首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Progression through the mammalian cell division cycle is regulated by the sequential activation of cyclin-dependent kinases, CDKs, at specific phases of the cell cycle. Cyclin A-CDK2 and cyclin A-CDK1 phosphorylate nuclear substrates during S and G2 phases, respectfully. However, the DNA helicase complex, MCM2-7, is loaded onto the origin of replications in G1, prior to the normally scheduled induction of cyclin A. It has previously been shown that cyclin A-CDKs phosphorylate MCM2 and MCM4 in vitro, thereby diminishing helicase activity. Thus, in this study we hypothesize that, in vivo, cyclin A-CDK activity during G1 would result in an inhibition of progression into the S phase. To test this, we establish an in vivo method of inducing cyclin A-CDK activity in G1 phase and observe that activation of cyclin A-CDK, but not cyclin E-CDK complexes, inhibit DNA synthesis without affecting other G1 events such as cyclin D synthesis, E2F activation and cdc6 loading onto chromatin. We further report that the mechanism of this S phase inhibition occurs, at least in part, through impaired loading of MCM onto chromatin, presumably due to decreased levels of cdt1 and premature phosphorylation of MCM by cyclin A-CDK. In addition to providing in vivo confirmation of in vitro predictions regarding cyclin A-CDK phosphorylation of the MCM complex, our results provide insight into the cellular effects of unscheduled cyclin A-CDK activity in mammalian cells.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Estrogen receptor phosphorylation   总被引:20,自引:0,他引:20  
Lannigan DA 《Steroids》2003,68(1):1-9
Estrogen receptor alpha (ERalpha) is phosphorylated on multiple amino acid residues. For example, in response to estradiol binding, human ERalpha is predominately phosphorylated on Ser-118 and to a lesser extent on Ser-104 and Ser-106. In response to activation of the mitogen-activated protein kinase pathway, phosphorylation occurs on Ser-118 and Ser-167. These serine residues are all located within the activation function 1 region of the N-terminal domain of ERalpha. In contrast, activation of protein kinase A increases the phosphorylation of Ser-236, which is located in the DNA-binding domain. The in vivo phosphorylation status of Tyr-537, located in the ligand-binding domain, remains controversial. In this review, I present evidence that these phosphorylations occur, and identify the kinases thought to be responsible. Additionally, the functional importance of ERalpha phosphorylation is discussed.  相似文献   

16.
17.
18.
The conditional kinase DeltaMEKK3:ER allows activation of JNK, p38 and ERK1/2 without overt cellular stress or damage and has proved useful in understanding how these pathways regulate apoptosis and cell cycle progression. We have previously shown that activation of DeltaMEKK3:ER causes a sustained G(1) cell cycle arrest which requires p21(CIP1), with ERK1/2 and p38 cooperating to promote p21(CIP1) expression. In cells lacking p21(CIP1), DeltaMEKK3:ER causes only a transient delay in cell cycle re-entry. We now show that this delay in cell cycle re-entry is due to a reduction in cyclin D1 levels. Activation of DeltaMEKK3:ER promotes the proteasome-dependent turnover of cyclin D1; this requires phosphorylation of threonine 286 (T(286)) and expression of cyclin D1T(286)A rescues the delay in G(1)/S progression. DeltaMEKK3:ER-dependent phosphorylation of T(286) does not appear to be mediated by GSK3beta but requires activation of the ERK1/2 and p38 pathways. ERK1/2 can physically associate with cyclin D1 but activation of ERK1/2 alone is not sufficient for phosphorylation of T(286). Rather, cyclin D1 phosphorylation appears to require coincident activation of ERK1/2 and p38. Thus activation of DeltaMEKK3:ER promotes a sustained G(1) cell cycle arrest by a bipartite mechanism involving the rapid destruction of cyclin D1 and the slower more prolonged expression of p21(CIP1). This has parallels with the bipartite response to ionizing radiation and p53-independent mechanisms of G(1) cell cycle arrest in simple organisms such as yeast.  相似文献   

19.
The antiestrogen tamoxifen has been widely used for decades as selective estrogen receptor (ER) modulator for ERalpha-positive breast tumors. Tamoxifen significantly reduces tumor recurrence by binding to the activation function-2 (AF-2) domain of the ER. Acquired resistance to tamoxifen in breast cancer patients is a serious therapeutic problem. Antiestrogen-resistant breast cancer often shows increased expression of the epidermal growth factor receptor (EGFR) family members, EGFR and ErbB2. In this report we now show that overexpression of EGFR or activated AKT-2 in MCF-7 cells leads to phosphorylation of Ser167 in the AF-1 domain of ERalpha, enhanced ER-amplified in breast cancer 1 (ER:AIB1) interaction in the presence of tamoxifen, and resistance to tamoxifen. In contrast, transfection of activated MAPK kinase, an immediate upstream activator of MAPK (ERK 1 and 2) into MCF-7 cells leads to phosphorylation of Ser118 in the AF-1 domain of ERalpha, inhibition of ER-amplified in breast cancer 1 (ER:AIB1) interaction in the presence of Tam, and maintenance of sensitivity to tamoxifen. Inhibition of AKT by short inhibitory RNA blocked Ser167 phosphorylation in ER and restored tamoxifen sensitivity. However, maximum sensitivity to tamoxifen was observed when both AKT and MAPK were inhibited. Taken together, these data demonstrate that different phosphorylation sites in the AF-1 domain of ERalpha regulate the agonistic and antagonistic actions of tamoxifen in human breast cancer cells.  相似文献   

20.
The role of cyclin B-CDC2 as M phase-promoting factor (MPF) is well established, but the precise functions of cyclin A remain a crucial outstanding issue. Here we show that down-regulation of cyclin A induces a G2 phase arrest through a checkpoint-independent inactivation of cyclin B-CDC2 by inhibitory phosphorylation. The phenotype is rescued by expressing cyclin A resistant to the RNA interference. In contrast, down-regulation of cyclin B disrupts mitosis without inactivating cyclin A-CDK, indicating that cyclin A-CDK acts upstream of cyclin B-CDC2. Even when ectopically expressed, cyclin A cannot replace cyclin B in driving mitosis, indicating the specific role of cyclin B as a component of MPF. Deregulation of WEE1, but not the PLK1-CDC25 axis, can override the arrest caused by cyclin A knockdown, suggesting that cyclin A-CDK may tip the balance of the cyclin B-CDC2 bistable system by initiating the inactivation of WEE1. These observations show that cyclin A cannot form MPF independent of cyclin B and underscore a critical role of cyclin A as a trigger for MPF activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号