首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatosensory evoked potentials (SEPs) to median and posterior tibial nerve stimulation were studied in 160 subjects aged 20–90 years. Height was highly correlated with latencies of spinal and cortical SEPs (N13, N20, N22, and P40). Although tibial central conduction (N22-P40) was also highly correlated with height, median conduction (N13–N22) was not correlated with the latter.Multiple correlation and regression analysis showed that except for the median N13–N20 latency, height provided the best prediction of the remaining SEP latencies. Age alone was not correlated with SEP latencies, but its significance was observed when age and height were considered together as the predictors. Effects of age and height on SEP latencies were independent of gender.The present data indicate that except for the N13–N20 conduction, height is the most important parameter for SEP latencies and can be used for construction of normograms.  相似文献   

2.
Median nerve SEPs were studied in 120 normal subjects. Highly significant correlations with height and age were found for all SEP peak latencies, but not for the interpeak latency N19–N13. A significant gender difference was found for N13 and N19 peak latencies, the males having longer latencies. No sex-related correlations in central conduction time could be shown. It is emphasized that reliable SEP interpretation should include simultaneous height, age and gender corrections.  相似文献   

3.
The latency of the cortical SEP (CSEP) following stimulation of the posterior tibial nerve is nearly always shorter than the latency of the CSEP evoked by stimulation of the sural nerve. Till now this fact was believed to be due mainly to different conduction velocities within the peripheral nerves owing to the muscle afferents of the posterior tibial nerve. The surprising discovery that the lumbar and cervical SEPs exhibit much shorter time lags than the CSEPs led to the experiments described in this paper: during the registration of the peripheral sciatic nerve action potentials only slight differences in the conduction velocities were observed. Thereupon a topographical analysis was performed during which the minimum latency of the sural nerve CSEP was not measured at the usual C′z electrode position but was found to be shifted to a more occipital and ipsilateral point.From these results it was concluded that, for the main part, the latency difference of the CSEPs results from ‘central factors’, which had already been postulated for the median nerve CSEP by Burke and coworkers.  相似文献   

4.
5.
Cryoanalgesia: electrophysiology at different temperatures   总被引:9,自引:0,他引:9  
Zhou L  Shao Z  Ou S 《Cryobiology》2003,46(1):26-32
Somatosensory evoked potentials (SEP) and sensory conduction velocity (SCV) were measured in rabbit sciatic nerves following graded cold lesioning. The SEP disappeared when injury was induced at temperatures below -60 degrees C, but returned on day 41+/-4 (mean+/-SD). SEP returned on day 56+/-11 days when the lesion was induced at 100 to -180 degrees C. The SEP latency was prolonged after creating lesions at -100 to -180 degrees C, compared with both the sham operated and the -20 degrees C groups. These experiments suggest the cryolesions produced at temperatures between -60 and -100 degrees C are most suitable for altering the electrophysiological conduction of the nerve, and may result in suitable post-operative analgesia.  相似文献   

6.
本文描述了大鼠脊髓L_1节段后柱、后索、侧索和前角的诱发电位及其损伤后的变化,并观察了切断L_4、L_5脊神经背、腹根与横断高位颈髓对电位的影响,以进行行电位来源分析。结果可见,上述四个区域的诱发电位基本由早反应三相波和晚反应组成。分别电解损毁这些部位后,电位波幅均普遍降低,晚期反应较早反应降低明显。后柱或后索受损对电位影响最大。局部损毁后可见L_1及T_(13)水平的硬膜上电位改变明显,尤其晚反应减弱、波峰平坦。反应时值与潜伏时未见明显改变。切断L_4脊神经背、腹根后、电位基本消失。去大脑对电位未见明显影响。结果表明,刺激坐骨神经诱发的脊髓电位起源于低位腰段传入神经和脊髓内多通路的兴奋传导,在一定程度上受腹根逆行活动的影响,与大脑及脊髓下行传导束活动无直接联系。脊髓诱发电位的幅度与波形改变可作为脊髓损伤的判断指标之一。  相似文献   

7.
The parameters of conduction via afferent nerve fibers were studied in mice with streptozotocin-induced and genetically determineddiabetes mellitus (9- to 12-week-old animals; streptozotocin was injected into 5-week-old mice). Recording of spinal cord dorsal surface potentials evoked by stimulation of the sciatic nerve showed that within the studied time interval the mice of the two diabetic groups were characterized by a moderate decrease (by 7.9% and 5.8%, on average) in the conduction velocity for afferent volleys (measured according to the delay of the peak of positivity of a volley) and by a considerable increase in the duration of the positive phase of these volleys (by 36% and 33%, respectively, as compared with the values in intact animals). Therefore, the population of relatively slow group A afferent fibers becomes noticeably larger in the sciatic nerve of diabetic mice even at early stages of the pathology, but at the same time a considerable amount of the fastest-conducting (about 45–60 m/sec) fibers is still preserved. The changes in mice with diabetes of different etiology were very similar, in spite of different hyperglycemia levels in these groups. Possible factors determining diabetes-induced modifications of the conduction velocity via the nerve fibers are discussed.Neirofiziologiya/Neurophysiology, Vol. 28, No. 4/5, pp. 173–178, July–October, 1996.  相似文献   

8.
In order to model the distribution of potentials in the hand due to antidromic SAP propagation and in the body due to afferent conduction of the median nerve volley, 2-dimensional matrices of the appropriate shape were constructed, each containing a ‘generator’ consisting of up to 3 ‘source’ and 3 ‘sink’ points. The value of the field potential at other sites was calculated using a finite difference method.It was shown that the potential gradient is virtually zero in matrix zones which are separated from the region containing the generator by a constriction in the boundary of the conductor. Points on the far side of the constriction remain virtually equipotential, at a level determined by the potential at the junction. This is naturally influened by the proximity of the generator, so that as the generator approaches the constriction a potential difference will develop between points on the far side, irrespective of their distance from the junction, and other remote parts of the matrix. In the context of human SAPs and SEPs, such factors may be of paramount importance in the generation of so-called ‘stationary’ or ‘far-field’ potentials.With additional postulates concerning the manner in which the SAP is attenuated by the termination of axons as it propagates through the hand, and the course taken by the median nerve volley between the arm and the neck, it was possible to model the majority of stationary SAP phenomena described by Kimura et al. (1984), and also the distribution and latency of the P9 SEP component following median nerve stimulation.  相似文献   

9.
The limited availability of donor sites for nerve grafts and their inherent associated morbidity continue to stimulate research toward finding suitable alternatives. In the following study, the effect of direct administration of nerve growth factor (NGF) into a nerve conduit across a gap was tested in a rat sciatic nerve model. A 1-cm segment of the right sciatic nerve in Sprague-Dawley rats was resected, and the gap was then bridged using one of three methods: group I (NGF-treated group, n = 12), a vein graft filled with NGF (100 ng in 0.3-ml phosphate buffered saline); group II (control group, n = 12), a vein graft filled with phosphate buffered saline only; group III (standard nerve graft, n = 11), a resected segment of the sciatic nerve. All animals were evaluated at 3 and 5 weeks by behavioral testing and at 5 weeks by electrophysiologic testing. At 3 weeks, sensory testing showed that the latency to a noxious stimulus in group I animals (8.0 +/- 5.4 sec, mean +/- SD) was significantly lower than that of group II animals (13.2 +/- 6.5 sec), indicating that sensory recovery was superior in the animals receiving NGF. The mean latency of animals in group III was 12.9 +/- 6.5 sec, but the difference between the latencies of group I and group III did not reach statistical significance. At 5 weeks, there was no difference in sensory testing between groups. Motor function in groups I and III as measured by walk pattern analysis was superior to that of group II at 5 weeks (toe spread ratios 0.66 +/- 0.09, 0.48 +/- 0.07, and 0.69 +/- 0.09 for groups I, II, and III, respectively). Mean motor conduction velocities across the 1-cm gap were 8.6 +/- 4.7 m/sec, 2.5 +/- 0.7 m/sec, and 6.9 +/- 2.9 m/sec in groups I, II, and III respectively. The difference between groups I and III was not statistically significant, but the motor conduction velocity of group II was significantly slower than that of either group I or III (p < 0.002). The positive effects of NGF on regeneration of nerves across a gap seen in this study suggest that it may be useful for treating peripheral nerve injuries in combination with autogenous vein grafts.  相似文献   

10.
Y Asano 《Jikken dobutsu》1987,36(1):27-32
In order to determine the optimun conditions suitable for a number of trials and the intensity of unconditioned stimulant (US) in the two-way shuttle-box avoidance test in Sprague-Dawley strain rats, which are used most frequently in reproduction studies, conditioned avoidance response was observed under various conditions for 30 and 60 trials and the low and high US levels. Investigation was also conducted in Wistar rats under a high US level with 30 and 60 trials. Latency time of the escape response in Sprague-Dawley rats was shortened with increasing trials. Body weight gains of both strains of rats in the high US level with the 60-trial group decreased during the observation period. These findings suggest that the high US level with the 60-trial group is not suitable for the two-way shuttle-box avoidance test. The rate and latency time of the avoidance response were lower in Wistar rats than in Sprague-Dawley rats, although those of the escape response were higher. Significant changes in the following were observed, mainly from first to third sessions: the avoidance rate of all groups in strains of rats, escape rate of 60-trial group in Sprague-Dawley rats, avoidance and escape latency time of the 60-trial groups in both strains of rats and escape latency time of the 30-trial group in Sprague-Dawley strain rats.  相似文献   

11.
Cervical, parietal and prerolandic somatosensory evoked potentials (SEPs) to median nerve stimulation at the wrist were recorded with an earlobe reference in 24 patients with Huntington's disease (HD) and in 24 age-matched normal controls. Cortical responses of abnormal wave form and reduced amplitude were constantly observed in HD patients. SEP changes affected more severely the prerolandic (P22/N30) pattern, which could not be recognized in two-thirds of patients, than the parietal (N20/P27) pattern, which could be identified in all cases. The N20 latency and the central conduction time (N13–N20 interval) were significantly increased. The occurrence of abnormalities of central conduction and of a predominant involvement of the prerolandic SEP pattern suggests an impairment of impulse transmission along the somatosensory lemniscal pathway at subcortical, possibly thalamic, level in HD.  相似文献   

12.
目的探讨慢性束缚应激对Wistar、SD两种品系大鼠学习记忆能力的影响,为应激模型中实验动物的选择提供依据。方法对两种品系大鼠(Wistar、SD)采用每天束缚10 h,束缚28 d建立慢性应激模型。采用物体认知新物体识别实验和Morris水迷宫空间学习、工作记忆行为学检测方法,观察束缚应激对两种品系实验动物学习记忆能力的影响。结果束缚28 d后,物体识别实验中,Wistar、SD模型组的辨别指数(discrimination index,DI)均低于对照组,但只有SD两组间差异存在显著性(P0.05);水迷宫空间学习阶段,SD模型组潜伏期高于对照组,第5天差异有显著性(P0.05),而Wistar模型组与对照组间的潜伏期没有差异;水迷宫工作记忆阶段,SD大鼠模型组与正常组比较,潜伏期显著增加(P0.05),Wistar模型大鼠的潜伏期与对照组比较没有显著差异。结论新物体识别实验和水迷宫实验,这两种反应动物不同学习记忆能力的行为学实验结果都表明,慢性束缚应激(10 h,28 d)对SD大鼠学习记忆能力的损伤较Wistar大鼠明显。SD大鼠可能更适合作为慢性应激所致学习记忆损伤动物模型。  相似文献   

13.
Extracellular recording techniques were used to study the effects of dopamine on postactivation excitability of rat area CA1 hippocampal neurons maintained in vitro. Population spikes were elicited by delivery of conditioning and test stimulus pulses to afferent fibers. The interval between the conditioning and test volley was set to separate delivery of stimuli by 10 to 80 msec. The effect of superfusion or microtopical application of dopamine (DA) on population responses to test stimulus pulses was studied. When paired stimulus volleys, separated by brief intervals (up to 40 msec), were delivered to afferent fibers, paired-pulse suppression (PPS) was indicated by the amplitude of the population spike elicited by the test volley being smaller than that elicited by the conditioning volley. When paired volleys were separated by longer intervals (40 to 80 msec), the response elicited by the test volley was larger in amplitude than that elicited by the conditioning volley, indicating paired-pulse facilitation (PPF). Following exposure to DA, the amplitude of the population response elicited by the conditioning volley was larger than the amplitude before exposure to DA. This effect was long-lasting, enduring for tens of minutes. However, when the amplitude of the conditioning population response was held constant, the PPS was decreased, indicating disinhibition. It is suggested that dopamine produces a long-lasting attenuation of an intervening inhibitory influence onto CA1 pyramidal neurons.  相似文献   

14.
Neuronal pathways for the lingual reflex in the Japanese toad   总被引:1,自引:0,他引:1  
1. Anuran tongue is controlled by visual stimuli for releasing the prey-catching behavior ('snapping') and also by the intra-oral stimuli for eliciting the lingual reflex. To elucidate the neural mechanisms controlling tongue movements, we analyzed the neuronal pathways from the glossopharyngeal (IX) afferents to the hypoglossal (XII) tongue-muscle motoneurons. 2. Field potentials were recorded from the bulbar dorsal surface over the fasciculus solitarius (fsol) to the electrical stimulation of the ipsilateral IX nerve. They were composed of three successive negative waves: S1, S2 and N wave. The S1 and S2 waves followed successive stimuli applied at short intervals (10 ms or less), whereas the N wave was strongly suppressed at intervals shorter than 500 ms. Furthermore, the S1 wave had lower threshold than the S2 wave. 3. Orthodromic action potentials were intra-axonally recorded from IX afferent fibers in the fsol to the ipsilateral IX nerve stimuli. Two peaks found in the latency distribution histogram of these action potentials well coincided with the negative peaks of the S1 and the S2 waves of the simultaneously recorded field potentials. Therefore, the S1 and S2 waves should represent the compound action potentials of two groups of the IX afferent fibers with different conduction velocities. 4. Ipsilateral IX nerve stimuli elicited excitatory postsynaptic potentials (EPSPs) in the tongue-protractor motoneurons (PMNs) and the tongue-retractor motoneurons (RMNs). Inhibitory postsynaptic potentials were not observed. 5. The EPSPs recorded in PMNs had mean onset latencies of 6.4 ms measured from the negative peaks of the S1 wave. The EPSPs were facilitated when paired submaximal stimuli were applied at intervals shorter than 20 ms, but were suppressed at intervals longer than 30 ms. Furthermore, the EPSPs were spatially facilitated when peripherally split two bundles of the IX nerve were simultaneously stimulated. 6. On the other hand, the EPSPs recorded in RMNs had shorter onset latencies, averaging 2.5 ms. In 14 of 43 RMNs, early and late EPSP components could be reliably discriminated. The thresholds for the early EPSP components were as low as those for the S1 waves, whereas for the late EPSP components the thresholds were usually higher than those for the S2 waves.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
目的探讨补阳还五汤口服加药浴对坐骨神经传导速度的影响。方法60只SD大鼠暴露左侧坐骨神经。对照组只钳夹;实验组钳夹并加用补阳还五汤口服及药浴治疗。观察钳夹前和钳夹切除后大鼠坐骨神经传导速度(SNCV)。结果于2、4、6周分别测对照组、实验组的坐骨神经传导速度(SNCV)。各时间段实验组坐骨神经传导速度恢复快于对照组,P〈0.01。结论补阳还五汤口服加药浴对坐骨神经传导速度有明显的促进作用。  相似文献   

16.
Somatosensory evoked potentials (SEPs) provide neurologists with an assessment of the neuraxis from peripheral nerve to sensory cortex. Their value is particularly relevant in paediatric neurology as sensory clinical examination can be difficult in young infants and children. The clinical utility of SEPs, however, requires knowledge of the alterations in wave form which occur with growth and development. This study presents normative SEP data from 4 months-35 years. Different non-linear maturational patterns were seen in spinal and central segments of the nervous system. The cervical components (N12, N13) changed little in latency until 2–3 years, the N20 decreased in latency until 2–3 years and P22 decreased in latency until 6–8 years, after which latencies increased until adulthood. The greatest latency changes occurred in N12 and N13, the least in N20. Wave from morphology and interpeak latencies also changed with age. Adult morphology was achieved early (from 1 year), but central conduction time (N13–N20) reached adult values only at 6–8 years. This study provides normative values of SEPs during maturation and a functional assessment of pathways known to myelinate and mature at varying rates.  相似文献   

17.
Scalp somatosensory evoked potentials (SEPs) were recorded after electrical stimulation of the spinal cord in humans. Stimulating electrodes were placed at different vertebral levels of the epidural space over the midline of the posterior aspect of the spinal cord. The wave form of the response differed according to the level of the stimulating epidural electrodes. Cervical stimulation elicited an SEP very similar to that produced by stimulation of upper extremity nerves, e.g., bilateral median nerve SEP, but with a shorter latency. Epidural stimulation of the lower thoracic cord elicited an SEP similar to that produced by stimulation of lower extremity nerves. The results of upper thoracic stimulation appeared as a mixed upper and lower extremity type of SEP. The overall amplitudes of SEPs elicited by the epidural stimulation were higher than SEPs elicited by peripheral nerve stimulation. In 4 patients the CV along the spinal cord was calculated from the difference in latencies of the cortical responses to stimulation at two different vertebral levels. The CVs were in the range of 45–65 m/sec. The method was shown to be promising for future study of spinal cord dysfunctions.  相似文献   

18.
Four thalamic and cortical recordings were carried out in 5 patients. The thalamic-evoked potentials were typical and revealed a triphasic complex, but their latencies showed a relatively high standard deviation. They could be divided into two groups according to their latencies, both of which had low SD. These data suggested that there could be two types of latency of thalamic SEP, because the 4 patients' body sizes were very similar. More detailed surface, cortical and depth recordings are needed to resolve these questions.  相似文献   

19.
The aim of this study was to compare the characteristics of esophageal cortical evoked potentials (CEP) following electrical and mechanical stimulation in healthy subjects to evaluate the afferents involved in mediating esophageal sensation. Similarities in morphology and interpeak latencies of the CEP to electrical and mechanical stimulation suggest that they are mediated via similar pathways. Conduction velocity of CEP to either electrical or mechanical stimulation was 7.9-8.6 m/s, suggesting mediation via thinly myelinated Adelta-fibers. Amplitudes of CEP components to mechanical stimulation were significantly smaller than to electrical stimulation at the same levels of perception, implying that electrical stimulation activates a larger number of afferents. The latency delay of approximately 50 ms for each mechanical CEP component compared with the corresponding electrical CEP component is consistent with the time delay for the mechanical stimulus to distend the esophageal wall sufficiently to trigger the afferent volley. In conclusion, because the mechanical and electrical stimulation intensities needed to obtain esophageal CEP are similar and clearly perceived, it is likely that both spinal and vagal pathways mediate esophageal CEP. Esophageal CEP to both modalities of stimulation are mediated by myelinated Adelta-fibers and produce equally robust CEP responses. Both techniques may have important roles in the assessment of esophageal sensory processing in health and disease.  相似文献   

20.
Determination of conduction times of the peripheral and central parts of the sensory pathway using evoked somatosensory potentials. Acta physiol. pol., 1985, 36 (3): 216-223. Simultaneous recording of the somatosensory evoked potentials (SEP) from Erb's point, neck and scalp allows investigation of the peripheral and central conduction times. The early components of the SEP produced by stimulation of the median nerve at the wrist were recorded using standardized electrode locations in 15 normal subjects. The difference of the latencies between the first peak of the cortical response (N20) and the peak of the neck response (N14) reflects, probably, the conduction time between the dorsal column nuclei and the cortex. Its value was 6 +/- 0.7 msec. The conduction time difference (between peak Erb's point response (N9) and N14) was 5.5 +/- 0.5 msec and it reflected the peripheral conduction time. For diagnostic application the lower limit of the response amplitudes was determined also for every component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号