首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major function of the hepatitis C virus (HCV) core protein is the interaction with genomic RNA to form the nucleocapsid, an essential component of the virus particle. Analyses to identify basic amino acid residues of HCV core protein, important for capsid assembly, were initially performed with a cell-free system, which did not indicate the importance of these residues for HCV infectivity. The development of a cell culture system for HCV (HCVcc) allows a more precise analysis of these core protein amino acids during the HCV life cycle. In the present study, we used a mutational analysis in the context of the HCVcc system to determine the role of the basic amino acid residues of the core protein in HCV infectivity. We focused our analysis on basic residues located in two clusters (cluster 1, amino acids [aa]6 to 23; cluster 2, aa 39 to 62) within the N-terminal 62 amino acids of the HCV core protein. Our data indicate that basic residues of the first cluster have little impact on replication and are dispensable for infectivity. Furthermore, only four basic amino acids residues of the second cluster (R50, K51, R59, and R62) were essential for the production of infectious viral particles. Mutation of these residues did not interfere with core protein subcellular localization, core protein-RNA interaction, or core protein oligomerization. Moreover, these mutations had no effect on core protein envelopment by intracellular membranes. Together, these data indicate that R50, K51, R59, and R62 residues play a major role in the formation of infectious viral particles at a post-nucleocapsid assembly step.  相似文献   

2.
The sequence of the 5'-terminal 106 nucleotides of cucumber mosaic virus (strain Y) RNA 4, the mRNA coding for viral coat protein, has been determined. The first AUG was located at 77 nucleotides from the 5'-terminus and was confirmed to be an initiation codon by analysis of the N-terminal amino acid sequence of the protein. The nucleotide sequence (positions 77-106) beyond the AUG codon predicted the sequence of ten amino acids corresponding to the N-terminal region of the protein, which exactly matched the determined amino acid sequence containing an acetyl methionine as the N-terminal amino acid. The distance of the initiation codon AUG from the cap structure was 76 nucleotides and the longest among the mRNAs for coat protein of plant viruses so far reported (9-36 nucleotides). This noncoding region is rich in U residues (40%) and the number of G residues (21 nucleotides) is the largest among these mRNAs (usually 1 or 2 residues). A possible secondary structure is postulated for the region, which might be implicated in efficient translation of the RNA 4 in vivo.  相似文献   

3.
The amino acid sequence of the egg yolk storage protein phosvitin has been deduced from the nucleotide sequence of part of the chicken vitellogenin gene. Of the phosvitin sequence, 210 amino acids including the N-terminal residue are contained on one large exon, whereas the remaining six amino acids are encoded on the next exon. Phosvitin contains a core region of 99 amino acids, consisting of 80 serines, grouped in runs of maximally 14 residues interspersed by arginines, lysines, and asparagines. The serines of the core region are encoded by AGC and AGT codons exclusively and the arginines by AGA and AGG, which results in a continuous stretch of 99 codons with adenine in the first position. The N-terminal quarter of the phosvitin sequence contains 16 serines grouped in a cluster with alanines and threonines and coded mainly by TCX triplets. The C-terminal part includes 27 serines, preferentially coded by AGC and AGT, 13 histidine residues, and the sequence ...Asn-Gly-Ser... at which the carbohydrate moiety of phosvitin is attached. Heteroduplex formation between cloned DNAs from chicken and Xenopus vitellogenin genes shows that the phosvitin sequence contains a stretch of highly conserved sequence.  相似文献   

4.
The alphavirus nucleocapsid core is formed through the energetic contributions of multiple noncovalent interactions mediated by the capsid protein. This protein consists of a poorly conserved N-terminal region of unknown function and a C-terminal conserved autoprotease domain with a major role in virion formation. In this study, an 18-amino-acid conserved region, predicted to fold into an alpha-helix (helix I) and embedded in a low-complexity sequence enriched with basic and Pro residues, has been identified in the N-terminal region of the alphavirus capsid proteins. In Sindbis virus, helix I spans residues 38 to 55 and contains three conserved leucine residues, L38, L45, and L52, conforming to the heptad amino acid organization evident in leucine zipper proteins. Helix I consists of an N-terminally truncated heptad and two complete heptad repeats with beta-branched residues and conserved leucine residues occupying the a and d positions of the helix, respectively. Complete or partial deletion of helix I, or single-site substitutions at the conserved leucine residues (L45 and L52), caused a significant decrease in virus replication. The mutant viruses were more sensitive to elevated temperature than wild-type virus. These mutant viruses also failed to accumulate cores in the cytoplasm of infected cells, although they did not have defects in protein translation or processing. Analysis of these mutants using an in vitro assembly system indicated that the majority were defective in core particle assembly. Furthermore, mutant proteins showed a trans-dominant negative phenotype in in vitro assembly reactions involving mutant and wild-type proteins. We propose that helix I plays a central role in the assembly of nucleocapsid cores through coiled coil interactions. These interactions may stabilize subviral intermediates formed through the interactions of the C-terminal domain of the capsid protein and the genomic RNA and contribute to the stability of the virion.  相似文献   

5.
6.
cDNA coding for preproglobulin beta, a precursor protein of 11-S globulin beta subunit, was cloned and the nucleotide sequence has been determined. The sequence covers the whole coding region (1440 base pairs) with 5' and 3' noncoding region (30 and 214 base pairs, respectively). The deduced amino acid sequence of preproglobulin beta consists of a 21-amino-acid N-terminal signal peptide, preceding the acidic gamma polypeptide region (275 amino acids) and the subsequent basic delta region (184 amino acids). The site for post-translational cleavage of the precursor polypeptide to make the gamma and delta chains is estimated to be located between the asparagine-glycine residues. The N-terminal amino acid of the gamma chain of mature 11-S globulin beta subunit was reported to be blocked by 5-oxoproline (pyroglutamic acid) [Ohmiya et al. (1980) Plant Cell Physiol. 21, 157-167]. It was shown that the blocked N-terminal amino acid is coded as a glutamine residue. The derived amino acid sequence was also compared with those of precursor proteins of other 11-S globulins such as soybean glycinin, cotton beta globulin, pea legumin and rape 11-S globulin by dot matrix analysis.  相似文献   

7.
We report here the cloning and sequencing of matrin 3, an acidic internal matrix protein, from a rat insuloma cDNA library. The nucleotide sequence has a single open reading frame encoding a polypeptide of 845 amino acids. The Genbank and National Biomedical Research Foundation databases did not contain any sequences similar to that of matrin 3. The primary structure consists of 33% charged residues and is generally hydrophilic. The amino-terminal region (residues 1-120) is positively charged and contains a large number of amino acids with free hydroxyl groups (26 of the first 100 residues) as in the lamins and several non-lamin intermediate filament proteins. A highly acidic domain (approximately 170 amino acids) near the carboxyl terminus, in which 32% of the amino acid residues are acidic (Glu or Asp), is a characteristic found in other nuclear proteins (Earnshaw, W. C. (1987) J. Cell Biol. 105, 1479-1482). A putative nuclear targeting signal sequence (Ser-Lys-Lys-Lys-Leu-Lys-Lys-Val-Glu) is located in the middle of the highly acidic domain. The corresponding human deduced partial amino acid sequence is 96% identical to the rat sequence, indicating that matrin 3 is a highly conserved protein.  相似文献   

8.
Rabbit antibodies raised against dianthin 30, a ribosome inactivating protein from carnation (Dianthus caryophyllus) leaves, were used to identify a full length dianthin precursor cDNA clone from a lambda gt11 expression library. N-terminal amino acid sequencing of purified dianthin 30 and dianthin 32 confirmed that the clone encoded dianthin 30. The cDNA was 1153 basepairs in length and encoded a precursor protein of 293 amino acid residues. The first 23 N-terminal amino acids of the precursor represented the signal sequence. The protein contained a carboxy-terminal region which, by analogy with barley lectin, may contain a vacuolar targeting signal.  相似文献   

9.
The nucleotide sequence of mRNA for the hemagglutinin-neuraminidase (HN) protein of human parainfluenza type 3 virus obtained from the corresponding cDNA clone had a single long open reading frame encoding a putative protein of 64,254 daltons consisting of 572 amino acids. The deduced protein sequence was confirmed by limited N-terminal amino acid microsequencing of CNBr cleavage fragments of native HN that was purified by immunoprecipitation. The HN protein is moderately hydrophobic and has four potential sites (Asn-X-Ser/Thr) of N-glycosylation in the C-terminal half of the molecule. It is devoid of both the N-terminal signal sequence and the C-terminal membrane anchorage domain characteristic of the hemagglutinin of influenza virus and the fusion (F0) protein of the paramyxoviruses. Instead, it has a single prominent hydrophobic region capable of membrane insertion beginning at 32 residues from the N terminus. This N-terminal membrane insertion is similar to that of influenza virus neuraminidase and the recently reported structures of HN proteins of Sendai virus and simian virus 5.  相似文献   

10.
To map the accessible surface of filamentous bacteriophage fd particles, the epitope structures of polyclonal rabbit serum and three mouse monoclonal antibodies raised against complete phage were analysed. Western blot analysis confirmed the major coat protein, gene VIII product (g8p or pVIII), to be the antigen. Overlapping peptides were synthesised by spot synthesis on cellulose membranes, covering the whole sequence of g8p. Each of the three tested monoclonal antibodies, B62-FE2, B62-GF3/G12 and B62-EA11, reacted with a core epitope covering ten amino acid residues at or near the amino terminus of g8p. The epitope recognised by B62-FE2 consists of the ten N-terminal amino acid residues of g8p. Extension of the amino terminus by various sequences did not inhibit binding, indicating that a terminal amino group is not essential for the interaction. Both B62-GF3/G12 and B62-EA11 recognise internal epitopes covering amino acid residues 3 to 12 of g8p. The epitopes of the polyclonal rabbit serum were also confined to the 12 N-terminal amino acid residues. The contribution of individual amino acid residues to the binding was analysed by a set of peptides containing individual amino acids exchanged by glycine. Accessible residues were Glu2, Asp4, Asp5, Pro6, Lys8, Phe11 and Asp12. The positions of the essential amino acid residues within the epitope are in accordance with a helical conformation of the amino-terminal region of g8p. Further, the results suggest new designs of phage display screening vectors to improve their performance in analysing non-linear epitopes.  相似文献   

11.
The remodeling of nucleoproteins during dog-fish spermiogenesis involves two successive nuclear protein transitions: the first from somatic-type histones to transition proteins during the nuclear elongation of spermatids and the second leading to protamine-DNA association in mature spermatozoa. The chromatin of elongating spermatids contains two transition proteins called S1 and S2. The amino acid sequence of protein S1, a polypeptide of 87 residues was determined previously [Chauvière, M., Martinage, A., Briand, G., Sautière, P. & Chevaillier, Ph. (1987) Eur. J. Biochem. 169, 105-111]. In the present paper, we report the elucidation of the primary structure of the minor transition protein S2 established by automated Edman degradation of the protein and of its fragments generated by cleavage at methionine and aspartate residues. S2 contains 80 residues and has a molecular mass of 9726 Da. S2 is mainly characterized by a high content of basic amino acids mostly represented by lysine, a relatively high level of hydrophobic residues, the presence of six phosphorylatable residues and the lack of cysteine. Its amino acid sequence shows that the N-terminal half is highly basic, while the acidic residues are located in the C-terminal part of the protein where more diversity in amino acids is noticed. The two transition proteins S1 and S2 share striking structural similarities. Few but significative similarities have been detected with the mammalian transition protein TP1 [Kistler, W. S., Noyes, C., Hsu, R. & Heinrikson, R. L. (1975) J. Biol. Chem. 250, 1847-1853], suggesting similar functions for all these proteins in chromatin remodeling during sperm differentiation. By contrast, the two dog-fish spermatid-specific proteins are structurally unrelated to sperm protamines and cannot be considered as their precursors.  相似文献   

12.
Analysis of Mgm101p isolated from mitochondria shows that the mature protein of 27.6 kDa lacks 22 amino acids from the N-terminus. This mitochondrial targeting sequence has been incorporated in the design of oligonucleotides used to determine a functional core of Mgm101p. Progressive deletions, although retaining the targeting sequence, reveal that 76 N-terminal and six C-terminal amino acids of Mgm101p can be removed without altering the ability to complement an mgm101-1(ts) temperature-sensitive mutant. However, this active core is unable to complement mgm101 null mutants, suggesting that the Mgm101p might need to form a dimer or multimer to be functional in vivo. The active core, enriched in basic residues, contains 165 amino acids with a pI of 9.2. Alignment with 22 Mgm101p sequences from other lower eukaryotes shows that a number of amino acids are highly conserved in this region. Random mutagenesis confirms that certain critical amino acids required for function are invariant across the 23 proteins. Searches in the PFAM database revealed a low level of structural similarity between the active core and the Rad52 protein family.  相似文献   

13.
Amino acid sequence of human respiratory syncytial virus envelope glycoprotein (G) was deduced from the DNA sequence of a recombinant plasmid and confirmed by limited amino acid microsequencing of purified 90K G protein. The calculated molecular mass of the protein encoded by the only long open reading frame of 298 amino acids was 32,588 daltons and was somewhat smaller than the 36K polypeptide translated in vitro from mRNA selected by this plasmid. Inspection of the sequence revealed a single hydrophobic domain of 23 amino acids capable of membrane insertion at 41 residues from the N-terminus. There was no N-terminal signal sequence and the hydrophilic N-terminal 20 residues probably represent the cytoplasmic tail of the protein. The N-terminally oriented membrane insertion was somewhat analogous to paramyxovirus hemagglutinin-neuraminidase (HN) and influenza neuraminidase (NA). The protein was moderately hydrophilic and rich in hydroxy-amino acids. It was both N- and O-glycosylated with the latter contributing significantly to the net molecular mass 90K.  相似文献   

14.
Primary structure of the ovine pituitary follitropin beta-subunit.   总被引:2,自引:0,他引:2       下载免费PDF全文
The complete amino acids sequence of the ovine pituitary follitropin beta-subunit was established by studying the tryptic, chymotryptic and thermolytic peptides. The N-terminal sequence of the subunit was confirmed by subjecting the oxidated protein to Edman degradation in an automated sequenator. Automated Edman degradation of the reduced and alkylated (with iodo [14C]acetamide) beta-subunit indicated that most of the molecules used in the sequence studies had lost the N-terminal serine residue. This also confirmed the location of the first five half-cystine residues in the sequence. The proposed structure shows the presence of 111 amino acid residues with the two oligosaccharide moieties linked to asparagine residues located at positions 6 and 23. Heterogeneity occurs at both the termini of the polypeptide chain. Comparison of the sequence of beta-subunit of the ovine hormone with that proposed for human follitropin beta-subunit shows the absence of any deletions in the middle of the peptide chain. Of the 13 replacements, 11 residues can be explained on the basis of a single base change in the codon. The single tryptophan residue of the follitropin occupies an identical position in all the four species that have been studied. The region corresponding to residues 63-105 of the ovine beta-subunit is highly conserved in all the species.  相似文献   

15.
The light-induced global conformational change of photoactive yellow protein was directly observed by small-angle X-ray scattering (SAXS). The N-terminal 6, 15, or 23 amino acid residues were enzymatically truncated (T6, T15, or T23, respectively), and their near-UV intermediates were accumulated under continuous illumination for SAXS measurements. The Kratky plot demonstrated that illumination induced partial loss of globularity. The change in globularity was marked in T6 but very small in T15 and T23, suggesting that structural change in positions 7-15 mainly reduces the globularity. The radius of gyration (R(g)) estimated by Guinier plot was increased by 1.1 A for T6 and 0.7 A for T15 and T23 upon illumination. As T23 lacks most of the N-terminal loop, structural change in the main part composed of the PAS core, helical connector, and beta-scaffold caused an increase of R(g) by 0.7 A. The structural change of positions 7-15 caused an additional increase by 0.4 A. The decrease of R(g) upon truncation of positions 7-15 for dark state was 0.3 A, while that for the intermediate was 0.7 A, suggesting that this region moves outward on formation of the intermediate. These results indicate that a light-induced structural change of PYP takes place in the main part and N-terminal 15 amino acid residues. The former induces only dimensional increase, but the latter results in additional change in shape.  相似文献   

16.
The complete nucleotide sequence of the NS mRNA of vesicular stomatitis virus (New Jersey serotype) was established from two cDNA clones spanning the entire coding region of the mRNA. The gene is 856 nucleotides long and can code for a polypeptide of 274 amino acids. Comparison with the nucleotide sequence of the NS gene of the Indiana serotype revealed only 41% sequence homology. The deduced amino acid sequences of the NS proteins were only 32% homologous, with no identical stretches of more than five amino acids. However, at the C-terminal domain there was a conserved region of 21 amino acids with greater than 90% homology. Surprisingly, relative hydropathicity plots also demonstrated the presence of a large number of hydrophilic amino acids sequestered similarly over the N-terminal half of the protein. In addition, the total number of serine and threonine residues, presumptive phosphorylation sites, was similar and included seven serine and three threonine residues located at identical positions. It appears that during divergent evolution of these two vesicular stomatitis virus serotypes from a common ancestor, considerable mutation occurred in the main body of the gene but the overall structure of the protein was retained. The function of the NS protein in relation to the evolution of the two viruses is discussed.  相似文献   

17.
K Saeki  N Ohtsuka    F Taguchi 《Journal of virology》1997,71(12):9024-9031
We previously demonstrated by site-directed mutagenesis analysis that the amino acid residues at positions 62 and 214 to 216 in the N-terminal region of mouse hepatitis virus (MHV) spike (S) protein are important for receptor-binding activity (H. Suzuki and F. Taguchi, J. Virol. 70:2632-2636, 1996). To further identify the residues responsible for the activity, we isolated the mutant viruses that were not neutralized with the soluble form of MHV receptor proteins, since such mutants were expected to have mutations in amino acids responsible for receptor-binding activity. Five soluble-receptor-resistant (srr) mutants isolated had mutations in a single amino acid at three different positions: one was at position 65 (Leu to His) (srr11) in the S1 subunit and three were at position 1114 (Leu to Phe) (srr3, srr4, and srr7) and one was at position 1163 (Cys to Phe) (srr18) in the S2 subunit. The receptor-binding activity examined by a virus overlay protein blot assay and by a coimmunoprecipitation assay showed that srr11 S protein had extremely reduced binding activity, while the srr7 and srr18 proteins had binding activity similar to that of wild-type cl-2 protein. However, when cell surface receptors were used for the binding assay, all srr mutants showed activity similar to that of the wild type or only slightly reduced activity. These results, together with our previous observations, suggest that amino acids located at positions 62 to 65 of S1, a region conserved among the MHV strains examined, are important for receptor-binding activity. We also discuss the mechanism by which srr mutants with a mutation in S2 showed high resistance to neutralization by a soluble receptor, despite their sufficient level of binding to soluble receptors.  相似文献   

18.
We isolated a cDNA encoding human Rieske Fe-S protein of mitochondrial cytochrome bc1 complex from a fibroblast cDNA library by colony hybridization. The cDNA contains the nucleotide sequence encoding all of the amino acids (274 residues) comprising the putative precursor to the protein. Based on the known amino acid sequence of bovine Rieske Fe-S protein, the N-terminal extension sequence is presumed to be composed of 78 amino acids with a molecular weight of 8053. The mature protein consists of the same number of amino acid residues as that of its rat and bovine counterparts, having a homology of about 92% with the latter.  相似文献   

19.
The amino acid sequence of the bovine mitochondrial nicotinamide nucleotide transhydrogenase was recently deduced from isolated cDNAs and reported [Yamaguchi, M., Hatefi, Y., Trach, K., and Hoch, J.A. (1988) J. Biol. Chem. 263, 2761-2767]. The cDNAs lacked the N-terminal coding region, however, and the 8 N-terminal residues were determined by protein sequencing. In the present study, the nucleotide sequence of the 5' upstream region was determined by dideoxynucleotide sequencing of the transhydrogenase messenger RNA, and amino acid sequences of the N-terminal region and the signal peptide of the enzyme were deduced from the nucleotide sequence. The N-terminal sequence of the enzyme as deduced from the mRNA sequence is the same as that determined by protein sequencing, with one difference. Protein sequencing showed Ser as the N-terminal residue. The mRNA sequence indicated that Ser is the second N-terminal residue, and the first is Cys. That preparations of the enzyme are mixtures of two polypeptides, one polypeptide being one residue shorter at the N terminus than the other, has been pointed out in the above reference. The signal peptide consists of 43 residues, is rich in basic (4 Lys, 2 Arg) and hydroxylated (4 Thr, 3 Ser) amino acids, and lacks acidic residues.  相似文献   

20.
The influenza A virus M2 protein is an integral membrane protein of 97 amino acids that is expressed at the surface of infected cells with an extracellular N-terminal domain of 18 to 23 amino acid residues, an internal hydrophobic domain of approximately 19 residues, and a C-terminal cytoplasmic domain of 54 residues. To gain an understanding of the M2 protein function in the influenza virus replicative pathway, we produced and characterized a monoclonal antibody to M2. The antibody-binding site was located to the extracellular N terminus of M2 as shown by the loss of recognition after proteolysis at the infected-cell surface, which removes 18 N-terminal residues, and by the finding that the antibody recognizes M2 in cell surface fluorescence. The epitope was further defined to involve residues 11 and 14 by comparing the predicted amino acid sequences of M2 from several avian and human strains and the ability of the M2 protein to be recognized by the antibody. The M2-specific monoclonal antibody was used in a sensitive immunoblot assay to show that M2 protein could be detected in virion preparations. Quantitation of the amount of M2 associated with virions by two unrelated methods indicated that in the virion preparations used there are 14 to 68 molecules of M2 per virion. The monoclonal antibody, when included in a plaque assay overlay, considerably showed the growth of some influenza virus strains. This plaque size reduction is a specific effect for the M2 antibody as determined by an analysis of recombinants with defined genome composition and by the observation that competition by an N-terminal peptide prevents the antibody restriction of virus growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号