double bond of citral cis-isomer ‘neral’ could be stereoselectively reduced to produce citronellal by the purified OYE homologues.  相似文献   

15.
Analysis of the Thermoplasma acidophilum DSM 1728 genome identified two putative alcohol dehydrogenase (ADH) open reading frames showing 50.4% identity against each other. The corresponding genes Ta0841 and Ta1316 encode proteins of 336 and 328 amino acids with molecular masses of 36.48 and 36.01 kDa, respectively. The genes were expressed in Escherichia coli and the recombinant enzymes were functionally assessed for activity. Throughout the study only Ta1316 ADH resulted active in the oxidative reaction in the pH range 2–8 (optimal pH 5.0) and temperatures from 25 to 90°C (optimal 75°C). This ADH catalyzes the oxidation of several alcohols such as ethanol, methanol, 2-propanol, butanol, and pentanol during the reduction of the cofactor NAD+. The highest activity was found in the presence of ethanol producing optically pure acetaldehyde. The specific enzyme activity of the purified Ta1316 ADH with ethanol as a substrate in the optimal conditions was 628.7 U/mg.  相似文献   

16.
Sulphur-containing compounds in wine have been extensively studied because of their effect on wine flavour and quality. In this study, an enzyme that degrades sulphur-containing amino acids was cloned and characterised from two Oenococcus oeni strains of oenological origins. The enzyme has features of a cystathionine-γ-lyase (EC 4.4.1.1), a pyridoxal-5-phosphate-dependent enzyme catalysing an α,γ-elimination reaction of l-cystathionine to produce l-cysteine, α-ketobutyrate and ammonia. Moreover, it was able to catalyse an α,β-elimination reaction producing homocysteine, pyruvate and ammonia from l-cystathionine. An elimination reaction of l-cysteine and dl-homocysteine was also efficiently catalysed by the enzyme, resulting in the formation of hydrogen sulphide. Furthermore, the ability to demethiolate methionine into methanethiol, an unfavourable volatile sulphur compound in terms of wine aroma, was observed. The findings of this work suggest that O. oeni seems to play a minor role in the production of volatile sulphur compounds during the vinification process as the optimal conditions were far from the harsh wine environment.  相似文献   

17.
A technological characterization of Oenococcus oeni strains isolated from Aglianico wines was performed to select starter cultures for malolactic fermentation (MLF). One hundred and fifty six O. oeni isolates were extracted from Aglianico wines, and identified by using species-specific PCR. Malolactic activity (MLA), sulphur dioxide (SO2) resistance, acetaldehyde metabolism and other technological characteristics were tested. Differences in the technologically relevant characteristics were observed. All O. oeni strains were able to grow at low temperature and none in presence of 14% of ethanol. About 80% of O. oeni degraded more than 80% of acetaldehyde, producing ethanol and acetic acid as final products. Among nine O. oeni chosen, four isolates were sensitive to 60 mg of SOl−1, while the other five had high resistance. Considering their technological characteristics, five O. oeni strains could be selected starter cultures for MLF in Aglianico.  相似文献   

18.
The alcohol dehydrogenase gene (ADH1) of Candida utilis ATCC9950 was cloned and expressed in recombinant Escherichia coli. C. utilis ADH1 was obtained by PCR amplification of C. utilis genomic DNA using two degenerate primers. Amino acid sequence analysis of C. utilis ADH1 indicated that it contained a zinc-binding consensus region and a NAD(P)+-binding site, and lacked a mitochondrial targeting peptide. It has a 98 and 73% identity with ADH1s of C. albicans and Saccharomyces cerevisiae, respectively. Amino acid sequence analysis and enzyme characterization with various aliphatic and branched alcohols suggested that C. utilis ADH1 might be a primary alcohol dehydrogenase existing in the cytoplasm and requiring zinc ion and NAD(P)+ for reaction.  相似文献   

19.
An electrophoretic variant in the LDH (l-lactate:NAD oxidoreductase, E.C.1.1.1.27) of Drosophila melanogaster was observed on starch (or polyacrylamide) gels. This variant was found to exhibit an identical isozymic pattern (three isozymes with a decreasing staining density) on starch gel and map position as the Adh locus. On the other hand, anodal polyacrylamide gel electrophoresis in crude extracts has shown LDH to consist of nine bands and ADH of four bands. We have shown that ADH (Alcohol:NAD oxidoreductase, E.C.1.1.1.1) also oxidizes l(+)-lactate or d(–)-lactate with the NAD, while LDH oxidizes ethanol. By using various genetic and biochemical techniques, we have shown that the observed Ldh electrophoretic variant was not a real one and could be attributed to the presence of ADH. We have called this phenomenon pseudopolymorphism, and the problem of enzyme specificity has been examined. The appearance of a band in an assay using lactic acid as a substrate is not sufficient evidence for the presence of LDH. Hence, caution is called for before characterizing an electrophoretic band on a gel as being equivalent to the presence of a genetic locus. Out of the nine electrophoretic zones of activity observed on polyacrylamide gel (or out of the six previously observed) using crude extract, only two (one major and one minor) belong to LDH, as revealed by purified enzyme preparations. Furthermore, purified LDH exhibits activity in two bands on starch gel (out of three observed in crude extracts), which appear in different positions as compared with those of ADH. Finally, one band which responds to the presence of d(–)-lactate but not to l(+)-lactate has been revealed.  相似文献   

20.
The activity of NAD(P)H-dependent glutamate synthase (E.C. 1.4.1.14) has been demonstrated in extracts from etiolated shoots of pea (Pisum sativum L.) and barley (Hordeum vulgare L.). This activity does not significantly alter upon greening of the etiolated shoots, and is at a similar level in light-grown material. Ferredoxin-dependent glutamate synthase (E.C. 1.4.7.1) has low activity in etiolated shoots but increases rapidly on greening. In light grown leaves ferredoxin-dependent activity is 30–40-fold higher than NAD(P)H-dependent activity. It is not considered that the NAD(P)H-dependent glutamate synthase plays an important role in ammonia assimilation in the photosynthetic tissue of higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号