首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterochromatin and associated gene silencing processes play roles in development, genome defense, and chromosome function. In many species, constitutive heterochromatin is decorated with histone H3 tri-methylated at lysine 9 (H3K9me3) and cytosine methylation. In Neurospora crassa, a five-protein complex, DCDC, catalyzes H3K9 methylation, which then directs DNA methylation. Here, we identify and characterize a gene important for DCDC function, dim-3 (defective in methylation-3), which encodes the nuclear import chaperone NUP-6 (Importin α). The critical mutation in dim-3 results in a substitution in an ARM repeat of NUP-6 and causes a substantial loss of H3K9me3 and DNA methylation. Surprisingly, nuclear transport of all known proteins involved in histone and DNA methylation, as well as a canonical transport substrate, appear normal in dim-3 strains. Interactions between DCDC members also appear normal, but the nup-6dim-3 allele causes the DCDC members DIM-5 and DIM-7 to mislocalize from heterochromatin and NUP-6dim-3 itself is mislocalized from the nuclear envelope, at least in conidia. GCN-5, a member of the SAGA histone acetyltransferase complex, also shows altered localization in dim-3, raising the possibility that NUP-6 is necessary to localize multiple chromatin complexes following nucleocytoplasmic transport.  相似文献   

2.
The molecular and genetic basis of a compound heterozygote for dys- and hypoprothrombinemia was analyzed. Abnormal nucleotide sequences of the human prothrombin gene were screened by PCR-single-strand conformation polymorphism (PCR-SSCP) with endonuclease digestion and mutated primer-mediated PCR-RFLP. A single nucleotide substitution responsible for dysprothrombinemia of prothrombin Tokushima was detected, as were three polymorphisms. The mutation for hypoprothrombinemia was detected by PCR-single-strand conformation polymorphism (PCR-SSCP) with endonuclease digestion in exon 6, near MboII-RFLP and NcoI-RFLP. Sequencing of PCR-amplified genomic DNA revealed a single base insertion of thymine (T) at position 4177. The resulting frameshift mutation caused both an altered amino acid sequence from codon 114 and a premature termination codon (i.e., TGA) at codon 174 in exon 7. Because exon 7 encodes the kringle 2 domain preceding the thrombin sequence, this frameshift leads to the null prothrombin phenotype. The inheritance of the hypoprothrombinemia gene from the father to the proband was proved by PCR-SSCP with endonuclease digestion and mutated primer-mediated PCR-RFLP.  相似文献   

3.
The gene nfxB is one of the genes which affect the cell membrane permeability of quinolones in Pseudomonas aeruginosa PAO. Both wild-type nfxB and a mutant nfxB (nfx13E) were cloned and the DNA sequences were determined. The wild-type gene was dominant in PAO strains. The nfxB mutation was a point mutation (cytosine----guanine) which generates an amino acid exchange (arginine----glycine) in the putative nfxB product. The amino acid sequence of the wild-type NfxB protein revealed that it has a helix-turn-helix motif which may be responsible for the ability to bind in a sequence-specific manner to DNA. This finding indicated that the NfxB protein may regulate the expression of genes that are associated with cell permeability of drugs in P. aeruginosa. The position of the amino acid substitution between the NfxB protein and the Nfx13E protein was located within a possible DNA-binding domain, suggesting that the mutant protein (Nfx13E) may have lost DNA binding ability and regulator activity.  相似文献   

4.
5.
The ribosomal protein L12ab (Rpl12ab) in Saccharomyces cerevisiae is modified by methylation at both arginine and lysine residues. Although the enzyme responsible for the modification reaction at arginine 66 has been identified (Rmt2), the enzyme(s) responsible for the lysine modification(s) has not been found, and the site(s) of methylation has not been determined. Here we demonstrate, using a combination of mass spectrometry and labeling assays, that the yeast gene YDR198c encodes the enzyme responsible for the predominant epsilon-trimethylation at lysine 10 in Rpl12ab. An additional site of predominant epsilon-dimethylation is observed at lysine 3; the enzyme catalyzing this modification is not known. The YDR198c gene encodes a SET domain similar to that of the Rkm1 enzyme responsible for modifying Rpl23ab, and we have now designated the YDR198c gene product as Rkm2 (ribosomal lysine methyltransferase 2). The effect of the loss of the enzyme on ribosomal complex stability was studied by polysomal fractionation. However, no difference was observed between the Deltarkm2 deletion strain and its parent wild type strain. With the identification of this enzyme, it appears that the 12 SET domain family members in yeast can now be divided into two subfamilies based on function and amino acid sequence identity. One branch includes enzymes that modify histones, including Set1 and Set2; the other branch includes Rkm1, Rkm2, and Ctm1, the cytochrome c methyltransferase. These studies suggest that the remaining seven SET domain proteins may also be lysine methyltransferases.  相似文献   

6.
J. T. Irelan  E. U. Selker 《Genetics》1997,146(2):509-523
Repeated DNA sequences are frequently mutated during the sexual cycle in Neurospora crassa by a process named repeat-induced point mutation (RIP). RIP is often associated with methylation of cytosine residues in and around the mutated sequences. Here we demonstrate that this methylation can silence a gene located in nearby, unique sequences. A large proportion of strains that had undergone RIP of a linked duplication flanking a single-copy transgene, hph (hygromycin B phosphotransferase), showed partial silencing of hph. These strains were all heavily methylated throughout the single-copy hph sequences and the flanking sequences. Silencing was alleviated by preventing methylation, either by 5-azacytidine (5AC) treatment or by introduction of a mutation (eth-1) known to reduce intracellular levels of S-adenosylmethionine. Silenced strains exhibited spontaneous reactivation of hph at frequencies of 10(-4) to 0.5. Reactivated strains, as well as cells that were treated with 5AC, gave rise to cultures that were hypomethylated and partially hygromycin resistant, indicating that some of the original methylation was propagated by a maintenance mechanism. Gene expression levels were found to be variable within a population of clonally related cells, and this variation was correlated with epigenetically propagated differences in methylation patterns.  相似文献   

7.
8.
DNA sequences were determined for three cDNA clones encoding vesicular stomatitis virus glycoproteins from the tsO45 mutant (which encodes a glycoprotein that exhibits temperature-sensitive cell-surface transport), the wild-type parent strain, and a spontaneous revertant of tsO45. The DNA sequence analysis showed that as many as three amino acid changes could be responsible for the transport defect. By recombining the cDNA clones in vitro and expressing the recombinants in COS cells, we were able to trace the critical lesion in tsO45 to a single substitution of a polar amino acid (serine) for a hydrophobic amino acid (phenylalanine) in a hydrophobic domain. We suggest that this nonconservative substitution may block protein transport by causing protein denaturation at the nonpermissive temperature. Comparison of the predicted glycoprotein sequences from two vesicular stomatitis virus strains suggests a possible basis for the differential carbohydrate requirement in transport of the two glycoproteins.  相似文献   

9.
Pradhan S  Estève PO 《Biochemistry》2003,42(18):5321-5332
The human maintenance DNA (cytosine-5) methyltransferase (hDNMT1) consists of a large N-terminal regulatory domain fused to a catalytic C-terminal domain by randomly repeated Gly-Lys dipeptides. Several N-terminal deletion mutants of hDNMT1 were made, purified, and tested for substrate specificity. Deletion mutants lacking 121, 501, 540, or 580 amino acids from the N-terminus still functioned as DNA methyltransferases, methylated CG sequences, and preferred hemimethylated to unmethylated DNA, as did the full-length hDNMT1. Methylated DNA stimulated methylation spreading on unmethylated CpG sequences for the full-length and the 121 amino acid deletion hDNMT1 equally well but not for the mutants lacking 501, 540, or 580 amino acids, indicating the presence of an allosteric activation determinant between amino acids 121 and 501. Peptides from the N- and C-termini bound methylated DNA independently. Point mutation analysis within the allosteric region revealed that amino acids 284-287 (KKHR) were involved in methylated DNA-mediated allosteric activation. Allosteric activation was reduced in the double point mutant enzymes D25 (K284A and K285A) and D12 (H286A and R287A). Retinoblastoma gene product (Rb), a negative regulator of DNA methylation, bound to the allosteric site of hDNMT1 and inhibited methylation, suggesting Rb may regulate methylation spreading.  相似文献   

10.
We have determined the nucleotide sequence of the gene encoding adenovirus type 2 (Ad2) DNA binding protein (DBP). From the nucleotide sequence the complete amino acid sequence of Ad2 DBP has been deduced. A comparison of the amino acid sequences of Ad2 and Ad5 DBP, both 529 residues long, reveals that the C-terminal 354 residues of both sequences are identical. Within the N-terminal 175 amino acid residues Ad2 and Ad5 show nine differences. The site of mutation in Ad2 ND1ts23, a mutant with a temperature-sensitive DNA replication, was mapped at the nucleotide level. A single nucleotide alteration in the DBP gene, resulting in a leucine leads to phenylalanine substitution at position 282 in the amino acid sequence is responsible for the temperature-sensitive character of this mutant. Previously, we localized the mutation of another DBP mutant with a temperature-sensitive DNA replication (H5ts125) at position 413 in the amino acid sequence of the DBP molecule (Nucleic Acids Res. 9 (1981) 4439-4457). These mapping data are discussed in relation to the structure and function of the DBP molecule.  相似文献   

11.
12.
We have determined the DNA sequence of the oxi-3 gene and its 5' flanking region in the extranuclear [mi-3] mutant of Neurospora crassa. The oxi-3 gene encodes subunit 1 of cytochrome c oxidase, a protein known to be altered in the [mi-3] mutant (Bertrand, H., and Werner, S. (1979) Eur. J. Biochem. 98, 9-18). When the sequence from [mi-3] was compared to previously published sequences of the same region of mtDNA from wild-type N. crassa, a total of five differences was found. Four of these differences can be accounted for as either genetic polymorphisms or previous errors in DNA sequence determination. The remaining difference is a G/C to T/A transversion that changes a codon specifying an aspartic acid residue (GAC) to one that would specify tyrosine (TAC) at amino acid 448 of the 555 amino acid mature subunit 1 protein. This alteration was also found in the mtDNA of two separate heterokaryotic strains that had acquired the [mi-3] phenotype after repeated subculturing of heterokaryons forced between an [mi-3] strain and a strain containing a wild-type cytoplasm. The particular aspartic acid residue that would be affected by the mutation observed in [mi-3] is conserved in a diversity of species as either aspartic acid or glutamic acid, suggesting that an acidic residue at this position is important for the correct function of the subunit 1 protein. For these reasons, we consider it likely that the observed missense mutation is responsible for the [mi-3] phenotype.  相似文献   

13.
14.
Werner syndrome (WS) is an autosomal recessive disease with a complex phenotype that is suggestive of accelerated aging. WS is caused by mutations in a gene, WRN, that encodes a predicted 1,432-amino-acid protein with homology to DNA and RNA helicases. Previous work identified four WS mutations in the 3' end of the gene, which resulted in predicted truncated protein products of 1,060-1,247 amino acids but did not disrupt the helicase domain region (amino acids 569-859). Here, additional WS subjects were screened for mutations, and the intron-exon structure of the gene was determined. A total of 35 exons were defined, with the coding sequences beginning in the second exon. Five new WS mutations were identified: two nonsense mutations at codons 369 and 889; a mutation at a splice-junction site, resulting in a predicted truncated protein of 760 amino acids; a 1-bp deletion causing a frameshift; and a predicted truncated protein of 391 amino acids. Another deletion is >15 kb of genomic DNA, including exons 19-23; the predicted protein is 1,186 amino acids long. Four of these new mutations either partially disrupt the helicase domain region or result in predicted protein products completely missing the helicase region. These results confirm that mutations in the WRN gene are responsible for WS. Also, the location of the mutations indicates that the presence or absence of the helicase domain does not influence the WS phenotype and suggests that WS is the result of complete loss of function of the WRN gene product.  相似文献   

15.
The rat neu gene, which encodes a receptor-like protein homologous to the epidermal growth factor receptor, is frequently activated by a point mutation altering a valine residue to a glutamic acid residue in its predicted transmembrane domain. Additional point mutations have been constructed in a normal neu cDNA at and around amino acid position 664, the site of the naturally arising mutation. A mutation which causes a substitution of a glutamine residue for the normal valine at residue 664 leads to full oncogenic activation of the neu gene, but five other substitutions do not. Substituted glutamic acid residues at amino acid positions 663 or 665 do not activate the neu gene. Thus only a few specific residues at amino acid residue 664 can activate the oncogenic potential of the neu gene. Deletion of sequences of the transforming neu gene demonstrates that no more than 420 amino acids of the 1260 encoded by the gene are required for full transforming function. Mutagenesis of the transforming clone demonstrates a correlation between transforming activity and tyrosine kinase activity. These data indicate that the activating point mutation induces transformation through (or together with) the activities of the tyrosine kinase.  相似文献   

16.
We describe two approaches to cloning and over-expressing gene 42 of bacteriophage T4, which encodes the early enzyme deoxycytidylate hydroxymethylase. In Bochum a library of sonicated fragments of wild-type phage DNA cloned into M13mp18 was screened with clones known to contain parts of gene 42. Two overlapping fragments, each of which contained one end of the gene, were cleaved at a HincII site and joined, to give a fragment containing the entire gene. In Corvallis a 1.8-kb fragment of cytosine-substituted DNA, believed to contain the entire gene, was cloned into pUC18 and shown to express the enzyme at low level. The cloned fragment bore an amber mutation in gene 42. From the DNA sequence of gene 42, the cloned gene was converted to the wild-type allele by site-directed mutagenesis. Both gene-42-containing fragments were cloned into the pT7 expression system and found to be substantially overexpressed. dCMP hydroxymethylase purified from one of the over-expressing strains had a turnover number similar to that of the enzyme isolated earlier from infected cells. In addition, the N-terminal 20 amino acid residues matched precisely the sequence predicted from the gene sequence. The amino acid sequence of gp42 bears considerable homology with that of thymidylate synthase of either host or T4 origin. The gene 42 nucleotide sequences of bacteriophages T2 and T6 were determined and found to code for amino acid sequences nearly identical to that of T4 gp42.  相似文献   

17.
Here, we describe the cloning and further characterization of chicken ARBP, an abundant nuclear protein with a high affinity for MAR/SARs. Surprisingly, ARBP was found to be homologous to the rat protein MeCP2, previously identified as a methyl-CpG-binding protein. A region spanning 125 amino acids in the N-terminal halves is 96.8% identical between chicken ARBP and rat MeCP2. A deletion mutation analysis using Southwestern and band shift assays identified this highly conserved region as the MAR DNA binding domain. Alignment of chicken ARBP with rat and human MeCP2 proteins revealed six trinucleotide amplifications generating up to 34-fold repetitions of a single amino acid. Because MeCP2 was previously localized to pericentromeric heterochromatin in mouse chromosomes, we analyzed the in vitro binding of ARBP to various repetitive sequences. In band shift experiments, ARBP binds to two chicken repetitive sequences as well as to mouse satellite DNA with high affinity similar to that of its binding to chicken lysozyme MAR fragments. In mouse satellite DNA, use of several footprinting techniques characterized two high-affinity binding sites, whose sequences are related to the ARBP binding site consensus in the chicken lysozyme MAR (5'-GGTGT-3'). Band shift experiments indicated that methylation increased in vitro binding of ARBP to mouse satellite DNA two- to fivefold. Our results suggest that ARBP/MeCP2 is a multifunctional protein with roles in loop domain organization of chromatin, the structure of pericentromeric heterochromatin, and DNA methylation.  相似文献   

18.
The molecular mechanisms involved in transgene-induced gene silencing ('quelling') in Neurospora crassa were investigated using the carotenoid biosynthetic gene albino-1 (al-1) as a visual marker. Deletion derivatives of the al-1 gene showed that a transgene must contain at least approximately 132 bp of sequences homologous to the transcribed region of the native gene in order to induce quelling. Transgenes containing only al-1 promoter sequences do not cause quelling. Specific sequences are not required for gene silencing, as different regions of the al-1 gene produced quelling. A mutant defective in cytosine methylation (dim-2) exhibited normal frequencies and degrees of silencing, indicating that cytosine methylation is not responsible for quelling, despite the fact that methylation of transgene sequences frequently is correlated with silencing. Silencing was shown to be a dominant trait, operative in heterokaryotic strains containing a mixture of transgenic and non-transgenic nuclei. This result indicates that a diffusable, trans-acting molecule is involved in quelling. A transgene-derived, sense RNA was detected in quelled strains and was found to be absent in their revertants. These data are consistent with a model in which an RNA-DNA or RNA-RNA interaction is involved in transgene-induced gene silencing in Neurospora.  相似文献   

19.
An ovine PSMA6 gene was obtained from muscle full-length cDNA library of black-boned sheep. The sequences for the PSAM6 gene of Romney sheep and Yunling black goat were also generated in this study. Sequence analysis revealed that nucleotide sequence of this gene was not homologous to any of the known sheep genes, and its open reading frame encodes a protein that contains the putative conserved domain of proteasome subunit alpha type 6 (PSAM6). The nucleotide sequence had higher identity with other animals. However, one mutation of A to G at the site of 383 bp, leading to an amino acid mutation of Asn to Ser, was found only in the black-boned sheep. Tissue expression analysis indicated that this gene was generally expressed in most tissues and differently expressed in tissues of black-boned sheep. This the first report of the ovine PSAM6 gene.  相似文献   

20.
The SET domain is an evolutionarily conserved domain found predominantly in histone methyltransferases (HMTs). The Neurospora crassa genome includes nine SET domain genes (set-1 through set-9) in addition to dim-5, which encodes a histone H3 lysine 9 HMT required for DNA methylation. We demonstrate that Neurospora set-2 encodes a histone H3 lysine 36 (K36) methyltransferase and that it is essential for normal growth and development. We used repeat induced point mutation to make a set-2 mutant (set-2(RIP1)) with multiple nonsense mutations. Western analyses revealed that the mutant lacks SET-2 protein and K36 methylation. An amino-terminal fragment that includes the AWS, SET, and post-SET domains of SET-2 proved sufficient for K36 HMT activity in vitro. Nucleosomes were better substrates than free histones. The set-2(RIP1) mutant grows slowly, conidiates poorly, and is female sterile. Introducing the wild-type gene into the mutant complemented the defects, confirming that they resulted from loss of set-2 function. We replaced the wild-type histone H3 gene (hH3) with an allele producing a Lys to Leu substitution at position 36 and found that this hH3(K36L) mutant phenocopied the set-2(RIP1) mutant, confirming that the observed defects in growth and development result from inability to methylate K36 of H3. Finally, we used chromatin immunoprecipitation to demonstrate that actively transcribed genes in Neurospora crassa are enriched for H3 methylated at lysines 4 and 36. Taken together, our results suggest that methylation of K36 in Neurospora crassa is essential for normal growth and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号