首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《遗传学报》2021,48(6):452-462
Airway smooth muscle(ASM) has developed a mechanical adaption mechanism by which it transduces force and responds to environmental forces, which is essential for periodic breathing. Cytoskeletal reorganization has been implicated in this process, but the regulatory mechanism remains to be determined.We here observe that ASM abundantly expresses cytoskeleton regulators Limk1 and Limk2, and their expression levels are further upregulated in chronic obstructive pulmonary disease(COPD) animals. By establishing mouse lines with deletions of Limk1 or Limk2, we analyse the length-sensitive contraction, F/Gactin dynamics, and F-actin pool of mutant ASM cells. As LIMK1 phosphorylation does not respond to the contractile stimulation, LIMK1-deficient ASM develops normal maximal force, while LIMK2 or LIMK1/LIMK2 deficient ASMs show approximately 30% inhibition. LIMK2 deletion causes a significant decrease in cofilin phosphorylation along with a reduced F/G-actin ratio. As LIMK2 functions independently of cross-bridge movement, this observation indicates that LIMK2 is necessary for F-actin dynamics and hence force transduction. Moreover, LIMK2-deficient ASMs display abolishes stretching-induced suppression of 5-hydroxytryptamine(5-HT) but not acetylcholine-evoks force, which is due to the differential contraction mechanisms adopted by the agonists. We propose that LIMK2-mediated cofilin phosphorylation is required for membrane cytoskeleton reorganization that is necessary for ASM mechanical adaption including the 5-HT-evoked length-sensitive effect.  相似文献   

2.
Lim kinase 2 isoforms, LIMK2a and LIMK2b, phosphorylate cofilin leading to remodeling of actin cytoskeleton during neuronal differentiation. The expression and function of the LIMK2d isoform, missing the kinase domain, remain unknown. We analyzed the expression of LIMK2 splice variants in adult rat brain and in cultures of rat neural stem cells by RT-QPCR. All three splice variants were expressed in adult cortex, hippocampus and cerebellum. Limk2a and Limk2d expression, but not Limk2b, increased during neuronal differentiation. We studied the localization and function of LIMK2d isoform by transfecting Hela, NSC-34, and hippocampal rat neuron cultures. Similarly to LIMK2b, LIMK2d was expressed in the cytoplasm, neurites and dendritic spines, but not in the nucleus. Similarly to LIMK2a, LIMK2d over-expression in NSC-34 cells increased neurite length, but independently of cofilin phosphorylation or of direct interaction with actin. Overall, these results indicate that LIMK2d is a third LIMK2 isoform which regulates neurite extension and highlights the possible existence of a kinase independent function of LIMK2.  相似文献   

3.
The rapid turnover of actin filaments and the tertiary meshwork formation are regulated by a variety of actin-binding proteins. Protein phosphorylation of cofilin, an actin-binding protein that depolymerizes actin filaments, suppresses its function. Thus, cofilin is a terminal effector of signaling cascades that evokes actin cytoskeletal rearrangement. When wild-type LIMK2 and kinase-dead LIMK2 (LIMK2/KD) were respectively expressed in cells, LIMK2, but not LIMK2/KD, phosphorylated cofilin and induced formation of stress fibers and focal complexes. LIMK2 activity toward cofilin phosphorylation was stimulated by coexpression of activated Rho and Cdc42, but not Rac. Importantly, expression of activated Rho and Cdc42, respectively, induced stress fibers and filopodia, whereas both Rho- induced stress fibers and Cdc42-induced filopodia were abrogated by the coexpression of LIMK2/KD. In contrast, the coexpression of LIMK2/KD with the activated Rac did not affect Rac-induced lamellipodia formation. These results indicate that LIMK2 plays a crucial role both in Rho- and Cdc42-induced actin cytoskeletal reorganization, at least in part by inhibiting the functions of cofilin. Together with recent findings that LIMK1 participates in Rac-induced lamellipodia formation, LIMK1 and LIMK2 function under control of distinct Rho subfamily GTPases and are essential regulators in the Rho subfamilies-induced actin cytoskeletal reorganization.  相似文献   

4.
During spermatogenesis, cell-cell actin-based adherens junctions (AJs), such as ectoplasmic specializations (ESs), between Sertoli and germ cells undergo extensive restructuring in the seminiferous epithelium to facilitate germ cell movement across the epithelium. Although the mechanism(s) that regulates AJ dynamics in the testis is virtually unknown, Rho GTPases have been implicated in the regulation of these events in other epithelia. Studies have shown that the in vitro assembly of the Sertoli-germ cell AJs but not of the Sertoli cell tight junctions (TJs) is associated with a transient but significant induction of RhoB. Immunohistochemistry has shown that the localization of RhoB in the seminiferous epithelium is stage specific, being lowest in stages VII-VIII prior to spermiation, and displays cell-specific association during the epithelial cycle. Throughout the cycle, RhoB was localized near the site of basal and apical ESs but was restricted to the periphery of the nuclei in elongating (but not elongated) spermatids, spermatocytes, and Sertoli cells. However, RhoB was not detected near the site of apical ESs at stages VII-VIII. Furthermore, disruption of AJs in Sertoli-germ cell cocultures either by hypotonic treatment or by treatment with 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide (AF-2364) also induced RhoB expression. When adult rats were treated with AF-2364 to perturb Sertoli-germ cell AJs in vivo, a approximately 4-fold induction in RhoB in the testis, but not in kidney and brain, was detected within 1 h, at least approximately 1-4 days before germ cell loss from the epithelium could be detected by histological analysis. The signaling pathway(s) by which AF-2364 perturbed the Sertoli-germ cell AJs apparently began with an initial activation of integrin, which in turn activated RhoB, ROCK1, (Rho-associated protein kinase 1, also called ROKbeta), LIMK1 (LIM kinase 1, also called lin-11 isl-1 mec3 kinase 1), and cofilin but not p140mDia and profilin via phosphorylation. Immunoprecipitation and immunoblots revealed that the induction of LIMK1 was mediated via an increase in its phospho-Ser but not phospho-Tyr content. Furthermore, Y-27632 ([(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexane-carboxamide, 2HCl]), a specific ROCK inhibitor, could effectively delay the AF-2364-induced germ cell loss from the seminiferous epithelium in vivo, illustrating that the integrin/RhoB/ROCK/LIMK pathway indeed plays a crucial role in the regulation of Sertoli-germ cell AJ dynamics. The fact that the RhoB pathway in the kidney and brain was not activated suggests that AF-2364 exerts its effects primarily at the testis-specific ES multiprotein complex structures between Sertoli cells and spermatids. In summary, this report illustrates that Sertoli germ cell AJ dynamics are regulated, at least in part, via the integrin/ROCK/LIMK/cofilin signaling pathway.  相似文献   

5.
Actin filament dynamics play a critical role in mitosis and cytokinesis. LIM motif-containing protein kinase 1 (LIMK1) regulates actin reorganization by phosphorylating and inactivating cofilin, an actin-depolymerizing and -severing protein. To examine the role of LIMK1 and cofilin during the cell cycle, we measured cell cycle-associated changes in the kinase activity of LIMK1 and in the level of cofilin phosphorylation. Using synchronized HeLa cells, we found that LIMK1 became hyperphosphorylated and activated in prometaphase and metaphase, then gradually returned to the basal level as cells entered into telophase and cytokinesis. Although Rho-associated kinase and p21-activated protein kinase phosphorylate and activate LIMK1, they are not likely to be involved in mitosis-specific activation and phosphorylation of LIMK1. Immunoblot and immunofluorescence analyses using an anti-phosphocofilin-specific antibody revealed that the level of cofilin phosphorylation, similar to levels of LIMK1 activity, increased during prometaphase and metaphase then gradually declined in telophase and cytokinesis. Ectopic expression of LIMK1 increased the level of cofilin phosphorylation throughout the cell cycle and induced the formation of multinucleate cells. These results suggest that LIMK1 is involved principally in control of mitosis-specific cofilin phosphorylation and that dephosphorylation and reactivation of cofilin at later stages of mitosis play a critical role in cytokinesis of mammalian cells.  相似文献   

6.
Cofilin and its closely related protein, actin-depolymerizing factor (ADF), are key regulators of actin cytoskeleton dynamics that have been implicated in growth cone motility and neurite extension. Cofilin/ADF are inactivated by LIM kinase (LIMK)-catalyzed phosphorylation and reactivated by Slingshot (SSH)-catalyzed dephosphorylation. Here we examined the roles of cofilin/ADF, LIMKs (LIMK1 and LIMK2), and SSHs (SSH1 and SSH2) in nerve growth factor (NGF)-induced neurite extension. Knockdown of cofilin/ADF by RNA interference almost completely inhibited NGF-induced neurite extension from PC12 cells, and double knockdown of SSH1/SSH2 significantly suppressed both NGF-induced cofilin/ADF dephosphorylation and neurite extension from PC12 cells, thus indicating that cofilin/ADF and their activating phosphatases SSH1/SSH2 are critical for neurite extension. Interestingly, NGF stimulated the activities of both LIMK1 and LIMK2 in PC12 cells, and suppression of LIMK1/LIMK2 expression or activity significantly reduced NGF-induced neurite extension from PC12 cells or chick dorsal root ganglion (DRG) neurons. Inhibition of LIMK1/LIMK2 activity reduced actin filament assembly in the peripheral region of the growth cone of chick DRG neurons. These results suggest that proper regulation of cofilin/ADF activities through control of phosphorylation by LIMKs and SSHs is critical for neurite extension and that LIMKs regulate actin filament assembly at the tip of the growth cone.  相似文献   

7.
The interaction of astral microtubules with cortical actin networks is essential for the correct orientation of the mitotic spindle; however, little is known about how the cortical actin organization is regulated during mitosis. LIM kinase-1 (LIMK1) regulates actin dynamics by phosphorylating and inactivating cofilin, an actin-depolymerizing protein. LIMK1 activity increases during mitosis. Here we show that mitotic LIMK1 activation is critical for accurate spindle orientation in mammalian cells. Knockdown of LIMK1 suppressed a mitosis-specific increase in cofilin phosphorylation and caused unusual cofilin localization in the cell cortex in metaphase, instability of cortical actin organization and astral microtubules, irregular rotation and misorientation of the spindle, and a delay in anaphase onset. Similar results were obtained by treating the cells with a LIMK1 in hibitor peptide or latrunculin A or by overexpressing a non-phosphorylatable cofilin(S3A) mutant. Furthermore, localization of LGN (a protein containing the repetitive Leu-Gly-Asn tripeptide motifs), an important regulator of spindle orientation, in the crescent-shaped cortical regions was perturbed in LIMK1 knockdown cells. Our results suggest that LIMK1-mediated cofilin phosphorylation is required for accurate spindle orientation by stabilizing cortical actin networks during mitosis.  相似文献   

8.
LIM kinases (LIMK1 and LIMK2) regulate actin cytoskeletal reorganization through cofilin phosphorylation downstream of distinct Rho family GTPases. Pak1 and ROCK, respectively, activate LIMK1 and LIMK2 downstream of Rac and Rho; however, an effector protein kinase for LIMKs downstream of Cdc42 remains to be defined. We now report evidence that LIMK1 and LIMK2 activities toward cofilin phosphorylation are stimulated in cells by the co-expression of myotonic dystrophy kinase-related Cdc42-binding kinase alpha (MRCKalpha), an effector protein kinase of Cdc42. In vitro, MRCKalpha phosphorylated the protein kinase domain of LIM kinases, and the site in LIMK2 phosphorylated by MRCKalpha proved to be threonine 505 within the activation segment. Expression of MRCKalpha induced phosphorylation of actin depolymerizing factor (ADF)/cofilin in cells, whereas MRCKalpha-induced ADF/cofilin phosphorylation was inhibited by the co-expression with the protein kinase-deficient form of LIM kinases. These results indicate that MRCKalpha phosphorylates and activates LIM kinases downstream of Cdc42, which in turn regulates the actin cytoskeletal reorganization through the phosphorylation and inactivation of ADF/cofilin.  相似文献   

9.
Actin cytoskeletal reorganization is essential for tumor cell migration, adhesion, and invasion. Cofilin and actin-depolymerizing factor (ADF) act as key regulators of actin cytoskeletal dynamics by stimulating depolymerization and severing of actin filaments. Cofilin/ADF are inactivated by phosphorylation of Ser-3 by LIM kinase-1 (LIMK1) and reactivated by dephosphorylation by Slingshot-1 (SSH1) and -2 (SSH2) protein phosphatases. In this study, we examined the roles of cofilin/ADF, LIMK1, and SSH1/SSH2 in tumor cell invasion, using an in vitro transcellular migration assay. In this assay, rat ascites hepatoma (MM1) cells were overlaid on a primary-cultured rat mesothelial cell monolayer and the number of cell foci that transmigrated underneath the monolayer in the presence of lysophosphatidic acid (LPA) was counted. The knockdown of cofilin/ADF, LIMK1, or SSH1/SSH2 expression by small interfering RNAs (siRNAs) significantly decreased the LPA-induced transcellular migration of MM1 cells and their motility in two-dimensional culture. Knockdown of LIMK1 also suppressed fibronectin-mediated cell attachment and focal adhesion formation. Our results suggest that both LIMK1-mediated phosphorylation and SSH1/SSH2-mediated dephosphorylation of cofilin/ADF are critical for the migration and invasion of tumor cells and that LIMK1 is involved in the transcellular migration of tumor cells by enhancing both adhesion and motility of the cells.  相似文献   

10.
Nischarin is a novel protein that regulates cell migration by inhibiting p21-activated kinase (PAK). LIM kinase (LIMK) is a downstream effector of PAK, and it is known to play an important role in cell invasion. Here we show that nischarin also associates with LIMK to inhibit LIMK activation, cofilin phosphorylation, and LIMK-mediated invasion of breast cancer cells, suggesting that nischarin regulates cell invasion by negative modulation of the LIMK/cofilin pathway. The amino terminus of nischarin binds to the PDZ and kinase domains of LIMK. Although LIMK activation enhances the interaction with nischarin, only phosphorylation of threonine 508 of LIMK is crucial for the interaction. Inhibition of endogenous nischarin expression by RNA interference stimulates breast cancer cell invasion. Also, nischarin small interfering RNA (siRNA) enhances cofilin phosphorylation. In addition, knock-down of nischarin showed branched projection actin structures. Collectively these data indicate that nischarin siRNA may enhance random migration, resulting in stimulation of invasion.  相似文献   

11.
LIM kinases (LIMKs) are mainly in the cytoplasm and regulate actin dynamics through cofilin phosphorylation. Recently, it has been reported that nuclear localization of LIMKs can mediate suppression of cyclin D1 expression. Using immunofluorescence monitoring of enhanced green fluorescent protein-tagged LIMK2 in combination with photobleaching techniques and leptomycin B treatment, we demonstrate that LIMK2 shuttles between the cytoplasm and the nucleus in endothelial cells. Sequence analysis predicted two PKC phosphorylation sites in LIMK2 but not in LIMK1. One site at Ser-283 is present between the PDZ and the kinase domain, and the other site at Thr-494 is within the kinase domain. Activation of PKC by phorbol ester treatment of endothelial cells stimulated LIMK2 phosphorylation at Ser-283 and inhibited nuclear import of LIMK2 and the PDZ kinase construct of LIMK2 (amino acids 142-638) but not of LIMK1. The PKC-delta isoform phosphorylated LIMK2 at Ser-283 in vitro. Mutational analysis indicated that LIMK2 phosphorylation at Ser-283 but not Thr-494 was functional. Serum stimulation of endothelial cells also inhibited nuclear import of PDZK-LIMK2 by protein kinase C-dependent phosphorylation of Ser-283. Our study shows that phorbol ester and serum stimulation of endothelial cells inhibit nuclear import of LIMK2 but not LIMK1. This effect was dependent on PKC-delta-mediated phosphorylation of Ser-283. Since phorbol ester enhanced cyclin D1 expression and subsequent G1-to-S-phase transition of endothelial cells, we suggest that the PKC-mediated exclusion of LIMK2 from the nucleus might be a mechanism to relieve suppression of cyclin D1 expression by LIMK2.  相似文献   

12.
Stromal cell-derived factor 1 alpha (SDF-1alpha), the ligand for G-protein-coupled receptor CXCR4, is a chemotactic factor for T lymphocytes. LIM kinase 1 (LIMK1) phosphorylates cofilin, an actin-depolymerizing and -severing protein, at Ser-3 and regulates actin reorganization. We investigated the role of cofilin phosphorylation by LIMK1 in SDF-1alpha-induced chemotaxis of T lymphocytes. SDF-1alpha significantly induced the activation of LIMK1 in Jurkat human leukemic T cells and peripheral blood lymphocytes. SDF-1alpha also induced cofilin phosphorylation, actin reorganization, and activation of small GTPases, Rho, Rac, and Cdc42, in Jurkat cells. Pretreatment with pertussis toxin inhibited SDF-1alpha-induced LIMK1 activation, thus indicating that Gi protein is involved in LIMK1 activation. Expression of dominant negative Rac (DN-Rac), but not DN-Rho or DN-Cdc42, blocked SDF-1alpha-induced activation of LIMK1, which means that SDF-1alpha-induced LIMK1 activation is mediated by Rac but not by Rho or Cdc42. We used a cell-permeable peptide (S3 peptide) that contains the phosphorylation site (Ser-3) of cofilin to inhibit the cellular function of LIMK1. S3 peptide inhibited the kinase activity of LIMK1 in vitro. Treatment of Jurkat cells with S3 peptide inhibited the SDF-1alpha-induced cofilin phosphorylation, actin reorganization, and chemotactic response of Jurkat cells. These results suggest that the phosphorylation of cofilin by LIMK1 plays a critical role in the SDF-1alpha-induced chemotactic response of T lymphocytes.  相似文献   

13.
Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous-transformed human RPE cells undergo cytoskeletal rearrangements via Rac1 GTPase-dependent pathways that modulate LIMK1 and cofilin activity. The TGFβ-like activity of the vitreous may participate in this effect. Actin polymerization causes the cytoskeletal rearrangements that lead to the plasticity of vitreous-transformed RPE cells in PVR.  相似文献   

14.
BACKGROUND: Previous work has led to the hypothesis that cofilin severing, as regulated by PLC, is involved in chemotactic sensing. We have tested this hypothesis by investigating whether activation of endogenous cofilin is spatially and temporally linked to sensing an EGF point source in carcinoma cells. RESULTS: We demonstrate that inhibition of endogenous cofilin activity with either siRNA or overexpression of LIMK suppresses directional sensing in carcinoma cells. LIMK siRNA knockdown, which suppresses cofilin phosphorylation, and microinjection of S3C cofilin, a cofilin mutant that is constitutively active and not phosphorylated by LIMK, also inhibits directional sensing and chemotaxis. These results indicate that phosphorylation of cofilin by LIMK, in addition to cofilin activity, is required for chemotaxis. Cofilin activity concentrates rapidly at the newly formed leading edge facing the gradient, whereas cofilin phosphorylation increases throughout the cell. Quantification of these results indicates that the amplification of asymmetric actin polymerization required for protrusion toward the EGF gradient occurs at the level of cofilin but not at the level of PLC activation by EGFR. CONCLUSIONS: These results indicate that local activation of cofilin by PLC and its global inactivation by LIMK phosphorylation combine to generate the local asymmetry of actin polymerization required for chemotaxis.  相似文献   

15.
LIM kinases (LIMK1 and LIMK2) regulate actin cytoskeletal reorganization through phosphorylating and inactivating cofilin, an actin-depolymerizing factor of actin filaments. Here, we describe a detailed analysis of the cell-cycle-dependent activity of LIMK2, and a subcellular localization of LIMK1 and LIMK2. The activity of LIMK2, distinct from LIMK1, toward cofilin phosphorylation did not change in the normal cell division cycle. In contrast, LIMK2 was hyperphosphorylated and its activity was markedly increased when HeLa cells were synchronized at mitosis with nocodazole treatment. Immunofluorescence analysis showed that LIMK1 was localized at cell-cell adhesion sites in interphase and prophase, redistributed to the spindle poles during prometaphase to anaphase, and accumulated at the cleavage furrow in telophase. In contrast, LIMK2 was diffusely localized in the cytoplasm during interphase, redistributed to the mitotic spindle, and finally to the spindle midzone during anaphase to telophase. These findings suggest that LIMK2 is activated in response to microtubule disruption, and that LIMK1 and LIMK2 may play different roles in regulating for the mitotic spindle organization, chromosome segregation, and cytokinesis during the cell division cycle.  相似文献   

16.

Background

ADF/cofilin proteins are key regulators of actin dynamics. Their function is inhibited by LIMK-mediated phosphorylation at Ser-3. Previous in vitro studies have shown that dependent on its concentration, cofilin either depolymerizes F-actin (at low cofilin concentrations) or promotes actin polymerization (at high cofilin concentrations).

Methodology/Principal Findings

We found that after in vivo cross-linking with different probes, a cofilin oligomer (65 kDa) could be detected in platelets and endothelial cells. The cofilin oligomer did not contain actin. Notably, ADF that only depolymerizes F-actin was present mainly in monomeric form. Furthermore, we found that formation of the cofilin oligomer is regulated by Ser-3 cofilin phosphorylation. Cofilin but not phosphorylated cofilin was present in the endogenous cofilin oligomer. In vitro, formation of cofilin oligomers was drastically reduced after phosphorylation by LIMK2. In endothelial cells, LIMK-mediated cofilin phosphorylation after thrombin-stimulation of EGFP- or DsRed2-tagged cofilin transfected cells reduced cofilin aggregate formation, whereas inhibition of cofilin phosphorylation after Rho-kinase inhibitor (Y27632) treatment of endothelial cells promoted formation of cofilin aggregates. In platelets, cofilin dephosphorylation after thrombin-stimulation and Y27632 treatment led to an increased formation of the cofilin oligomer.

Conclusion/Significance

Based on our results, we propose that an equilibrium exists between the monomeric and oligomeric forms of cofilin in intact cells that is regulated by cofilin phosphorylation. Cofilin phosphorylation at Ser-3 may induce conformational changes on the protein-protein interacting surface of the cofilin oligomer, thereby preventing and/or disrupting cofilin oligomer formation. Cofilin oligomerization might explain the dual action of cofilin on actin dynamics in vivo.  相似文献   

17.
Mammalian LIM kinase 1 (LIMK1) is involved in reorganization of actin cytoskeleton through inactivating phosphorylation of the ADF family protein cofilin, which depolymerizes actin filaments. Maintenance of the actin dynamics in an ordered fashion is essential for stabilization of cell shape or promotion of cell motility depending on the cell type. These are the two key phenomena that may become altered during acquisition of the metastatic phenotype by cancer cells. Here we show that LIMK1 is overexpressed in prostate tumors and in prostate cancer cell lines, that the concentration of phosphorylated cofilin is higher in metastatic prostate cancer cells, and that a partial reduction of LIMK1 altered cell proliferation by arresting cells at G2/M, changed cell shape, and abolished the invasiveness of metastatic prostate cancer cells. We also show that the ectopic expression of LIMK1 promotes acquisition of invasive phenotype by the benign prostate epithelial cells. Our data provide evidence of a novel role of LIMK1 in regulating cell division and invasive property of prostate cancer cells and indicate that the effect is not mediated by phosphorylation of cofilin. Our study correlates with the recent observations showing a metastasis-associated chromosomal gain on 7q11.2 in prostate cancer, suggesting a possible gain in LIMK1 DNA (7q11.23).  相似文献   

18.
Slingshot (SSH) phosphatases and LIM kinases (LIMK) regulate actin dynamics via a reversible phosphorylation (inactivation) of serine 3 in actin-depolymerizing factor (ADF) and cofilin. Here we demonstrate that a multi-protein complex consisting of SSH-1L, LIMK1, actin, and the scaffolding protein, 14-3-3zeta, is involved, along with the kinase, PAK4, in the regulation of ADF/cofilin activity. Endogenous LIMK1 and SSH-1L interact in vitro and co-localize in vivo, and this interaction results in dephosphorylation and downregulation of LIMK1 activity. We also show that the phosphatase activity of purified SSH-1L is F-actin dependent and is negatively regulated via phosphorylation by PAK4. 14-3-3zeta binds to phosphorylated slingshot, decreases the amount of slingshot that co-sediments with F-actin, but does not alter slingshot activity. Here we define a novel ADF/cofilin phosphoregulatory complex and suggest a new mechanism for the regulation of ADF/cofilin activity in mediating changes to the actin cytoskeleton.  相似文献   

19.
LIM-kinases (LIMK1 and LIMK2) regulate actin cytoskeletal reorganization through phosphorylation of cofilin, an actin-depolymerizing factor of actin filaments. Here, we describe a detailed analysis of the cell-cycle-dependent activity of endogenous LIMK1. When HeLa cells were synchronized at prometaphase by nocodazole-treatment, LIMK1 was hyperphosphorylated, and its activity toward cofilin phosphorylation was markedly increased. During cell cycle progression, LIMK1 activity was low in interphase but reached a maximal level during mitosis. Activation of LIMK1 during mitosis was abrogated by roscovitine, a specific inhibitor of cyclin-dependent kinases (CDKs), suggesting that activation of CDKs directly or indirectly participates in LIMK1 activation. These results strongly suggest that LIMK1 may play an important role in the cell cycle progression through regulation of actin cytoskeletal rearrangements.  相似文献   

20.
Mutations in the PARKIN (PARK2) gene have been found in the majority of early-onset familial Parkinson's disease (PD) patients with autosomal recessive juvenile parkinsonism (ARJP). Parkin protein functions as an ubiquitin (E3) ligase that targets specific proteins for degradation in the 26S proteasome. Here, based on a mass spectrometry analysis of the human dopaminergic neuroblastoma-derived cell line SH-SY5Y that over-expresses parkin, we found that parkin may suppress cofilin phosphorylation. LIM Kinase 1 (LIMK1) is the upstream protein that phosphorylates cofilin, an actin depolymerizing protein. Thus, we postulated a possible connection between parkin and LIMK1. Our studies in other cell lines, using co-transfection assays, demonstrated that LIMK1 and parkin bind each other. LIMK1 also interacted with previously known parkin interactors Hsp70 and CHIP. Parkin enhanced LIMK1-ubiquitination in the human neuroblastoma-derived BE(2)-M17 cell line, but not in the human embryonic kidney-derived HEK293 cell line. In fact, parkin-over-expression reduced the level of LIMK1-induced phosphocofilin in the BE(2)-M17 cells but not in the HEK293 cells. Additionally, in simian kidney-derived COS-7 cells, parkin-over-expression reduced LIMK1-induced actin filament accumulation. LIMK1 in cultured cells regulates parkin reversibly: LIMK1 did not phosphorylate parkin but LIMK1 overexpression reduced parkin self-ubiquitination in vitro and in HEK293 cells. Furthermore, in the cells co-transfected with parkin and p38, LIMK1 significantly decreased p38-ubiquitination by parkin. These findings demonstrate a cell-type dependent functional interaction between parkin and LIMK1 and provide new evidence that links parkin and LIMK1 in the pathogenesis of familial PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号