首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The derepression of the isoleucine and valine biosynthetic enzymes in Escherichia coli and Salmonella typhimurium was examined under conditions of restriction of isoleucine, valine, or leucine (the three amino acids needed for multivalent repression of these enzymes). A procedure was used that allowed the measurement of enzyme-forming potential that accumulated during the starvation period, but could not be expressed unless the missing amino acid was supplied. The threonine deaminase (the product of the ilvA gene)-forming potential that accumulated under such conditions was found to be unstable and decayed with a half-life of about 2.5 min (at 37 C). Evidence was obtained that indicates the threonine deaminase-forming potential that accumulates under conditions of isoleucine starvation is in the form of initiated (rifampin-resistant), but uncompleted (actinomycin D-sensitive), messenger ribonucleic acid chains. Furthermore, it appears that a large portion of the threonine deaminase- and dehydrase (the product of the ilvD gene)-forming potential, under such conditions, is in the form of initiated polypeptide chains. Based on these results and results obtained with SuA(-) strains, a model is presented that explains how the second gene (D) in the ilvADE operon can be partially transcribed and translated under conditions in which there are no completed messenger ribonucleic acids for the gene (A) transcribed before it.  相似文献   

2.
l-Threonine deaminase (l-threonine dehydratase [deaminating], EC 4.2.2.16) has been shown to be involved in the regulation of three of the enzymes of isoleucine-valine biosynthesis in yeast. Mutations affecting the affinity of the enzyme for isoleucine also affected the repression of acetohydroxyacid synthase, dihydroxyacid dehydrase, and reductoisomerase. The data indicate that isoleucine must be bound for effective repression of these enzymes to take place. In a strain with a nonsense mutation midway in liv 1, the gene for threonine deaminase, starvation for isoleucine or valine did not lead to derepression of the three enzymes; starvation for leucine did. The effect of the nonsense mutation is recessive; it is tentatively concluded, therefore, that intact threonine deaminase is required for derepression by two of the effectors for multivalent repression, but not by the third. A model is presented which proposes that a regulatory species of leu tRNA(leu) is the key intermediate for repression and that threonine deaminase is a positive element, regulating the available pool of charged leu tRNA by binding it.  相似文献   

3.
Two isoleucine analogues and two leucine analogues were examined for their ability to replace the natural amino acid preventing the accumulation of threonine deaminase-forming potential. The procedure used to study repression by the analogues distinguishes between true repression and the formation of inactive enzyme by the analogue in question. The leucine analogue 4-azaleucine was found to replace leucine in multivalent repression of threonine deaminase-forming potential in Escherichia coli but not in Salmonella typhimurium. Another leucine analogue, trifluoroleucine, was only partially effective in causing repression in either organism. The isoleucine analogue 4-azaisoleucine was ineffective in replacing isoleucine in repression. In contrast, 4-thiaisoleucine effectively replaced isoleucine in the repression of threonine deaminase-forming potential in S. typhimurium and E. coli.  相似文献   

4.
High-level expression of the regulatory enzyme threonine deaminase in Escherichia coli strains grown on minimal medium that are deficient in the activities of enzymes needed for branched-chain amino acid biosynthesis result in growth inhibition, possibly because of the accumulation of toxic levels of alpha-ketobutyrate, the product of the committed step in isoleucine biosynthesis. This condition affords a means for selecting genetic variants of threonine deaminase that are deficient in catalysis by suppression of growth inhibition. Strains harboring mutations in ilvA that decreased the catalytic activity of threonine deaminase were found to grow more rapidly than isogenic strains containing wild-type ilvA. Modification of the ilvA gene to introduce additional unique, evenly spaced restriction enzyme sites facilitated the identification of suppressor mutations by enabling small DNA fragments to be subcloned for sequencing. The 10 mutations identified in ilvA code for enzymes with significantly reduced activity relative to that of wild-type threonine deaminase. Values for their specific activities range from 40% of that displayed by wild-type enzyme to complete inactivation as evidenced by failure to complement an ilvA deletion strain to isoleucine prototrophy. Moreover, some mutant enzymes showed altered allosteric properties with respect to valine activation and isoleucine inhibition. The location of the 10 mutations in the 5' two-thirds of the ilvA gene is consistent with suggestions that threonine deaminase is organized functionally with an amino-terminal domain that is involved in catalysis and a carboxy-terminal domain that is important for regulation.  相似文献   

5.
The biosynthetic L-threonine deaminase (L-threonine hydrolase deaminating, EC 4.2.1.16) has been purified from Escherichia coli K12 regulatory mutant CU18. This mutant has properties that follow the predictions of the autogregulatory model previously proposed for the control of synthesis of the isoleucine-valine biosynthetic enzymes. The autoregulatory model specifies that L-threonine deaminase participates in the control of the expression of the ilv ADE gene cluster as well as the ilv B gene and ilv C gene, which constitute three separate units of regulation. The single mutation in strain CU18 results in altered regulation of ilv gene expression and in the production of an altered L-threonine deaminase. The immature form of the enzyme purified from mutant CU18 exhibits an altered response to L-valine, a maturation-inducing ligand. The native form of the mutant is altered in its apparent Km for L-threonine and in its response to the effects of L-valine and L-isoleucine upon catalytic activity. The mutant and wild type L-threonine deaminases differ in the apoenzyme formed as a consequence of alkaline dialysis. Dialysis of the mutant enzyme yields an apoenzyme mixture, apparently of dimers and monomers, while the wild type enzyme yields only dimers. The CU18 L-threonine deaminase, is however, indistinguishable from the wild type enzyme in molecular weight and subunit composition.  相似文献   

6.
Enzymes of the Isoleucine-Valine Pathway in Acinetobacter   总被引:2,自引:2,他引:0       下载免费PDF全文
Regulation of four of the enzymes required for isoleucine and valine biosynthesis in Acinetobacter was studied. A three- to fourfold derepression of acetohydroxyacid synthetase was routinely observed in two different wild-type strains when grown in minimal medium relative to cells grown in minimal medium supplemented with leucine, valine, and isoleucine. A similar degree of synthetase derepression was observed in appropriately grown isoleucine or leucine auxotrophs. No significant derepression of threonine deaminase or transaminase B occurred in either wild-type or mutant cells grown under a variety of conditions. Three amino acid analogues were tested with wild-type cells; except for a two- to threefold derepression of dihydroxyacid dehydrase when high concentrations of aminobutyric acid were added to the medium, essentially the same results were obtained. Experiments showed that threonine deaminase is subject to feedback inhibition by isoleucine and that valine reverses this inhibition. Cooperative effects in threonine deaminase were demonstrated with crude extracts. The data indicate that the synthesis of isoleucine and valine in Acinetobacter is regulated by repression control of acetohydroxyacid synthetase and feedback inhibition of threonine deaminase and acetohydroxyacid synthetase.  相似文献   

7.
Valyl-, isoleucyl-, and leucyl-tRNA synthetase activities were examined in an Escherichia coli K-12 strain that possessed a deletion of three genes of the ilv gene cluster, ilvD, A, and C, and in a strain with the same deletion that also carried the lambdadilvCB bacteriophage. It was observed that the branched-chain tRNA synthetase activities of both strains were considerably less than those of the normal strain during growth in unrestricted medium. Furthermore, during an isoleucine limitation, there was a further reduction in isoleucyl-tRNA synthetase activity and an absence of the isoleucine-mediated derepression of valyl-tRNA synthetase formation in both of these mutants, as compared with the normal strain. In addition, it was observed that these branched-chain synthetase activities were reduced in steady-state cultures of several ilvA point mutants. However, upon the introduction of the ilv operon to these ilvA mutants by use of lambda bacteriophage, there was a specific increase in the branched-chain synthetase activities to levels comparable to those of the normal strain. These results support our previous findings that the stability and repression control of synthesis of these synthetases require some product(s) missing in the ilvDAC deletion strain and strongly suggest this component is some form of the ilvA gene product, threonine deaminase.  相似文献   

8.
Mutants, resistant to threonine analogue, DL-alpha-amino-beta-hydroxyvaleric acid, were obtained after the treatment of Escherichia coli K-12 RelA- cells with nitrosoguanidine, and among them the strain with maximal threonine production (about 3g/l) was selected. Genetic and biochemical analysis of the producer has revealed the dependency of the threonine production on at least three mutations. The mutation in the thrA gene disturbs retroinhibition of homoserine dehydrogenase by threonine. The mutation in the ilvA gene decreases the activity of threonine deaminase, and thus results in partial isoleucine auxotrophy, and finally, the reversion in the relA gene restores the stringent amino acid control of RNA synthesis in threonine producer cells. The role of relA gene in threonine production was demonstrated by comparing pairs of strains differing from one another in the allelic state of the relA gene. The level of threonine synthesis (its intra- and extracellular concentrations) during moderate isoleucine starvation in RelA+ cells 2-3 times as high as in RelA- cells. The presence of relA+ allele is found to result in the increase of the cell resistance to DL-alpha-amino-beta-hydroxyvaleric acid.  相似文献   

9.
Regulation of branched-chain amino acid transport in Escherichia coli.   总被引:16,自引:14,他引:2       下载免费PDF全文
The repression and derepression of leucine, isoleucine, and valine transport in Escherichia coli K-12 was examined by using strains auxotrophic for leucine, isoleucine, valine, and methionine. In experiments designed to limit each of these amino acids separately, we demonstrate that leucine limitation alone derepressed the leucine-binding protein, the high-affinity branched-chain amino acid transport system (LIV-I), and the membrane-bound, low-affinity system (LIV-II). This regulation did not seem to involve inactivation of transport components, but represented an increase in the differential rate of synthesis of transport components relative to total cellular proteins. The apparent regulation of transport by isoleucine, valine, and methionine reported elsewhere was shown to require an intact leucine, biosynthetic operon and to result from changes in the level of leucine biosynthetic enzymes. A functional leucyl-transfer ribonucleic acid synthetase was also required for repression of transport. Transport regulation was shown to be essentially independent of ilvA or its gene product, threonine deaminase. The central role of leucine or its derivatives in cellular metabolism in general is discussed.  相似文献   

10.
Effect of cyclopentaneglycine on metabolism in Salmonella typhimurium   总被引:3,自引:1,他引:2  
Cyclopentaneglycine (CPG) inhibited the growth of wild-type Salmonella typhimurium. The inhibition was overcome by isoleucine or any isoleucine precursor formed after threonine. CPG appeared to mimic isoleucine as a strong inhibitor of the activity of l-threonine deaminase. The analogue was a poor inhibitor of isoleucyl-transfer ribonucleic acid synthetase. CPG did not appear to be incorporated into protein nor did it replace isoleucine in repression. Cells that had recovered from growth inhibition by CPG had derepressed levels of the isoleucine-valine biosynthetic enzymes.  相似文献   

11.
Location of previously isolated ilv7434 mutation was determined by use of transductional shortening of the F'14 episome. The ilv7434 mutation causes resistance of threonine deaminase (coded for by ilvA gene) to feed-back inhibition by isoleucine. Another phenotype characteristics of the ilv7434 mutant is the ability to feed a lawn of isoleucine auxotrophs in the cross-streak test. The F'14 strain AB1206 carrying ilv7434 mutation was used as a donor for making transductionally shortened episomes in recA recipient. These shortened F'14 episomes containing variable segments of the ilv cluster were then tested for their ability to transfer ilv7434 phenotype by complementation with ilv recA recipients. The data of complementation test suggest that ilv7434 is situated between ilvD and ilvC genes. One of 20 tested shortened episomes carrying, as shown by complementation test, incomplete ilvA gene was found to transfer ilv7434 phenotype by recombination with ilvA527 recA+ recipient. These data allow to conclude that ilv7434 mutation is located within the ilvA gene.  相似文献   

12.
The regulation of synthesis of the valine-alanine-alpha-aminobutyrate transaminase (transaminase C) was studied in Escherichia coli mutants lacking the branched-chain amino acid transaminase (transaminase B). An investigation was made of two strains, CU2 and CU2002, each carrying the same transaminase B lesion but exhibiting different growth responses on a medium supplemented with branched-chain amino acids. Both had the absolute isoleucine requirement characteristic of ilvE auxotrophs, but growth of strain CU2 was stimulated by valine, whereas that of strain CU2002 was markedly inhibited by valine. Strain CU2002 behaved like a conditional leucine auxotroph in that the inhibition by valine was reversed by leucine. Results of enzymatic studies showed that synthesis of transaminase C was repressed by valine in strain CU2002 but not in strain CU2. Inhibition by valine in strain CU2002 appears to be the combined effect of repression on transaminase C synthesis and valine-dependent feedback inhibition of alpha-acetohydroxy acid synthase activity, causing alpha-ketoisovalerate (and hence leucine) limitation. The ilvE markers of strains CU2 and CU2002 were each transferred by transduction to a wild-type genetical background. All ilvE recombinants from both crosses resembled strain CU2002 and were inhibited by valine in the presence of isoleucine. Thus, strain CU2 carries an additional lesion that allows it to grow on a medium containing isoleucine plus valine. It is concluded that conditional leucine auxotrophy is characteristic of mutants carrying an ilvE lesion alone.  相似文献   

13.
Starvation of a pdx mutant of Escherichia coli strain B in the presence of repressing levels of isoleucine, valine and leucine leads to a derepression of the normally repressible ilv genes. The derepression of the ilvA gene under these conditions results in the accumulation of apothreonine deaminase. Addition of pyridoxine leads to a sudden increase in threonine deaminase activity, and to restoration of repression. The pyridoxine component needed for the repression signal is probably not threonine deaminase but, more likely, some transient (“immature”) form of the enzyme.  相似文献   

14.
Cysteine has been shown to inhibit growth in Escherichia coli strains C6 and HfrH 72, but not M108A. Growth inhibition was overcome by inclusion of isoleucine, leucine, and valine in the medium. Isoleucine biosynthesis was apparently affected, since addition of this amino acid alone could alter the inhibitory effects of cysteine. Homocysteine, mercaptoethylamine, and mercaptoethanol inhibited growth to varying degrees in some strains, these effects also being prevented by addition of branched-chain amino acids. Cysteine, mercaptoethylamine, and homocysteine were inhibitors of threonine deaminase but not transaminase B, two enzymes of the ilvEDA operon. Cysteine inhibition of threonine deaminase was reversed by threonine, although the pattern of inhibition was mixed. These results suggest a relationship between the growth-inhibitory effects of cysteine and other sulfur compounds and the inhibition of isoleucine synthesis at the level of threonine deaminase.  相似文献   

15.
Regulation of the biosynthesis of four of the five enzymes of the isoleucine-valine pathway was studied in Saccharomyces cerevisiae. A method is described for limiting the growth of a leucine auxotroph by using valine as a competitor for the permease. Limitation for isoleucine and valine was accomplished by the use of peptides containing these amino acids conjugated with glycine as nutritional supplements for auxotrophs. The enzymes were repressed on synthetic medium containing isoleucine, valine, and leucine, as well as on broth supplemented with these amino acids. Limitation for any of the three branched-chain amino acids led to derepression of the isoleucine-valine biosynthetic pathway. Maximal derepression ranged from 3-fold for threonine deaminase to approximately 10-fold for acetohydroxyacid synthase. (Two of the enzymes, acetohydroxyacid synthase and dihydroxyacid dehydrase, may be controlled by a mechanism different from that regulating threonine deaminase.) Possible molecular mechanisms for multivalent repression are discussed.  相似文献   

16.
17.
Since both transport activity and the leucine biosynthetic enzymes are repressed by growth on leucine, the regulation of leucine, isoleucine, and valine biosynthetic enzymes was examined in Escherichia coli K-12 strain EO312, a constitutively derepressed branched-chain amino acid transport mutant, to determine if the transport derepression affected the biosynthetic enzymes. Neither the iluB gene product, acetohydroxy acid synthetase (acetolactate synthetase, EC 4.1.3.18), NOR THE LEUB gene product, 3-isopropylmalate dehydrogenase (2-hydroxy-4-methyl-3-carboxyvalerate-nicotinamide adenine dinucleotide oxido-reductase, EC 1.1.1.85), were significantly affected in their level of derepression or repression compared to the parental strain. A number of strains with alterations in the regulation of the branched-chain amino acid biosynthetic enzymes were examined for the regulation of the shock-sensitive transport system for these amino acids (LIV-I). When transport activity was examined in strains with mutations leading to derepression of the iluB, iluADE, and leuABCD gene clusters, the regulation of the LIV-I transport system was found to be normal. The regulation of transport in an E. coli strain B/r with a deletion of the entire leucine biosynthetic operon was normal, indicating none of the gene products of this operon are required for regulation of transport. Salmonella typhimurium LT2 strain leu-500, a single-site mutation affecting both promotor-like and operator-like function of the leuABCD gene cluster, also had normal regulation of the LIV-I transport system. All of the strains contained leucine-specific transport activity, which was also repressed by growth in media containing leucine, isoleucine and valine. The concentrated shock fluids from these strains grown in minimal medium or with excess leucine, isoleucine, and valine were examined for proteins with leucine-binding activity, and the levels of these proteins were found to be regulated normally. It appears that the branched-chain amino acid transport systems and biosynthetic enzymes in E. coli strains K-12 and B/r and in S. typhimurium strain LT2 are not regulated together by a cis-dominate type of mechanism, although both systems may have components in common.  相似文献   

18.
The control of isoleucine and valine biosynthesis was examined in a hisU mutant of Salmonella typhimurium. It was found that the levels of expression of the ilvEDA operon and the ilvC gene were significantly reduced relative to an isogenic normal strain when grown in unsupplemented medium. In contrast, this hisU mutant exhibited only a slight reduction in total acetohydroxy acid synthase activity relative to that of the wild type. The hisU and hisU+ strains were examined to determine their derepressibility upon either leucine, valine or isoleucine limitation. Only during leucine limitation did the hisU strain exhibit impaired derepressibility relative to the hisU+ strain. In addition, repression control of threonine deaminase (the ilvA product of the ilvEDA operon) in this hisU mutant was refractory to exogenous supplementation with either leucine or valine. This response is in distinct contrast to that of the normal strain, in which the single addition of leucine or valine results in a significant reduction in the level of threonine deaminase.  相似文献   

19.
The regulation of the formation of isoleucine-valine biosynthetic enzymes was examined to elucidate the mechanism of isoleucine-valine accumulation by alpha-aminobutyric acid-resistant (abu-r) mutants of Serratia marcescens. In the isoleucine-valine auxotroph, l-threonine dehydratase, acetohydroxy acid synthetase, and transaminase B were repressed when isoleucine, valine, and leucine were simultaneously added to minimal medium. These enzymes were derepressed at the limitation of any single branched-chain amino acid. Pantothenate, which stimulated growth of this auxotroph, had no effect on the enzyme levels. It became evident from these results that in S. marcescens isoleucine-valine biosynthetic enzymes are subject to multivalent repression by three branched-chain amino acids. The abu-r mutants had high enzyme levels in minimal medium, with or without three branched-chain amino acids. Therefore, in abu-r mutants, isoleucine-valine biosynthetic enzymes are genetically derepressed. This derepression was considered to be the primary cause for valine accumulation and increased isoleucine accumulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号