首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD4-mediated signals induce T cell dysfunction in vivo.   总被引:1,自引:0,他引:1  
Triggering of CD4 coreceptors on both human and murine T cells can suppress TCR/CD3-induced secretion of IL-2. We show here that pretreatment of murine CD4+ T cells with the CD4-specific mAb YTS177 inhibits the CD3-mediated activation of the IL-2 promoter factors NF-AT and AP-1. Ligation of CD4 molecules on T cells leads to a transient stimulation of extracellular signal-regulated kinase (Erk) 2, but not c-Jun N-terminal kinase (JNK) activity. Pretreatment with anti-CD4 mAb impaired anti-CD3-induced Erk2 activation. Costimulation with anti-CD28 overcame the inhibitory effect of anti-CD4 Abs, by induction of JNK activation. The in vivo relevance of these studies was demonstrated by the observation that CD4+ T cells from BALB/c mice injected with nondepleting anti-CD4 mAb were inhibited in their ability to respond to OVA Ag-induced proliferation and IL-2 secretion. Interestingly, in vivo stimulation with anti-CD28 mAb restored IL-2 secretion. Furthermore, animals pretreated with anti-CD4 elicited enhanced IL-4 secretion induced by OVA and CD28. These observations suggest that CD4-specific Abs can inhibit T cell activation by interfering with signal 1 transduced through the TCR, but potentiate those delivered through the costimulatory molecule CD28. These studies have relevance to understanding the mechanism of tolerance induced by nondepleting anti-CD4 mAb used in animal models for allograft studies, autoimmune pathologies, and for immunosuppressive therapies in humans.  相似文献   

2.
T cell proliferation and cytokine production usually require stimulation via both the TCR/CD3 complex and the CD28 costimulatory receptor. Using purified human CD4+ peripheral blood T cells, we show that CD28 stimulation alone activates p38 alpha mitogen-activated protein kinase (p38 alpha). Cell proliferation induced by CD28 stimulation alone, a response attributed to CD4+CD45RO+ memory T cells, was blocked by the highly specific p38 inhibitors SB 203580 (IC50 = 10-80 nM) and RWJ 67657 (IC50 = 0.5-4 nM). In contrast, proliferation induced by anti-CD3 plus anti-CD28 mAbs was not blocked. Inhibitors of p38 also blocked CD4+ T cell production of IL-4 (SB 203580 IC50 = 20-100 nM), but not IL-2, in response to CD3 and CD28 stimulation. IL-5, TNF-alpha, and IFN-gamma production were also inhibited, but to a lesser degree than IL-4. IL-4 production was attributed to CD4+CD45RO+ T cells, and its induction was suppressed by p38 inhibitors at the mRNA level. In polarized Th1 and Th2 cell lines, SB 203580 strongly inhibited IL-4 production by Th2 cells (IC50 = 10-80 nM), but only partially inhibited IFN-gamma and IL-2 production by Th1 cells (<50% inhibition at 1 microM). In both Th1 and Th2 cells, CD28 signaling activated p38 alpha and was required for cytokine production. These results show that p38 alpha plays an important role in some, but not all, CD28-dependent cellular responses. Its preferential involvement in IL-4 production by CD4+CD45RO+ T cells and Th2 effector cells suggests that p38 alpha may be important in the generation of Th2-type responses in humans.  相似文献   

3.
The role of CTLA-4 in regulating Th2 differentiation.   总被引:13,自引:0,他引:13  
To examine the role of CTLA-4 in Th cell differentiation, we used two newly generated CTLA-4-deficient (CTLA-4-/-) mouse strains: DO11. 10 CTLA-4-/- mice carrying a class II restricted transgenic TCR specific for OVA, and mice lacking CTLA-4, B7.1 and B7.2 (CTLA-4-/- B7.1/B7.2-/- ). When purified naive CD4+ DO11.10 T cells from CTLA-4-/- and wild-type mice were primed and restimulated in vitro with peptide Ag, CTLA-4-/- DO11.10 T cells developed into Th2 cells, whereas wild-type DO11.10 T cells developed into Th1 cells. Similarly, when CTLA-4-/- CD4+ T cells from mice lacking CTLA-4, B7. 1, and B7.2 were stimulated in vitro with anti-CD3 Ab and wild-type APC, these CTLA-4-/- CD4+ T cells produced IL-4 even during the primary stimulation, whereas CD4+ cells from B7.1/B7.2-/- mice did not produce IL-4. Upon secondary stimulation, CD4+ T cells from CTLA-4-/- B7.1/B7.2-/- mice secreted high levels of IL-4, whereas CD4+ T cells from B7.1/B7.2-/- mice produced IFN-gamma. In contrast to the effects on CD4+ Th differentiation, the absence of CTLA-4 resulted in only a modest effect on T cell proliferation, and increased proliferation of CTLA-4-/- CD4+ T cells was seen only during secondary stimulation in vitro. Administration of a stimulatory anti-CD28 Ab in vivo induced IL-4 production in CTLA-4-/- B7.1/B7.2-/- but not wild-type mice. These studies demonstrate that CTLA-4 is a critical and potent inhibitor of Th2 differentiation. Thus, the B7-CD28/CTLA-4 pathway plays a critical role in regulating Th2 differentiation in two ways: CD28 promotes Th2 differentiation while CTLA-4 limits Th2 differentiation.  相似文献   

4.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

5.
In this study, we examined in vitro the role of CTLA-4 costimulation in the polarization of naive CD4+ T cells toward the Th1 subset. When CTLA-4 costimulation was blocked by the inclusion of anti-CTLA-4 Fab in cultures during priming of naive CD4+ T cells with anti-CD3 in the presence of splenic adherent cells, they were polarized toward the Th2 subset. Conversely, the engagement of CTLA-4 with immobilized anti-CTLA-4 or with CD80-P815 cells polarized naive CD4+ T cells costimulated with anti-CD3 and anti-CD28 toward the Th1 subset. The CTLA-4 costimulation during priming augmented TGF-beta1 mRNA accumulation in naive CD4+ T cells, and the inclusion of anti-TGF-beta in cultures for priming suppressed the effect of CTLA-4 costimulation on the Th1 polarization. The addition of low doses of TGF-beta1 in cultures for priming of naive CD4+ T cells enhanced the production of Th1 cytokines upon secondary stimulation, although Th2 cytokine production was not affected by the doses of TGF-beta1. The CTLA-4 costimulation was also shown to suppress IL-4 production of naive CD4+ T cells upon priming. These results indicate that the costimulation against CTLA-4 drives polarization of naive CD4+ T cells toward the Th1 subset independent of IL-12 through, at least in part, the enhancement of TGF-beta1 production, and it also hampers Th2 subset differentiation by affecting IL-4 production of naive CD4+ T cells.  相似文献   

6.
During activation in vivo, naive CD4(+) T cells are exposed to various endogenous ligands, such as cytokines and the neurotransmitter norepinephrine (NE). To determine whether NE affects naive T cell differentiation, we used naive CD4(+) T cells sort-purified from either BALB/c or DO11.10 TCR-transgenic mouse spleens and activated these cells with either anti-CD3/anti-CD28 mAbs or APC and OVA(323-329) peptide, respectively, under Th1-promoting conditions. RT-PCR and functional assays using selective adrenergic receptor (AR) subtype antagonists showed that naive CD4(+) T cells expressed only the beta 2AR subtype to bind NE and that stimulation of this receptor generated Th1 cells that produced 2- to 4-fold more IFN-gamma. This increase was due to more IFN-gamma produced per cell upon restimulation instead of more IFN-gamma-secreting cells, as determined by IFN-gamma-specific immunofluorescence and enzyme-linked immunospot. In contrast, Th1 cell differentiation was unaffected when naive T cells were exposed to NE and activated either in the presence of a neutralizing anti-IL-12 mAb or by APC from IL-12-deficient mice. Moreover, the addition of IL-12 to the IL-12-deficient APC cultures restored the ability of NE to increase Th1 differentiation. Taken together, these results indicate that a possible link may exist between the signaling pathways used by NE and IL-12 to increase naive CD4(+) T cell differentiation to a Th1 cell.  相似文献   

7.
CD2 (T11, the T cell E receptor), a nonpolymorphic 47- to 55-kDa glycoprotein, is a T cell-specific surface protein that plays an important role in T lymphocyte adhesion, signal transduction, and differentiation. A natural ligand of CD2 is lymphocyte function associated Ag-3 (LFA-3 (CD58)), a widely expressed glycoprotein of 50 to 70 kDa. The physiologic interaction of CD2 with LFA-3 functions to increase intercellular adhesion and plays a role in T cell activation. This interaction, however, in the absence of other stimuli, has not previously been shown to induce intracellular signals such as Ca2+ mobilization or IL-2 production. To investigate whether cAMP may play a role in ligand-triggered CD2-mediated signal transduction, we have studied the ability of purified LFA-3 and anti-CD2 mAb to induce changes in intracellular cAMP content in murine Ag-specific T cell hybridomas that stably express wild-type and mutated human CD2 molecules. By using a RIA sensitive to the femtomolar range and specific for cAMP, we demonstrate that purified LFA-3, like anti-CD2 mAb, is capable of inducing marked, transient increases in the intracellular concentration of cAMP. Presentation of purified LFA-3, like anti-CD2 mAb, is capable of inducing marked, transient increases in the intracellular concentration of cAMP. Presentation of purified LFA-3 alone to CD2-expressing hybridoma cells, however, did not stimulate phosphatidylinositol turnover nor IL-2 production. The cytoplasmic domain of CD2 is necessary for these ligand-induced cAMP changes, demonstrating that LFA-3 binding to CD2 transduces a signal to the cell. Experiments using the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine showed that CD2-mediated regulation of cAMP levels occurs primarily by the stimulation of cAMP production rather than by the inhibition of cAMP degradation. These results demonstrate that the interaction of LFA-3 with CD2, in the absence of other stimuli, is capable of initiating intracellular biochemical changes and suggest that CD2/LFA-3 interactions may regulate T cell function at least in part through the generation of intracellular cAMP.  相似文献   

8.
The majority of T lymphocytes that infiltrate psoriatic lesions express cutaneous lymphocyte antigen (CLA), a skin homing receptor involved in the influx of memory T cells to cutaneous sites. We investigated CLA expression on normal human peripheral blood mononuclear cells (PBMCs) and evaluated its association with IL-12 receptors, chemokine receptor, CXCR3, and IL-2Ralpha. PBMCs were stimulated in vitro with or without polyclonal activators (mitogen, or superantigens, or anti-CD3+anti-CD28) in the presence or absence of exogenous rhIL-12. The percentage of CLA+ T lymphocytes increased significantly after superantigen stimulation compared to anti-CD3+anti-CD28 or mitogen activation. The majority of activation induced CLA+ T lymphocytes co-expressed IL-12Rbeta1, IL-12Rbeta2, CXCR3, and CD25 in the presence of rhIL-12. Our results indicate that CLA expression on activated T lymphocytes is IL-12 and activation dependent and correlates with the expression of IL-12 receptors, IL-2Ralpha, and CXCR3. Monitoring the levels of Th1 differentiation markers such as CXCR3 and IL-12Rbeta2 along with activation marker, CD25 on skin homing CLA+ T lymphocytes may provide insight into the mechanism of action of immunotherapies directed against Th1 type skin inflammatory diseases.  相似文献   

9.
To examine the role of CD28 and CTLA-4 in Th cell differentiation, we used a novel microsphere-based system to compare the effects of CD28 ligation by Ab or CD80/CD86. One set of beads was prepared by coating with anti-CD3 and anti-CD28 Ab. Another set of beads was prepared by immobilizing anti-CD3 and murine CD80-Ig fusion protein or murine CD86-Ig fusion protein on the beads. The three sets of beads were compared in their effects on the ability to activate and differentiate splenic CD4 T cells. When purified naive CD4(+) cells were stimulated in vitro, robust proliferation of similar magnitude was induced by all three sets of beads. When cytokine secretion was examined, all bead preparations induced an equivalent accumulation of IL-2. In contrast, there was a marked difference in the cytokine secretion pattern of the Th2 cytokines IL-4, IL-10, and IL-13. The B7-Ig-stimulated cultures had high concentrations of Th2 cytokines, whereas there were low or undetectable concentrations in the anti-CD28-stimulated cultures. Addition of anti-CTLA-4 Fab augmented B7-mediated IL-4 secretion. These studies demonstrate that B7 is a critical and potent stimulator of Th2 differentiation, and that anti-CD28 prevents this effect.  相似文献   

10.
CD73 (5'-ectonucleotidase) is expressed by two distinct mouse CD4 T cell populations: CD25+ (FoxP3+) T regulatory (Treg) cells that suppress T cell proliferation but do not secrete IL-2, and CD25- uncommitted primed precursor Th (Thpp) cells that secrete IL-2 but do not suppress in standard Treg suppressor assays. CD73 on both Treg and Thpp cells converted extracellular 5'-AMP to adenosine. Adenosine suppressed proliferation and cytokine secretion of Th1 and Th2 effector cells, even when target cells were activated by anti-CD3 and anti-CD28. This represents an additional suppressive mechanism of Treg cells and a previously unrecognized suppressive activity of Thpp cells. Infiltration of either Treg or Thpp cells at inflammatory sites could potentially convert 5'-AMP generated by neutrophils or dying cells into the anti-inflammatory mediator adenosine, thus dampening excessive immune reactions.  相似文献   

11.
Mice lacking CTLA-4 die at an age of 2-3 wk due to massive lymphoproliferation, leading to lymphocytic infiltration and destruction of major organs. The onset of the lymphoproliferative disease can be delayed by treatment with murine CTLA4Ig (mCTLA4Ig), starting day 12 after birth. In this study, we have characterized the T cells present in CTLA-4-deficient mice before and after mCTLA4Ig treatment. The T cells present in CTLA-4-deficient mice express the activation markers, CD69 and IL-2R; down-regulate the lymphoid homing receptor, CD62L; proliferate spontaneously in vitro and cannot be costimulated with anti-CD28 mAb consistent with a hyperactivated state. The T cells from CTLA-4-deficient mice survive longer in culture correlating with higher expression of the survival factor, Bcl-xL, in these cells. Most significantly, the CD4+ T cell subset present in CTLA-4-deficient mice secretes high levels of IL-4 and IL-5 upon TCR activation. Treatment of CTLA-4-deficient mice treated with mCTLA4Ig reverses the activation and hyperproliferative phenotype of the CTLA-4-deficient T cells and restores the costimulatory activity of anti-CD28 mAb. Furthermore, T cells from mCTLA4Ig-treated mice are not skewed toward a Th2 cytokine phenotype. Thus, CTLA-4 regulates CD28-dependent peripheral activation of CD4+ T cells. This process results in apoptosis-resistant, CD4+ T cells with a predominantly Th2 phenotype that may be involved in the lethal phenotype in these animals.  相似文献   

12.
Functional roles of interleukin (IL-)6 in T cell response were investigated. Mice deficient in IL-6 and wild mice were immunized with antigens (myelin oligodendrocyte glycoprotein or methylated BSA) and production of IL-4 and interferon (IFN)-gamma by regional lymph nodes was measured. IL-6 deficiency led to an enhancement of IL-4 and an inhibition of IFN-gamma production. Moreover, polyclonal stimulation of spleen T cells from unimmunized IL-6-deficient mice with anti-CD3 plus anti-CD28 antibodies (Abs) demonstrated an enhancement of T helper (Th)(2)responses. The presence of IL-6, however, augmented IL-4 production but it inhibited IFN-gamma expression by spleen T cells in response to polyclonal stimulation and by antigen-primed spleen T cells in response to re-challenge with the antigen. In contrast, the induction of spleen CD4-positive T cells into Th(2)cells in vitro by the anti-CD3 plus IL-4 was completely suppressed by exogenously added IL-6, whereas Th(1)differentiation of T cells by the anti-CD3 plus IL-12 was not inhibited by the presence of IL-6. Thus, these results indicate that IL-6 physiologically could modulate qualitative T cell response and suggest that it augments Th(1)responses partly through its inhibitory capability of IL-4-induced Th(2)differentiation of naive T cells.  相似文献   

13.
14.
Th17 cells are a distinct subset of T cells that have been found to produce interleukin 17 (IL-17), and differ in function from the other T cell subsets including Th1, Th2, and regulatory T cells. Th17 cells have emerged as a central culprit in overzealous inflammatory immune responses associated with many autoimmune disorders. In this method we purify T lymphocytes from the spleen and lymph nodes of C57BL/6 mice, and stimulate purified CD4+ T cells under control and Th17-inducing environments. The Th17-inducing environment includes stimulation in the presence of anti-CD3 and anti-CD28 antibodies, IL-6, and TGF-β. After incubation for at least 72 hours and for up to five days at 37 °C, cells are subsequently analyzed for the capability to produce IL-17 through flow cytometry, qPCR, and ELISAs. Th17 differentiated CD4+CD25- T cells can be utilized to further elucidate the role that Th17 cells play in the onset and progression of autoimmunity and host defense. Moreover, Th17 differentiation of CD4+CD25- lymphocytes from distinct murine knockout/disease models can contribute to our understanding of cell fate plasticity.  相似文献   

15.
An impaired differentiation of naive CD4+ T cells towards Th2 cells may contribute to the chronic tissue-destructive T-cell activity in rheumatoid arthritis (RA). The differentiation of naive CD4+ T cells into memory Th2 cells by IL-7 in comparison with that by IL-4 was studied in RA patients and in healthy controls. Naive CD4+ T cells from peripheral blood were differentiated by CD3/CD28 costimulation in the absence of or in the presence of IL-7 and/or IL-4. The production of IFN-gamma and IL-4 was measured by ELISA and by single-cell FACS analysis to indicate Th1 and Th2 cell activity. CD3/CD28 costimulation and IL-7 were early inducers of IL-4 production, but primarily stimulated IFN-gamma production. In contrast, in short-term cultures exogenously added IL-4 did not prime for IL-4 production but suppressed IL-7-induced IFN-gamma production. Upon long-term stimulation of naive CD4+ T cells, IFN-gamma production was differentially regulated by IL-7 and IL-4, but IL-4 production was increased by both IL-7 and IL-4. IL-7 and IL-4 additively induced polarization towards a Th2 phenotype. This susceptibility of naive CD4+ T cells to become Th2 cells upon culture with IL-7 and IL-4 was increased in RA patients compared with that in healthy controls. These findings demonstrate that, in RA patients, differentiation of naive CD4+ T cells towards a Th2 phenotype by CD3/CD28 costimulation, IL-7 and IL-4 is not impaired. The perpetuation of arthritogenic T-cell activity in RA therefore seems not to be the result of intrinsic defects of naive CD4+ T cells to develop towards suppressive memory Th2 cells.  相似文献   

16.
The chronic immune response in rheumatoid arthritis (RA) might be driven by activated Th1 cells without sufficient Th2 cell differentiation to down-modulate inflammation. To test whether disordered memory T cell differentiation contributes to the typical Th1-dominated chronic inflammation in RA we investigated differentiation of resting CD4+ memory T cells in patients with early (6 wk to 12 mo) untreated RA and in age- and sex-matched healthy controls in vitro. No difference in cytokine secretion profiles of freshly isolated memory T cells was detected between patients and controls. A cell culture system was then employed that permitted the differentiation of Th effectors from resting memory T cells by short term priming. Marked differences were found in response to priming. Th2 cells could be induced in all healthy controls by priming with anti-CD28 in the absence of TCR ligation. By contrast, priming under those conditions resulted in Th2 differentiation in only 9 of 24 RA patients. Exogenous IL-4 could overcome the apparent Th2 differentiation defect in seven patients but was without effect in the remaining eight patients. In all patients a marked decrease in IL-2-producing cells and a significant increase in well-differentiated Th1 cells that produced IFN-gamma but not IL-2 were evident after priming with anti-CD3 and anti-CD28. The data suggest that CD4+ memory T cells from patients with early untreated RA manifest an intrinsic abnormality in their ability to differentiate into specific cytokine-producing effector cells that might contribute to the characteristic Th1-dominated chronic (auto)immune inflammation in RA.  相似文献   

17.
Interleukin-4 (IL-4) is the main cytokine that polarizes activated na?ve CD4+ T cells in the T helper 2 (Th2) direction. IL-4 also regulates the subsequent stages of Th2 cell-mediated diseases, such as allergies. We conducted a proteomics study to identify IL-4-induced differences during the initial stages of T helper cell differentiation. Primary CD4+ T lymphocytes were isolated from human cord blood, activated through CD3 and CD28, and cultured in the presence or absence of IL-4. Soluble proteins were separated by two-dimensional electrophoresis and visualized by staining with autoradiography, which indicated that at least 20 proteins might be regulated by IL-4. From this minimum of 20 stained proteins, altogether 35 proteins were identified using tandem mass spectrometry. Interestingly the fragmented form of GDP dissociation inhibitor expressed in lymphocytes/Rho GDP dissociation inhibitor 2 (Ly-GDI), a known target of Caspase-3, was observed to be down-regulated in IL-4-treated cells. It was shown in further studies that IL-4 decreases Caspase-3 activity and cell death in these cells. Neutralizing Fas-Fas ligand interaction led to decreased Caspase-3 activity and lowered Ly-GDI fragmentation. We further characterized the effects of IL-4 on the expression of main regulators in the Fas-mediated pathway. We demonstrated that IL-4 decreases expression of Fas receptor and increases expression of Bid, Bcl-2, and Bcl-xL. Importantly IL-4 significantly up-regulated the short form of c-FLIP, although the levels of c-FLIP long were unaltered after IL-4 induction. Taken together, our results indicate that IL-4 inhibits caspase activity during the initial stages of human Th2 cell differentiation by regulating expression of several key players in the Fas-induced pathway.  相似文献   

18.
The rearrangement of TCR genes during thymic ontogeny creates a repertoire of T cell specificities that is refined to ensure the deletion of autoreactive clones and the MHC restriction of T cell responses. Signals delivered via the accessory molecules CD2, CD4, and CD8 have a crucial role in this phase of T cell differentiation. Recently, CD28 has been identified as a signal transducing molecule on the surface of most mature T cells. Perturbation of the CD28 molecule stimulates a novel pathway of T cell activation regulating the production of a variety of lymphokines including IL-2. We have studied the expression and function of CD28 during thymic ontogeny, and in resting and activated PBL. A variable percentage of resting thymocytes were CD28+ (3 to 25%, n = 8), but it was found in high density only on mature CD3+(bright) CD4/CD8 cells. Both unseparated thymocytes and isolated CD3-CD28-/dull cells proliferated when stimulated with PMA plus IL-2 or PMA plus ionomycin. PMA treatment also rapidly up-regulated CD28 expression in the CD3- subset as these cells became CD3-CD28+(bright). Despite the ability of PMA to induce high density CD28 expression in CD3- cells, CD3- thymocytes did not proliferate in response to PMA plus anti-CD28 mAb, in contrast to unseparated cells. CD3+ thymocytes stimulated with immobilized anti-CD3 mAb also failed to proliferate in culture. However, the addition of either IL-2 or anti-CD28 mAb supported proliferation, suggesting that only CD3+ cells could respond to CD28 signaling. The comitogenic effect of anti-CD3 and anti-CD28 mAb was IL-2 dependent as it was abrogated by an anti-IL-2R mAb. Interestingly, the expression of CD28 on the cell surface of CD3+ cells was also inducible, as flow cytometric analysis demonstrated a 10-fold increase in cell surface CD28 by 24 to 48 h after anti-CD3 stimulation of both CD3+ thymocytes and peripheral blood T cells. This increase was accounted for by a commensurate increase in CD28 mRNA levels. Together, these results suggest that CD28 is an inducible T cell antigen in both CD3- and CD3+ cells. In addition, stimulation of the CD28 pathway can provide a second signal to support the growth of CD3+ thymocytes stimulated through the TCR/CD3 complex, and may therefore represent a mechanism for positive selection during thymic ontogeny.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号