首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The nucleotide sequence of the gene which encodes the major outer-shell glycoprotein of UK bovine rotavirus has been determined. The dsRNA genome segment encoding this protein was converted into ds cDNA and cloned into pBR322 for sequence studies. The gene is 1062 base pairs in length and contains a single, long, open reading-frame capable of coding for a protein of 326 amino-acids. This would leave 5' and 3' non-coding regions of 48 and 36 nucleotides in the mRNA. The predicted amino-acid sequence contains three possible glycosylation sites of the type Asn-X-Ser Thr, and an extremely hydrophobic N-terminal region. This sequence is discussed in the light of the known properties and functions of the protein.  相似文献   

3.
4.
5.
The nucleotide sequence of the gene that codes for the major inner capsid protein of the simian rotavirus SA11 has been determined. A DNA copy of mRNA from gene 6 was cloned in the E. coli plasmid pBR322. The full-length gene is 1357 nucleotides long with a 5'-noncoding region of 23 nucleotides and a 3'-noncoding region of 140 nucleotides. The gene contains a single, long, open reading-frame of 1194 nucleotides capable of coding for a protein of 397 amino acids with a molecular weight of 44,816. The predicted protein product is relatively proline-rich with a net charge at neutral pH of -3.5. One stretch of 53 amino acids (encoded by nucleotides 327-485) is basic.  相似文献   

6.
The nucleotide sequence of human (Wa) rotavirus genome segment 9, which encodes the serotype-specific antigen VP7, has been determined. Comparison of the deduced amino acid sequence of Wa VP7 protein to the sequences of simian SA11 and UK bovine VP7 proteins shows that the majority of the amino acid differences are clustered between amino acid residues 37 through 49, 65 through 75, 87 through 105, 122 through 126, 146 through 149, 178 through 181, and 208 through 242. A hydrophilicity profile of the three proteins reveals correlations between hydrophilic peaks, potentially antigenic determinants, and certain clusters of amino acid changes.  相似文献   

7.
8.
A full length cDNA copy of dsRNA segment seven of Simian 11 rotavirus has been obtained by standard molecular cloning techniques. Segment seven codes for the non-structural viral protein NCVP4 and is 1104 nucleotides in length with putative 5'- and 3'- terminal non-coding regions of 25 and 134 residues respectively. The longest open reading frame of 315 codons extends from nucleotide 26 to 970 inclusive. However, the presence nearby of two other AUG codons makes it unclear which codon is used for initiation. The second AUG conforms to the Kozak consensus sequence and if utilised, would yield a protein 312 amino acids in length with a nett charge at pH7 of -2.5. Determination of the gene 7 sequence indicates that terminal sequence conservation among rotavirus gene segments is limited to three and two nucleotides at the 5' and 3' ends of the plus strand, respectively.  相似文献   

9.
10.
11.
12.
A cloned DNA copy of simian rotavirus SA11 genomic segment 10 was used to confirm the assignment of the nonstructural glycoprotein NCVP5 to this gene. Determination of the nucleotide sequence for gene 10 indicated that NCVP5 is 175 amino acids in length and has an N-terminal hydrophobic region with the characteristics of a signal sequence for membrane translocation. Unexpectedly, this region was also the location for the only two potential glycosylation sites within the molecule, asparagine residues 8 and 18. The carbohydrates carried by NCVP5 were of the high-mannose type, Man9GlcNAc and Man8GlcNAc, with the mannose 9 species predominating; no complex oligosaccharides were present. If these asparagine residues are the sites for carbohydrate attachment, this implies that cleavage of the putative signal peptide does not occur during the maturation of this nonstructural glycoprotein.  相似文献   

13.
14.
15.
M E Hardy  G N Woode  Z C Xu    M Gorziglia 《Journal of virology》1991,65(10):5535-5538
In a previous study (S. Zheng, G. N. Woode, D. R. Melendy, and R. F. Ramig, J. Clin. Microbiol. 27:1939-1945, 1989), it was predicted that the VP7 serotype 6 bovine rotavirus strains NCDV and B641 do not share antigenically similar VP4s. In this study, gene 4 and the VP7 gene of B641 were sequenced, and the amino acid sequences were deduced and compared with those of NCDV and bovine rotavirus strain UK. Amino acid sequence homology in VP7 between the three strains was greater than 94%, confirming their relationship as VP7 serotype 6 viruses. VP4 of B641 showed amino acid homology to UK of 94% but only 73% homology to NCDV. Sequence comparison of a variable region of VP8 demonstrated amino acid homology of 53% between B641 and NCDV, whereas B641 and UK were 89% homologous in this region. These results confirm the earlier prediction that although the same serotype by VP7 reactivity, B641 and NCDV represent different VP4 serotypes. This difference in VP4 may have contributed to the lack of homotypic protection observed in calves, implicating VP4 as an important antigen in the active immune response to rotavirus infection in bovines.  相似文献   

16.
StsI endonuclease (R.StsI), a type IIs restriction endonuclease found in Streptococcus sanguis 54, recognizes the same sequence as FokI but cleaves at different positions. A DNA fragment that carried the genes for R.StsI and StsI methylase (M.StsI) was cloned from the chromosomal DNA of S.sanguis 54, and its nucleotide sequence was analyzed. The endonuclease gene was 1,806 bp long, corresponding to a protein of 602 amino acid residues (M(r) = 68,388), and the methylase gene was 1,959 bp long, corresponding to a protein of 653 amino acid residues (M(r) = 76,064). The assignment of the endonuclease gene was confirmed by analysis of the N-terminal amino acid sequence. Genes for the two proteins were in a tail-to-tail orientation, separated by a 131-nucleotide intercistronic region. The predicted amino acid sequences between the StsI system and the FokI system showed a 49% identity between the methylases and a 30% identity between the endonucleases. The sequence comparison of M.StsI with various methylases showed that the N-terminal half of M.StsI matches M.NIaIII, and the C-terminal half matches adenine methylases that recognize GATC and GATATC.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号