首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The aim of this study was to select a support medium for an anaerobic biofilm fluidized bed reactor (AFBR) for waste water treatment. Six materials, shale, pumice, porous glass, quartz sand, activated carbon and anthracite were used as carriers for the biofilm. The reactors were operated in parallel for several months with vapour condensate from a sulfite cellulose process as feed. The criteria used for the evaluation were: a) Reproducibility of the reactor performance, b) performance of the different carriers under various loading rates, c) stability against toxic shock loadings using 2,4,6-trichlorophenol (TCP) as toxicant, d) recovery capacity after intoxication and starvation, e) adsorption/desorption behavior of the carriers.A comparison between four runs showed good reproducibility of the steady state removal rates. The performance of the reactors and the stability of the degradation rates were tested for a range of loading conditions. Unbuffered, buffered and pH controlled conditions were compared. The pumice carrier was best with respect to the degradation rate achieved per carrier mass. The response of the reactors to massive TCP step loadings was tested. Loadings less than 1.5 kg TCP/m3d resulted in initially normal gas production rates for all the systems, except the activated carbon, whose gas production was partially inhibited from the start. After increasing the load to 1.5 kg TCP/m3d the gas production rates of all the other reactors fell abruptly to zero. Restarting after 2 months, all reactors showed methanogenic activity without requiring new inoculum.Adsorption and desorption experiments with TCP showed that only the anthracite and activated carbon adsorbed appreciable amounts. The activated carbon had the greatest adsorption capacity but did not release the TCP by desorption, as did the anthracite.A bicomponent (pumice and anthracite) carrier mixture was compared in biological experiments with pumice and anthracite carrier alone, with and without TCP loading. The pumice and the carrier-mix performed equally well under non-toxic-loading conditions. With TCP toxic loading, the performance of the anthracite was superior. The anthracite carrier could be regenerated, owing mainly to its capacity for desorption.  相似文献   

3.
Attached biofilm reactors provide the means for implementing energy-efficient anaerobic wastewater treatment at full scale. Progress has been made in the development of fixed, expanded and fluidized bed anaerobic processes by addressing fundamental reactor design issues. Several new biofilm reactor concepts have evolved from recent studies.  相似文献   

4.
5.
6.
Summary Since the mixing characteristics of anaerobic reactors would appear to have an effect on their operational performance, lithium tracer studies were made on two different digester types; the upflow sludge blanket and the expanded bed reactors. The mixing characteristics of both types of reactor, defined by this technique, were found to be of the intermediate type with a bias towards good mixing.  相似文献   

7.
The human gastrointestinal tract hosts a complex community of microorganisms that grow as biofilms on the intestinal mucosa. These bacterial communities are not well characterized, although they are known to play an important role in human health. This study aimed to develop a model for culturing biofilms (surface-adherent communities) of intestinal microbiota. The model utilizes adherent mucosal bacteria recovered from colonic biopsies to create multi-species biofilms. Culture on selective media and confocal microscopy indicated the biofilms were composed of a diverse community of bacteria. Molecular analyses confirmed that several phyla were represented in the model, and demonstrated stability of the community over 96 h when cultured in the device. This model is novel in its use of a multi-species community of mucosal bacteria grown in a biofilm mode of growth.  相似文献   

8.
The changes in 2.5-cm thick bamboo rings during their use as a support material in an anaerobic reactor show that the wash out and degradation processes are largely completed within 6 months to a year. The dry mass of the bamboo used decreased more quickly in the first half of the year than during the second half and asymptotically approached a loss limit of approximately 15% (w/w). The decrease in substances contained in the bamboo during the 2-year experimental period led to reductions in wall thickness of the rings of 0.8 mm and in the absorbable pressure of 21%. Bamboo thus appears to be suitable for long-term use in an anaerobic reactor.  相似文献   

9.
In three-phase internal loop airlift reactors, the detachment of biomass from suspended biofilm pellets in the presence of bare carrier particles was investigated under nongrowth conditions. The detachment rate was dominated by collisions between bare carrier particles and biofilm pellets. The concentration of bare carrier particles and the carrier roughness strongly influenced the detachment rate. A change in flow regime from bubbling to slug flow considerably increased the detachment rate. Otherwise, the superficial gas velocity did not directly affect the detachment rate. The influence of particle size was not clear. The bottom clearance did not affect the detachment rate within the tested range. Other aspects of reactor geometry might be important. The main detachment processes were abrasion and breakage of biofilm pellets. During the detachment process, two phases could be distinguished. In the first phase the detachment was relatively high, and both breakage and abrasion of biofilm pellets occurred. During the second phase, breakage dominated and the detachment rate was lower. The two-phase behavior is explained by differences in strength between the inner and outer biofilm layers, possibly caused by variations in local growth rates during biofilm formation. Differences in growth history might also explain the various detachment rates observed with different biofilm batches. (c) 1995 John Wiley & Sons, Inc.  相似文献   

10.
For a stable and reliable operation of a BAS-reactor a high, active biomass concentration is required with mainly biofilm-covered carriers. The effect of reactor conditions on the formation of nitrifying biofilms in BAS-reactors was investigated in this article. A start-up strategy to obtain predominantly biofilm-covered carriers, based on the balancing of detachment and a biomass production per carrier surface area, proved tp be very successful. The amount of biomass and the fraction of covered carrier were high and development of nitrification activity was fast, leading to a volumetric conversion of 5 kg(N) . m(-3) . d(-1) at a hydraulic retention time of 1h. A 1-week, continuous inoculation with suspended purely nitrifying microorganisms resulted in a swift start-up compared with batch addition of a small number of biofilms with some nitrification activity. The development of nitrifying biofilms was very similar to the formation of heterotrophic biofilms. In contrast to heterotrophic bio-films, the diameter of nitrifying biofilms increased during start-up. The detachment rate from nitrifying biofilms decreased with lower concentrations of bare carrier, in a fashion comparable with heterotrophic biofilms, but the nitrifying biofilms were much more robust and resistant. Standard diffusion theory combined with reaction kinetics are capable of predicting the activity and conversion of biofilms on small suspended particles. (c) 1995 John Wiley & Sons Inc.  相似文献   

11.
Biotransformation of nitrophenols in upflow anaerobic sludge blanket reactors   总被引:11,自引:0,他引:11  
Four identical bench-scale upflow anaerobic sludge blanket (UASB) reactors, R1, R2, R3 and R4, were used to assess nitrophenols degradation at four different hydraulic retention times (HRT). Reactor R1 was used as control, whereas R2, R3, and R4 were fed with 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2,4-dinitrophenol (2,4-DNP), respectively. The concentration of each nitrophenol was gradually varied from 2 to 30 mg/l during acclimation. After acclimation reactors were operated under steady-state conditions at four different HRTs – 30, 24, 18, and 12 h, to study its effect on the removal of nitrophenols. Overall removal of 2-NP and 4-NP was always more than 99% but 2,4-DNP removal decreased from 96% to 89.7% as HRT was lowered from 30 to 12 h. 2-Aminophenol (2-AP), 4-aminophenol (4-AP) and 2-amino,4-nitrophenol (2-A,4-NP) were found to be the major intermediates during the degradation of 2-NP, 4-NP and 2,4-DNP, respectively. Out of the total input of nitrophenolic concentration (30 mg/l), on molar basis, about 41.2–48.4% of 2-NP, 59.4–68% of 4-NP, 30–26.6% of 2,4-DNP was recovered in the form of their respective amino derivatives at 30–12 h HRT. COD removal was 98–89%, 97–56%, 97–52%, and 94–46% at 30–12 h HRT for R1, R2, R3 and R4, respectively. Average cell growth was observed to be 0.15 g volatile suspended solid (VSS) per g COD consumed. Methanogenic inhibition was observed at lower HRTs (18 and 12 h), however denitrification was always more than 99% with non-detectable level of nitrite. The granules developed inside the reactors were black in color and their average size varied between 1.9 and 2.1 mm.  相似文献   

12.
The anaerobic degradation of terephthalate as sole substrate was studied in three anaerobic upflow reactors. Initially, the reactors were operated as upflow anaerobic sludge bed (UASB) reactors and seeded with suspended methanogenic biomass obtained from a full-scale down-flow fixed film reactor, treating wastewater generated during production of purified terephthalic acid. The reactors were operated at 30, 37, and 55 degrees C. The terephthalate removal capacities remained low in all three reactors (<4 mmolxL-1xday-1, or 1 g of chemical oxygen demand (COD)xL-1xday-1) due to limitations in biomass retention. Batch experiments with biomass from the UASB reactors revealed that, within the mesophilic temperature range, optimal terephthalate degradation is obtained at 37 degrees C. No thermophilic terephthalate-degrading culture could be obtained in either continuous or batch cultures. To enhance biomass retention, the reactors were modified to anaerobic hybrid reactors by introduction of two types of reticulated polyurethane (PUR) foam particles. The hybrid reactors were operated at 37 degrees C and seeded with a mixture of biomass from the UASB reactors operated at 30 and 37 degrees C. After a lag period of approximately 80 days, the terephthalate conversion capacity of the hybrid reactors increased exponentially at a specific rate of approximately 0.06 day-1, and high removal rates were obtained (40-70 mmolxL-1xday-1, or 10-17 g of CODxL-1xday-1) at hydraulic retention times between 5 and 8 h. These high removal capacities could be attributed to enhanced biomass retention by the development of biofilms on the PUR carrier material as well as the formation of granular biomass. Biomass balances over the hybrid reactors suggested that either bacterial decay or selective wash-out of the terephthalate fermenting biomass played an important role in the capacity limitations of the systems. The presented results suggest that terephthalate can be degraded at high volumetric rates if sufficiently long sludge ages can be maintained, and the reactor pH and temperature are close to their optima.  相似文献   

13.
In this study, it is hypothesized that anaerobic hydrolysis of organic solid wastes (OSWs) in leachbed reactors can be enhanced by two approaches: (1) by increasing the porosity of the leachbed; and (2) by seeding the bed with brown-rot fungi or anaerobically digested residues. The hypothesis is verified using cattle manure as a model OSW and pistachios-half-shell as an inert additive to increase the porosity of the leachbed. The enhancement was quantified in terms of volatile fatty acid (VFA) generation and soluble COD generation. Results of this study showed that 15% more VFAs and 8% more soluble COD can be obtained at higher bed porosities and with brown-rot fungi or digested residues as the seed. Compared to a leachbed without any recirculation, porosity enhancement, nor seed addition, the VFA yield (g VFA/g manure) in a leachbed with pistachios-half-shell as porosity enhancers was 193% higher; that in a leachbed with leachate recirculation (of 4 L/day), pistachios-half-shell as porosity enhancers, and brown-rot fungi or digested sludge as seed was 230% higher.  相似文献   

14.
Various methods exist to measure gas production from anaerobic reactors but not all can easily be used to obtain the rate directly, and some are limited by small flow rates. A review of gas measurement methods is given. Two simple online gas monitoring systems, are described. The reactor design with respect to liquid overflow and gas take-off is shown to be important.  相似文献   

15.
Anerobic biofilms with dominantly acidogenic bacteria were grown in fixed-bed recycle reactors. The influence of calcium concentration in the culture medium on biofilm mass accumulation, immobilized calcium concentration, and biofilm-specific activity was investigated. The results indicate that the biofilm mass accumulation was increased by the presence of calcium in the growth medium when calcium concentration was not higher than 120mg/L. Calcium accumulated in the biofilms increased in proportion to the calcium level in the feed. The biofilms for an increased input calcium concentration showed a trend of decrease in specific activity. The biofilms with a thickeness of less than 0.5 mm had the highest specific activity. The optimum calcium concentration for substrate consumption by the biofilms was 100 to 120 mg/L. The biofilms transferred from higher calcium medium to lower calcium medium were more susceptible to sloughing from their support surfaces, which indicates calcium's role in the stability of the biofilm structure. (c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
Anaerobic digestion of tomato, cucumber, common reed and grass silage was studied in four separate two-stage reactor configuration consisting of leach bed reactor (LBR) and upflow anaerobic sludge blanket reactor (UASB). LBR studies showed that COD solubilization for cucumber and grass silage was higher (50%) than tomato (35%) and common reed (15%). Results also showed that 31-39% of initial TKN present in tomato and cucumber was solubilized in the leachates and 47-54% of the solubilized TKN was converted to NH4-N. The corresponding values for common reed and grass silage were 38-50% and 18-36%, respectively. Biomethanation of the leachates in UASB reactors resulted in methane yields of 0.03-0.14 m3 CH4 kg−1VSfed for the studied crop materials. Thus, high COD solubilization, high nitrogen mineralization and solubilization rates were feasible during anaerobic digestion of lignocellulosic materials in a two-stage LBR-UASB reactor system.  相似文献   

17.
Solids removal in upflow anaerobic reactors,a review   总被引:3,自引:0,他引:3  
This desk study deals with the mechanisms and parameters affecting particles separation from wastewater in mainly upflow anaerobic reactors. Despite the fact that the functioning of upflow anaerobic sludge blanket (UASB) systems depends on both physical parameters and biological processes, the physical parameters have been barely reported in the literature. The reason is that the underlying mechanisms are very complex and depend on various interrelated parameters. In addition, the lack of a serious attempt to gather the entire physical theme into one picture has resulted in just a superficial understanding of this field of science. Better understanding of the interaction and role of these parameters is essential for the development of anaerobic treatment technologies. In this study, the various parameters that might affect the solid liquid separation process by filtration through the sludge bed of a UASB have been elaborated. These parameters have been classified into (1) reactor operational conditions (temperature, organic loading rate, hydraulic retention time and upflow velocity), (2) influent characteristics (influent concentration, influent particle size and influent particle charge) and (3) sludge bed characteristics (particle size distribution, extracellular polymeric substances, and charge). The overall output of this study includes (1) a literature review, (2) structuring of this field of science, and (3) highlighting fields where research is needed.  相似文献   

18.
19.
Modeling and analysis of layered stationary anaerobic granular biofilms   总被引:2,自引:0,他引:2  
A model that portrays substrate profiles in a steady-state multispecies granular biofilm is developed and coupled with a biofilm detachment model. The model accounts for glucose, propionate, hydrogen, and acetate transformations performed by three bacterial trophic groups: acidogens, syntrophic bacterial consortia, and methanogens. This model adequately describes the phenomenon of propionate degradation under thermodynamically unfavorable bulk hydrogen concentrations. Also suggested is the superiority of the layered biofilm structure over homogeneous distribution of the trophic groups for anaerobic degradation of organic compounds. Furthermore, model analysis suggests that with increasing bulk glucose concentration biofilm thickness reaches a maximum that is then followed by biofilm disintegration. These results may have an important impact on the design and control of upflow anaerobic sludge bed reactors. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 122-130, 1997.  相似文献   

20.
Scanning electron microscopy, confocal scanning laser microscopy, and fatty acid methyl ester profiles were used to study the development, organization, and structure of aerobic multispecies biofilm communities in granular activated-carbon (GAC) fluidized-bed reactors treating petroleum-contaminated groundwaters. The sequential development of biofilm structure was studied in a laboratory reactor fed toluene-amended groundwater and colonized by the indigenous aquifer populations. During the early stages of colonization, microcolonies were observed primarily in crevices and other regions sheltered from hydraulic shear forces. Eventually, these microcolonies grew over the entire surface of the GAC. This growth led to the development of discrete discontinuous multilayer biofilm structures. Cell-free channel-like structures of variable sizes were observed to interconnect the surface film with the deep inner layers. These interconnections appeared to increase the biological surface area per unit volume ratio, which may facilitate transport of substrates into and waste products out of deep regions of the biofilm at rates greater than possible by diffusion alone. These architectural features were also observed in biofilms from four field-scale GAC reactors that were in commercial operation treating petroleum-contaminated groundwaters. These shared features suggest that formation of cell-free channel structures and their maintenance may be a general microbial strategy to deal with the problem of limiting diffusive transport in thick biofilms typical of fluidized-bed reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号