首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Daucus carota L. cell lines secrete a characteristic set of arabinogalactan proteins (AGPs) into the medium. The composition of this set of AGPs changes with the age of the culture, as can be determined by crossed electrophoresis with the specific AGP-binding agent, β-glucosyl Yariv reagent. Addition of AGPs isolated from the medium of a non-embryogenic cell line to an expiant culture initiated the development of the culture to a non-embryogenic cell line. Without addition of AGPs or with addition of carrot-seed AGPs an embryogenic cell line was established. Three-month-old embryogenic cell lines usually contain less than 30% of dense, highly cytoplasmic cells, i.e. the embryogenic cells, but when carrot-seed AGPs were added this percentage increased to 80%. Addition of carrot-seed AGPs to a two-year-old, non-embryogenic cell line resulted in the re-induction of embryogenic potential. These results show that specific AGPs are essential in somatic embryogenesis and are able to direct development of cells.  相似文献   

2.
Summary Embryogenic tissues of sugi (Cryptomeria japonica) were induced on a modified Campbell and Durzan (CD) medium containing 1 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 600 mg l−1 glutamine, and subcultured in the medium of the same composition for over 1 yr. This resulted in a mixed culture of embryogenic and non-embryogenic cells. When embryogenic cells were isolated and cultured independently, their capacity to form embryogenic aggregates was lost. Thus, the non-embryogenic cells present within a mixed culture system were essential to the formation of embryogenic aggregates. When embryogenic tissues were isolated and cultured independently on a high glutamine-containing (2400 mg l−1) medium, dry weights and endogenous levels of glutamine increased, and the tissue could generate a large number of embryogenic aggregates. Amino acid analysis of embryogenic and non-embryogenic cells from the maintenance culture indicated a higher level of glutamine was present in the latter. The high endogenous level of glutamine in the non-embryogenic portion of mixed cell masses may be the supplier of glutamine for maintaining the embryogenic property of the tissues.  相似文献   

3.
Summary Previous results have shown that some proteins secreted in the culture medium are involved with the formation of embryogenic cells and can modify somatic embryo differentiation. Undifferentiated cell suspensions grown in the presence of 13 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and obtained from embryogenic and non-embryogenic callus were used to study these events in sugarcane plants (cv.PR-62258). The cell suspension growth curves were determined and soluble proteins were extracted from embryogenic and non-embryogenic callus and culture medium from cell suspensions. In embryogenic callus we detected 1.43 times more protein than in non-embryogenic callus and the electrophoretic protein patterns show specific polypeptides for both callus types. In embryogenic callus we detected a cluster of four polypeptides in the range of 38–44 kDa and another polypeptide of 23 kDa that were not observed in non-embryogenic callus. In nonembryogenic callus there is a 35-kDa polypeptide that was not detected in embryogenic callus. In the case of extracellular proteins, the medium from embryogenic cell suspensions contained four polypeptides of 41, 38, 34 and 28 kDa that were slightly detected in the medium from non-embryogenic cell cultures; we also detected a band at 15 kDa that could not be observed in the medium from non-embryogenic cell suspensions. These results suggest that the development of embryogenic callus and cell suspensions is related to the type and amount of intracellular proteins in the callus cells and to the secreted proteins from these cells into the medium.  相似文献   

4.
We identified and isolated a monoclonal antibody (MAb 3G2) raised against extracellular proteins from microcluster cells of orchard grass (Dactylis glomerata L.) embryogenic suspension culture. MAb 3G2 recognized with high specificity an antigen ionically bound within the primary cell wall and in the culture medium of microcluster cells. Two-dimensional polyacrylamide gel analysis and blotting of proteins on PVDF membrane showed that MAb 3G2 detected a single polypeptide of apparent molecular mass of 48 kDa and an isoelectric point (pI) of 5.2, designated EP48. A transient expression during somatic embryogenesis was observed for EP48. Indirect immunofluorescence showed that this protein highly accumulated in the cell walls of some single cells, microclusters and partly in proembryogenic masses (PEMs), but not in globular embryos of the embryogenic cell line and microclusters from the non-embryogenic cell line. Signal intensity varied between individual cells of the same population and in successive stages of somatic embryo development. Screening of several D. glomerata L. embryogenic and non-embryogenic cell lines with MAb 3G2 indicated the presence of ECP48 in only embryogenic suspension cultures at early stages of embryo development long before morphological changes have taken place and thus it could serve as an early marker for embryogenic potential in D. glomerata L. suspension cultures.  相似文献   

5.
We report the study of the dynamics of substrate utilization by the genetic modified strain Yarrowia lipolytica H222-S4(p67ICL1) T5. In contrast to its wild-type equivalent, this recombinant strain is able to excrete the sucrose cleaving enzyme invertase. Both the sucrose degradation rate and the glucose and fructose consumption rate have been investigated. In all experiments, satisfied amounts of invertase were produced so that all sucrose was cleaved into its monomers. While glucose and fructose as sole carbon sources were consumed with the same uptake rate, a clear preference for glucose uptake was detected in cultivations with sucrose as sole carbon source or mixed substrates when compared with fructose. Nevertheless, no real diauxie could be observed because of partly simultaneous consumption of both monosaccharides. Fructose being present in the cultivation medium at the beginning of the fermentation led to the retardation of glucose uptake. This effect was observed for various fructose starting concentrations in the range of 5–85 g/l.  相似文献   

6.
Changes in sugar composition (sucrose, glucose and fructose) of medium, callus, stem and leaves of in vitro proliferating explants of Actinidia deliciosa C.F. Liang, Hayward were analyzed together with explant growth at 0, 15, 30, 45 and 60 days of culturing. Autoclaving hydrolyzes a small part of the initial sucrose of the medium into glucose and fructose. In presence of Actinidia explants the initial sucrose decreased to 32% after 15 days of culturing, to 4% after 30 days and to 0.08% at the end of the culture period (60 days). Sucrose increase in the explants did not parallel with its decrease in the medium. Sucrose presence in the explants was evident only during the last month of culturing. After 15 days of culturing a large increase of glucose and fructose was found in the medium but it did not equal the hydrolyzed sucrose. The level of these two monosaccharides remained stable in the medium until the 30th day, then significantly decreased in the second month of culture; neither were completely exhausted at the end of the culture. In the whole explant the highest amount of glucose and fructose was reached after 30 days of culturing.The balance of the three sugars in the medium-explant system, as % distribution of carbon atoms, showed a utilization throughout the whole culture period.Qualitative analyses performed on medium, callus and leaves at 0, 15, and 30 days of culturing revealed the presence of glucose and fructose only and no significant amounts of other hexoses or pentoses. Starch accumulation in the leaves was also observed throughout the culturing.Paper No. 724  相似文献   

7.
Summary Sucrose, glucose, and fructose as carbon sources in culture medium were assessed in hairy root cultures ofCatharanthus roseus. The cultures preferentially consumed sucrose, resulting in about 40% (dry wt) higher growth rate. However, fructose enhanced the cathranthine yield about two-fold. The elevated yield was not seemingly ascribed to the higher osmolarity per unit weight of fructose than sucrose. A two stage culture using sucrose (1st) and fructose (2nd) improved volumetric yields of catharanthine about two-fold, i.e. 41 mg/l.  相似文献   

8.
After a lag phase of 2 days, batch-grown cells of carrot ( Daucus carota L.) cv. Flakkese entered the exponential growth phase and started to accumulate sucrose and hexoses. Short-term feeding 13C-glucose in this period resulted in only minor labelling of sucrose or fructose. CO2 production from [1-13C]- and [6-13C]-glucose revealed, that at least 40% of the added glucose passed through the oxidative pentose phosphate pathway (OPPP), up to 40% through glycolysis leaving only minor 13C-glucose for incorporation in various cell components in the exponential growth phase. After about 11 days of culture, the medium sugars were exhausted, cells entered the stationary growth phase and consumed stored sugar. Both neutral and acid invertase (EC 3.2.1.26) and sucrose synthase (EC 2.4.1.13) increased 50% from day 0 to days 11–13; thereafter their levels decreased again. Labelling with 13C-glucose resulted in the accumulation of labelled sucrose and fructose during the stationary growth phase. Sucrose labelling was transient, i.e. after 6 h its level started to decrease again. Labelled fructose, however, evolved slower and increased even after 8 h. In sucrose and fructose up to 20% of the 13C-label was exchanged from C-1 to C-6 carbons, indicating intensive cycling of at least 40% of the carbon between hexoses and triose phosphates. In the stationary phase only 10% of the labelled glucose passed through the OPPP and about 30% passed through the respiratory pathway; the remaining 60% was incorporated in cell constituents and sugars. Comparing the various cycles revealed that the regulation of the OPPP operated relatively independently from the cytosolic cycling of hexose phosphates through sucrose and from the cycling between hexose phosphates and triose phosphates.  相似文献   

9.
Different carbon sources, sterilized by autoclaving or filter-sterilization, were tested during induction, maintenance, and plant regeneration of embryogenic Miscanthus x ogiformis Honda `Giganteus' callus, derived from various explant types. Explants from small immature inflorescences, between 2.5 and 8 mm, produced more embryogenic callus than explants from shorter or longer inflorescences, shoot apices or leaf explants. On medium containing mannitol or sorbitol, only small amounts of callus were induced and no embryogenic callus was formed. Callus induction and embryogenic callus formation on shoot apices and immature inflorescences did not differ significantly between media containing sucrose, glucose, fructose, maltose or a mixture of glucose and fructose. However, callus induction and embryogenic callus formation from leaf explants were best on glucose. A higher percentage of leaf explants formed callus on autoclaved sucrose, as opposed to the other carbon sources where filter-sterilization in general resulted in a higher callus percentage. The growth rate of embryogenic callus was influenced both by carbon source and sterilization method when less than 1 g of callus was inoculated. None of the tested carbon sources could considerably improve plant regeneration from M. `Giganteus' callus, but a higher number of plants tended to be regenerated per callus piece from filter-sterilized carbon sources. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Gray starlings Sturnus cineraceus, azure-winged magpies Cyanopica cyana and brown-eared bulbuls Hypsipetes amaurotis are among the main bird pests in commercial fruit orchards in central Japan. Recently Brugger & Nelms (1991) suggested that developing high-sucrose fruit cultivars could reduce crop damage, because some pest birds lack the enzyme sucrase and can develop an aversion to sucrose. Preferences for, and digestibilities of, the monosaccharides glucose and fructose and the disaccharide sucrose by these pests species were therefore studied to assess whether this idea would be applicable in central Japan. Gray starlings and brown-eared bulbuls were able to detect glucose, fructose, a mixture of glucose and fructose, and sucrose at a concentration of 12% w/v. Azure-winged magpies also detected glucose and fructose, but failed to detect sucrose at the same concentration. In pairwise preference trials gray starlings and azure-winged magpies selected the monosaccharides over sucrose, but brown-eared bulbuls did not. To estimate the digestibility of the sugars the apparent assimilated mass coefficient, AMC*, was calculated for each species eating each sugar by measuring intake and faecal output. Monosaccharides had mean AMC*s of 0.77, 0.96 and 0.92 when consumed by gray starlings, azure-winged magpies and brown-earned bulbuls respectively. AMC* values for sucrose were 0.82 and 0.49 for brown-eared bulbuls and azure-winged magpies respectively, but gray starlings were shown to be unable to digest sucrose. As AMC* values varied from 0.75 to 0.97, consumption rates of sugars increased as digestibility decreased. Although increasing sucrose contents of commercial fruits may deter sucrase-deficient birds such as gray starlings from depredating fruits, it may also lead to increased crop damage by species such as the azure-winged magpie and brown-eared bulbul which may have to consume more of the less digestible fruit in order to meet their energy requirements.  相似文献   

11.
《Plant Science Letters》1984,33(1):23-29
The contents of nucleic acids and rDNA were estimated during the development of carrot cell suspensions cultured under two different conditions. The cells transferred from stock culture to the medium without 2,4-dichlorophenoxyacetic acid (2,4-D) induced the embryogenesis (embryogenic culture), while the cells inoculated to the medium with 0.2 mg/l 2,4-D did not form any embryos (non-embryogenic culture). The ratio of RNA to DNA of both cultures increased in the early stage of the culture. The rise of the ratio in embryogenic culture was much higher than that in non-embryogenic culture, which showed that embryogenic culture accumulated RNA prior to the formation of embryos. The rDNA amount of non-embryogenic culture remained constant throughout the culture period. Although embryogenic culture showed a slight change in rDNA amount, the differences were at most 12% and the quantitative stability of the rDNA was demonstrated during the development of carrot cell suspension cultures.  相似文献   

12.
Media from embryogenic and non-embryogenic cell suspension cultures were analysed for protein content, electrophoretic protein patterns, glycoproteins and activity of peroxidases and β-glucosidases in order to characterize the physiological status of the cultures. On a dry mass basis the amount of extracellular proteins per cell was greater in embryogenic suspensions than in non-embryogenic suspensions. Non-embryogenic suspensions contained unidentified slimy compounds which were not present inembryogenic cultures. The extracellular Concanavalin A-specific glycoproteins gave different isoelectric focussing patterns and thus enabled embryogenic and non-embryogenic cultures to be differentiated. The extracellular peroxidase activity per cell dry mass was far greater in embryogenic than in non-embryogenic cultures. The isoenzymes differed in number and composition of the anionic bands. β-glucosidases were found in the same range of activity in both culture types, but the time course of enzyme activity during cultivation was significantly different. In the embryogenic culture the activity was correlated with dry mass increase, whereas in the non-embryogenic suspension the activity reached maximum during the linear growth phase. Polyphenoloxidase which was recently recognized as an intracellular marker for embryogenic stages was not released into culture media. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Callus cultures were initiated from mature excised caryopses of bahiagrass (Paspalum notatum Flugge) on Murashige & Skoog medium supplemented with 20 gl–1 sucrose and 2 mg l–1 2,4-D. Excised mature caryopses readily germinated and callus developed at the base of coleoptiles. There was considerable variation in the amount of non-embryogenic callus among the cultures. Most of the explants produced non-embryogenic translucent callus consisting of thin-walled cells and unorganized tissue. Some of these calli gave rise only to roots. Other explants formed embryogenic calli which were distinguished morphologically as white, globular and friable. Somatic embryos developed and germinated precociously when embryogenic calli were transferred to a 2,4-D-free medium. Somatic embryogenesis was confirmed by histological sections and scanning electron microscopy. Of the 300 cultures, 35 were embryogenic but only 10 produced plants that were successfully grown to maturity.  相似文献   

14.
Carbohydrate metabolism was investigated during spruce somatic embryogenesis. During the period of maintenance corresponding to the active phase of embryogenic tissue growth, activities of soluble acid invertase and alkaline invertase increased together with cellular glucose and fructose levels. During the same time, sucrose phosphate synthase (SPS) activity increased while sucrose synthase (SuSy) activity stayed constant together with the cellular sucrose level. Therefore, during maintenance, invertases were thought to generate the hexoses necessary for embryogenic tissue growth while SuSy and SPS would allow cellular sucrose to be kept at a constant level. During maturation on sucrose-containing medium, SuSy and SPS activities stayed constant whereas invertase activities were high during the early stage of maturation before declining markedly from the second to the fifth week. This decrease of invertase activities resulted in a decreased hexose:sucrose ratio accompanied by starch and protein deposition. Additionally, carbohydrate metabolism was strongly modified when sucrose in the maturation medium was replaced by equimolar concentrations of glucose and fructose. Essentially, during the first 2 weeks, invertase activities were low in tissues growing on hexose-containing medium while cellular glucose and fructose levels increased. During the same period, SuSy activity increased while the SPS activity stayed constant together with the cellular sucrose level. This metabolism reorganization on hexose-containing medium affected cellular protein and starch levels resulting in a decrease of embryo number and quality. These results provide new knowledge on carbohydrate metabolism during spruce somatic embryogenesis and suggest a regulatory role of exogenous sucrose in embryo development.  相似文献   

15.
Embryogenic and non-embryogenic callus lines derived from the same diploid Cyclamen persicum genotype (`Purple Flamed') were analyzed by flow cytometry and compared to the initial plant material. The DNA content of the diploid plant in the greenhouse was 1.12 pg DNA/2C as estimated in relation to the internal standards tomato nuclei and chicken erythrocytes. In both callus lines the majority of cells contained the same amount of DNA as the initial plant, indicating that no polyploidization has taken place after 5 years of culture on medium containing 2.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.8 mg/l 6-(γ-γ-dimethylallylamino)purine(zip). Thus, our data suggest that in Cyclamen callus lines there was no strict correlation between the ploidy level and the ability to produce somatic embryos. Furthermore, following the proportion of cells in the three phases of the cell cycle (G0/G1, S, G2/M) during one subculture period of 4 weeks revealed high division activity within the first 2 weeks for both callus lines cultured on the 2,4-D-containing medium. However, when transferred to hormone-free medium, the division activity of the embryogenic cell line decreased markedly, corresponding to the differentiation of somatic embryos. In contrast, for the non-embryogenic callus an increase in cells in the G2/M phase was observed. Received: 22 November 1996 / Revision received: 6 January 1997 / Accepted: 20 February 1997  相似文献   

16.
The effects of four exogenous amino acids (proline, glycine, asparagine and serine) on the production of maize embryogenic callus and on its endogenous amino acid content have been investigated. For this purpose, an established embryogenic line of Type 1 callus from the inbred W64Ao2 has been used. From the results it may be concluded that a concentration of proline exceeding 6 mM is negative for the production of embryogenic callus. When proline is eliminated from the medium, other amino acids tested in certain concentrations yield a percentage of embryogenic callus production that exceeds or equals that of proline. The endogenous free proline content in embryogenic callus is significantly higher than that in non-embryogenic callus regardless of proline presence in the medium. The only exception are the glycine-containing media, in which endogenous free alanine of embryogenic callus increases at the expense of endogenous free proline. This study suggest a positive role of endogenous free proline or alanine accumulation in the embryogenic callus production which might be related to an adaptation to the metabolic changes produced by in vitro culture and embryogenesis induction. Furthermore, these results indicate that treatments with amino acids that are different from proline can be used to improve the efficiency of embryogenic callus production from well established maize callus cultures.Abbreviations Ala alanine - Asn asparagine - 2,4-d 2,4-dichlorophenoxyacetic acid - EC embryogenic callus - nEC non-embryogenic callus - Gaba gamma-aminobutyric acid - Glu glutamic acid - Gly glycine - Pro proline - Ser serine  相似文献   

17.
Summary The utilization of some mono- and oligosaccharides by the members of Choanephoraceae has been studied in detail. The filtrate was analysed by using circular paper chromatography. Amongst the seven monosaccharides tested, viz., glucose, galactose, fructose, mannose, xylose, sorbose and rhamnose, the first five were completely utilized within the specified period, while sorbose and rhamnose remained in the medium throughout the incubation period. A mixture of glucose, galactose and fructose was found to support better growth of all the present species, than that when these sugars were supplied singly. Out of the four oligosaccharides tested, only maltose could be hydrolysed, and it was completely consumed within the specified period. The other three oligosaccharides, viz., sucrose, lactose and raffinose were not hydrolysed and they remained in the medium throughout the incubation period.  相似文献   

18.
Red beet hairy root cultures, obtained after genetic transformation with Agrobacterium rhizogenes, are completely heterotrophic and synthesize betalaines (BNs). Upon subjecting the hairy roots to treatments containing different sugars (3% w/v) it was found that sucrose was rapidly utilized, followed by maltose, and a very limited use of glucose, but the other hexoses – fructose, lactose, xylose and galactose or glycerol totally suppressed both growth and BN synthesis. No habituation or adaptability to maltose or glucose occurred, evidenced by the lack of growth upon re-culture in respective medium. Glycerol, was not taken up alone, but was utilized to a considerable extent in the presence of low levels of sucrose for growth only but not BN synthesis. Red beet hairy root culture did not exogenously hydrolyse sucrose to hexoses, as there were only traces of reducing sugar present in the medium soon after inoculation, without an increase later, confirmed by HPLC. There was an increase in medium osmolarity in the presence of fructose indicating the exudation of certain compounds from the roots. Red beet hairy roots appear useful as a model system to study sugar metabolism/signalling due to their sensitivity to different sugars that may directly link to morphological changes and BN synthesis.  相似文献   

19.
The influence of sugars in culture media on the kinetics of the mono- and disaccharide uptake and cell growth behavior was studied by mid-infrared spectroscopy using a Fourier transform infrared spectrometer (FT-IR) equipped with an attenuate total reflection accessory (ATR). We performed the plant cell cultivation with Nicotiana tabacum cv. Bright Yellow No.2 (TBY-2) cells in the culture media, which contained glucose, fructose, mannose, galactose, sucrose, trehalose, maltose or lactose. Consequently, the differences of the kinetic sugar uptake and cell growth behavior among all the cultivations were confirmed. In particular, a very long lag time before the galactose uptake was observed, and the spectral-pattern of the maltose medium presented almost the same as the initial one during the cultivation. Furthermore, base on the non-dimensional cultivation time for cell growth behavior, it was suggested that the TBY-2 cells consumed sugar before cell growth and produced the ethanol just after cell growth.  相似文献   

20.
Summary Embryogenic callus induced from mature caryopses of perennial ryegrass (Lolium perenne L.) were placed in liquid half-strength Murashige and Skoog (MS) basal medium and supplemented with 6.0 mg/l 2,4-dichlorophenoxy acetic acid (2,4-D), 3 g/l (w/v) casein hydrolysate (CH), and B5 vitamins, to initiate fast-growing highly embryogenic cell suspension cultures. Newly initiated suspension cultures contained a high level of large non-embryogenic cells (NE) with relatively few embryogenic (E) cells. Cell types were separated by discontinuous Percolls gradients or by filtering the newly initiated cultures through 31-μm nylon mesh. The growth conditions of the E cell were optimized by testing various media components including 2,4-D and sucrose, and subculture diluton ratio. Optimal shoot formation occurred after pretreatment of the embryogenic cells on solidified callus maintenance medium supplemented with 60 mg/l cefotaxime for 4 weeks prior to transfer to regeneration medium Regeneration media consisted of half-strength MS basal medium supplemented with B5 vitamins, 0.5 mg/l fluridone, and 0.5 mg/l BA. Most plants regenerated were albino with only a few green plants. Journal Paper number MAES 2959 of the Massachusetts Agricultural Experiment Station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号