首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Regulation of ecdysteroid production in lepidopteran prepupae was studied using a parasitic wasp (C. near curvimaculatus) which specifically suppresses host prepupal ecdysteroid production after the induction of precocious host metamorphosis. At the developmental stage at which the hemolymph of the unparasitized metamorphosing host has its maximum titer of prepupal ecdysteroids, the hemolymph of 4th instar "truly parasitized" hosts (hosts with a surviving endoparasite) had a strongly reduced ecdysteroid titer. However, during the photophase about 12 h later, just prior to emergence of the parasite larva, an ecdysteroid peak was observed in the host hemolymph. Fourth instar pseudoparasitized prepupal hosts (in which the endoparasite was not present or died early in development) exhibited a sustained suppression in the hemolymph ecdysteroid titer. Small 5th instar pseudoparasitized hosts, which normally would molt to a 6th instar prior to metamorphosis, but which precociously attained the prepupal stage, also had a strongly reduced ecdysteroid titer. The late increase observed in truly parasitized hosts could be completely prevented by surgical removal of the parasite 24 h earlier, resulting in a titer similar to that in pseudoparasitized hosts. HPLC analysis of ecdysteroids in normal, truly parasitized, and 4th or 5th instar pseudoparasitized prepupae showed that both ecdysone and 20-OH ecdysone* were suppressed in truly and pseudoparasitized prepupae, with ecdysteroid levels being lowest in pseudoparasitized hosts. These data, and those of Brown and Reed-Larsen (Biol Contr 1, 136 [1992]), showing endoparasite secretion of ecdysteroids just prior to its emergence from the host, strongly indicate that: (1) the prepupal peak in truly parasitized hosts originates from the endoparasite, and (2) the low level of ecdysteroids in pseudoparasitized hosts results from the host's intrinsic inability to express a normal level of prepupal ecdysteroid titer. While precocious 4th or 5th instar prepupae of similar size had similarly suppressed ecdysteroid titers, smaller 4th instar prepupae had a lower ecdysteroid titer than larger, precocious 5th instar prepupae. Rare 5th instar pseudoparasitized prepupae that were of nearly normal size showed a prepupal ecdysteroid titer distinctly greater than those of the usual smaller, precocious 5th instar prepupae. The data suggest that the competence of the host to express a normal hemolymph titer of prepupal ecdysteroids is more closely correlated with the size of the prepupae than with the instar attained.  相似文献   

2.
During adult metamorphosis, the moth olfactory neurons and their glia-like support cells pass through a coordinated and synchronous development. By 60% of development, the olfactory system is anatomically complete, but functional maturation does not occur until about 90% of development. Maturation is characterized by the onset of odorant sensitivity in the sensory neurons and the expression of certain antennal-specific proteins including odorant binding proteins (OBPs) and odorant degrading enzymes (ODEs). The OBPs have been cloned and sequenced, and are thus useful models for investigating the molecular mechanisms coordinating final maturation of the developing olfactory system. The ecdysteroid hormones have been observed to regulate many cellular level neuronal changes during adult metamorphosis. In particular, the late pupal decline in ecdysteroids is known to influence programmed death of nerves and muscles at the end of metamorphoses. Experiments are presented here which indicate that this decline in ecdysteroids also induces the expression of the OBPs. Normal OBP expression occurs 35–40 h before adult emergence. In culture, OBP expression could be induced at least 90 h before adult emergence by the premature removal of ecdysteroid. This premature expression was blocked by culturing tissue in the presence of the biologically active ecdysteroid 20-hydroxyecdysone. These findings suggest that maturation of the olfactory system is regulated by the decline in ecdysteroids, and support the view that olfactory development, in general, may be coordinated by chaging levels of pupal ecdysteroids. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
A double-antibody ecdysone-specific radioimmunoassay was used to clarify whether the effects on metamorphosis of the juvenile hormone analogue methoprene are correlated with changes in ecdysteroids level. It appears that a small ecdysteroids peak, 5 days before pupation, is responsible for the transition from inhibition to defective metamorphosis. Study of the changes in ecdysteroid titer in last-instar larvae treated with the JHA 2 days prior to the appearance of the above small ecdysteroids' peak showed an immediate reduction in ecdysteroid level, followed by cyclic, successively reduced titer for about 20 days. After this period the larvae ceased to feed and entered to a diapauselike stage which ended in the death of the larvae. A similar effect on ecdysteroid titer and developmental arrest was exhibited by JHA-treated first-instar larvae. The mechanism of the interactions between JHA and ecdysteroid level deserves further investigation.  相似文献   

4.
When a pair of prothoracic glands (PGs) were removed from Manduca sexta pupae on the day of pupation, the hemolymph ecdysteroid titer remained at a low level. When a portion of the gland pair was extirpated from pupae after the critical period for prothoracicotropic hormone release, the maximum hemolymph ecdysteroid titer was reduced in proportion to the mass of the PGs removed. These findings clearly showed that the PGs in intact pupae are responsible for the elevated ecdysteroid titer required to elicit adult development on schedule. When brains were removed on the day of pupation, the initiation of adult development was delayed for weeks or months. In contrast, pupae whose PGs were removed on the day of pupation initiated development only 7 days late, indicating the existence of an additional source of pupal ecdysteroids. Further, abdomens of male M. sexta that were isolated on the day of pupation initiated adult development spontaneously within 70 days. The implantation of day 0 pupal brains into these isolated abdomens accelerated the initiation of adult development and elicited synchronous adult development. The hemolymph ecdysteroid titer of those isolated abdomens receiving implants of brains increased within 5 days and reached a maximum level of 1.5 micrograms/ml. The analysis of hemolymph ecdysteroids by reverse-phase HPLC revealed that ecdysone was the major moiety and that the ecdysteroid composition was similar to that of normal, intact pupae that had just initiated adult development. These results demonstrate that the PGs are not requisite for adult development. An increased hemolymph ecdysteroid titer was also observed in isolated abdomens from which the testes were removed and in abdomens devoid of their digestive tract. Indeed, in the latter case, the ecdysteroid titer attained much higher levels than those observed for abdomens with intact guts. Despite numerous attempts to identify the tissue(s) in the isolated abdomens responsible for the increase in ecdysteroid titer, its identity remains unknown.  相似文献   

5.
6.
The development of the Mediterranean corn borer, Sesamia nonagrioides, under long-day (LD) photoperiod is associated with juvenile hormone (JH) decline and pupation in the 5th or 6th larval instar. The larvae grown under short-day (SD) conditions maintain a moderate JH titer and enter diapause during which they undergo several extra larval molts. Both types of larvae exhibit similar levels of juvenile hormone esterase (JHE) activity that increases in each instar during the period of low ecdysteroid titer and drops when the titer rises to a molt-inducing peak. A suppression of JHE activity within 24h after application of an ecdysteroid agonist suggests that the drop of activity is a rapid and possibly direct response to ecdysteroids or their agonist. Esterase inhibitor 3-octylthio-1,1,1-trifluoro-2-propanone (OTFP) suppressed more than 98% of the JHE activity without affecting pupation timing and adult development. The data indicate that JHE is not crucial for the switch between larval development, diapause, and metamorphosis in S. nonagrioides.  相似文献   

7.
Dramatic reorganization of dendrites and axonal terminals is a hallmark of neuronal remodeling during metamorphosis in the hawkmoth, Manduca sexta. The dendritic and axonal arbors of leg motor neurons regress in late larval stages, then regrow during adult development. Ecdysteroids, the insect steroids that trigger metamorphosis, control both regression and outgrowth in vivo and stimulate neuritic growth in cultured pupal leg motor neurons. To identify subcellular targets of ecdysteroid action in these neurons, we examined the dynamic and structural features of branching and their modulation by ecdysteroids in vitro. Delayed treatment of pupal leg motor neurons with ecdysteroid led to a robust enhancement of neuritic branch accumulation accompanied by a subtle effect on total neuritic length. Repeated imaging revealed that branch formation occurred almost exclusively at the growth cone; interstitial branching was extremely rare. Ecdysteroid treatment significantly enhanced both the formation and retention of branches at the growth cone. Branches formed via two distinct processes: engorgement (of fine protrusions) and condensation (of lamellae) with the relative contributions of these mechanisms being unaltered by ecdysteroid. Confocal imaging of the cytoskeleton demonstrated that growth cones consisted of microtubule-based domains fringed by actin-based filopodia. Treated growth cones were larger and displayed increased numbers of microtubule-based branches, whereas filopodial density was unaffected. These findings indicate that ecdysteroid enhances neuritic branching by altering growth cone structure and function, and suggest that hormonal modulation of cytoskeletal interactions contributes significantly to neuritic remodeling during metamorphosis.  相似文献   

8.
When insect larvae have fully grown, prothoracicotropic hormone (PTTH) is released from the brain, triggering the initiation of metamorphic development through stimulation of ecdysteroid secretion by the prothoracic glands. The present study analyzes the mechanism that regulates the occurrence of this PTTH surge. In the silkworm Bombyx mori, the PTTH surge occurs on day 6 of the fifth instar and is preceded by a small rise in hemolymph ecdysteroid titer, which occurs late on day 5. We therefore hypothesized that this rise of ecdysteroid titer is involved in the induction of the PTTH surge. To test this hypothesis, two experiments were conducted. First, a small amount of 20-hydroxyecdysone was injected on day 4, two days before the expected day of the PTTH surge, to simulate the small rise in hemolymph ecdysteroid titer on day 5. This injection led to a precocious surge of PTTH the next day. Next, the hemolymph ecdysteroid titer on day 5 was artificially lowered by injecting ecdysteroid-22-oxidase, which inactivates 20-hydroxyecdysone. After this treatment, the PTTH surge did not occur on day 6 in 80% of the animals. These results indicate that a small rise of the hemolymph ecdysteroid titer plays a critical role in the induction of the PTTH surge. Since basal ecdysteroidogenic activity of the prothoracic glands increases with larval growth, a circulating level of ecdysteroids may convey information about larval maturity to the brain, to coordinate larval growth and metamorphosis. This is the first report in invertebrates to demonstrate positive feedback regulation of the surge of a tropic hormone by a downstream steroid hormone.  相似文献   

9.
The levels of individual free and conjugated ecdysteroids and ecdysteroid acids, labeled from [14C]cholesterol, in five different age groups of male Manduca sexta during pupal-adult development were determined by HPLC. Eight free ecdysteroids, eight ecdysteroid phosphates, and two ecdysteroid acids were identified. Newly ecdysed pupae contained predominantly 3-epiecdysteroids in each of the free, conjugated, and acidic ecdysteroid fractions. The titer of each ecdysteroid fraction rose sharply by day 4, and this was particularly noteworthy with respect to free ecdysone and 3-epi-20-hydroxyecdysonoic acid. This stage demonstrated high degrees of ecdysone biosynthesis, oxidative catabolism, and phosphorylation. As development proceeded to day 16, total ecdysteroid titer remained constant; a decreasing free ecdysteroid titer was accompanieid by increasing titers of both conjugates and acids resulting from the metabolic processes of hydroxylation, oxidation, epimerization, and phosphorylation. The predominant metabolites throughout development were 3-epi-20-hydroxyecdysonoic acid and the phosphate conjugates of 3-epi-20-hydroxyecdysone and 3-epi-20,26-dihydroxyecdysone. The ultimate inactivation of the ecdysteroids of M. sexta during pupal-adult development is possibly mediated by two pairs of metabolically-linked processes, one leading to a 3-epiecdysteroid acid, and the other to 3-epiecdysteroid phosphates.  相似文献   

10.
The endocrine regulation of larval-pupal metamorphosis was studied in the silkworm, Bombyx mori, by measuring the following changes: hemolymph ecdysteroid titer, the secretory activity of prothoracic glands and the responsiveness of larvae to ecdysteroids and prothoracicotropic hormone (PTTH), with regard to developmental events such as the occurrence of spinneret pigmentation, initiation of cocoon spinning and onset of wandering stage as indicated by gut purge. These measurements were concentrated especially on the time before and after the head critical period (HCP) which falls 3-4 days before the gut purge ([Sakurai, 1984]). A small increase in the hemolymph ecdysteroid titer was first found during the HCP, and then the titer increased with daily fluctuations. Small but significant titer peaks were found prior to the occurrence of both spinneret pigmentation and gut purge, indicating that an individual titer peak could possess a specific role in development. Responsiveness of larvae to exogenous 20-hydroxyecdysone (20E) after the HCP was markedly higher than that before the HCP. The sensitivity of the prothoracic gland to PTTH also changed during the HCP. The results thus showed that the HCP is not the period after which an additional PTTH release is not required for the developmental events occurring on schedule, but rather it is the period during which complex events occur not only in the endocrine glands but also in the peripheral tissues. In addition, various developmental phenomena before gut purge are brought about by the hemolymph ecdysteroid whose concentration gradually increased with daily fluctuations, and these precise changes in the titer appeared to be important for the sequential occurrence of developmental events in the larval-pupal metamorphosis.  相似文献   

11.
During metamorphosis of the tobacco hawkmoth Manduca sexta, the femoral depressor motoneuron (FeDe MN) undergoes remodeling of its dendrites and motor terminals. Previous studies have established that remodeling of MNs during metamorphosis is mediated by the same hormones that control metamorphosis: the ecdysteroids and juvenile hormone (JH). During the pupal stage, the ecdysteroids promote adult-specific growth of MNs in the absence of JH, but JH or its synthetic mimics can interfere with ecdysteroid-mediated growth if applied during early sensitive periods. Hence, the application of a JH mimic (JHM) either systemically or locally to a target muscle has been used to distinguish those aspects of motor-terminal remodeling that are controlled by ecdysteroid action on the CNS from those that are influenced by ecdysteroid action on the peripheral targets. Here, we have extended the analysis of central and peripheral hormonal influences on MN remodeling by injecting JHM locally into the CNS thus altering the hormonal environment of the FeDe MN soma without altering the hormonal environment of its target muscle. Our results demonstrate that adult dendritic growth and motor-terminal growth can be experimentally uncoupled, suggesting that each is regulated independently. JHM application to the CNS perturbed dendritic growth, but had no measurable impact on motor-terminal growth. Peripheral actions of ecdysteroids, therefore, appear sufficient to promote the development of adult-specific motor terminals but not the development of an adult-specific dendritic arbor.  相似文献   

12.
13.
Adult body plan differentiation in holometabolous insects depends on global induction and control by ecdysteroid hormones during the final phase of postembryogenesis. Studies in Drosophila melanogaster and Manduca sexta have shown that this pertains also to the development of the compound eye retina. It is unclear whether the hormonal control of postembryonic eye development in holometabolous insects represents evolutionary novelty or heritage from hemimetabolous insects, which develop compound eyes during embryogenesis. We therefore investigated the effect of manipulating ecdysteroid signaling in cultured embryonic eye primordia of the American desert locust Schistocerca americana, in which ecdysteroid level changes are known to induce three rounds of embryonic molt. Although at a considerably reduced rate compared to in vivo development, early differentiation and terminal maturation of the embryonic retina was observed in culture even if challenged with the ecdysteroid antagonist cucurbitacin B. Supplementing cultures with 20-hydroxyecdysone (20E) accelerated differentiation and maturation, and enhanced cell proliferation. Considering these results, and the relation between retina differentiation and ecdysteroid level changes during locust embryogenesis, we conclude that ecdysteroids are not an essential but possibly a modulatory component of embryonic retina development in S. americana. We furthermore found evidence that 20E initiated precocious epithelial morphogenesis of the posterior retinal margin indicating a more general role of ecdysteroids in insect embryogenesis.Electronic Supplementary Material Supplementary material is available in the online version of this article at Edited by C. Desplan  相似文献   

14.
Termite queens are highly specialized for reproduction, but little is known about the endocrine mechanisms regulating this ability. We studied changes in the endocrinology and ovarian maturation in primary reproductive females of the dampwood termite Zootermopsis angusticollis following their release from inhibitory stimuli produced by mature queens. Winged alates were removed from their natal nest, manually dewinged, then paired in an isolated nest with a reproductive male. Development was tracked by monitoring ovarian development, in vitro rates of juvenile hormone (JH) production by corpora allata, and hemolymph titers of JH and ecdysteroids. The production rate and titer of JH were positively correlated with each other but negatively correlated with ecdysteroid titer. Four days after disinhibition, JH release and titer decreased while ecdysteroid titer increased. The new levels persisted until day 30, after which JH increased and ecdysteroids decreased. Fully mature queens had the highest rates of JH production, the lowest ecdysteroid titers, and the greatest number of functional ovarioles. The results support the hypothesis that JH plays a dual role in termite queens depending on their stage of development; an elevated JH titer in immature alates may maintain reproductive inhibition, but an elevated JH titer in mature queens may stimulate ovarian activity. The decline in JH production and the elevation in ecdysteroid titer correspond to a period of physiological reorganization and activation. The specific function of ecdysteroids is unknown but they may help to modulate the activity of the corpora allata.  相似文献   

15.
The role of hemolymph ecdysteroids in the reproduction of non-dipteran insects is unclear. We examine the role(s) of hemolymph ecdysteroids during egg production in the lubber grasshopper, Romalea microptera. In all individuals, hemolymph ecdysteroids rose to a sharp peak with similar maxima and then fell to undetectable levels. The time from the adult molt to the maximum ecdysteroid titer (E(max) titer) varied in response to food availability, whereas the time from E(max) titer to oviposition was unrelated to food availability. Because both the timing of egg production and the timing of E(max) responded similarly to environmental changes, ecdysteroids may be involved in egg production. We hypothesized that this role is the stimulation of vitellogenesis. Ovariectomized females had vitellogenin but no ecdysteroids, so ecdysteroids are not necessary for vitellogenin production. In addition, treatment of females with ecdysteroids altered neither Vg titers nor ovarian growth. Ovarian ecdysteriods increased at the same age in development as hemolymph ecdysteroids. In contrast to hemolymph ecdysteroids, ovarian ecdysteroids persisted until oviposition. Despite this, [(3)H]ecdysone injected into the hemolymph was detected later only at very low levels in the ovary, suggesting that hemolymph ecdysteroids are not sequestered by the ovary. In summary, our studies indicate that hemolymph ecdysteroids in adult females of the lubber grasshopper are associated with the timing of egg production, but they neither regulate vitellogenesis nor act as a source of ecdysteroids for the ovary.  相似文献   

16.
《Insect Biochemistry》1986,16(1):203-209
The intersegmental muscles of the Lepidoptera pass through three separate, sequential differentiated states during pharate adult development: status quo; atrophy; degeneration. Each of these developmental programs is characterized by a distinct morphology, physiology and endocrine responsiveness. The factors responsible for regulating these differentiative changes are ecdysteroids. In Manduca sexta, the haemolymph ecdysteroid titre declines in a circadian-modified fashion during the last three days of adult development, which parallels the maturation of the intersegmental muscles. Abdomen-ligation, which causes a precipitous decline in the ecdysteroid titre, causes the precocious atrophy and degeneration of these muscles, whereas injection of, or infusion with, 20-hydroxyecdysone greatly delays such changes. While the terminal differentiation of the epidermis and nervous system is also regulated by ecdysteroids, endocrine manipulations have suggested that the development of the intersegmental muscles is independent of these tissues.In the silkmoth Antheraea polyphemus, ecdysteroids are also responsible for regulating intersegmental muscle differentiation, but eclosion hormone (a peptide) acts as the proximal trigger for the activation of the degeneration program. The declining ecdysteroid titre initiates the atrophy program and subsequently determines the timing of both release of eclosion hormone and intersegmental muscle sensitivity to the peptide. Eclosion hormone then acts directly on the muscles, via cGMP, to activate the degeneration program. Ecdysteroids appear to prevent premature muscle degeneration by regulating a biochemical step distal to both the eclosion hormone receptor and the rise in cGMP.  相似文献   

17.
18.
In the solitary egg-larval parasitoid Chelonus inanitus (Braconidae) both polydnavirus and the parasitoid larva manipulate host development. Parasitization leads to a premature drop in juvenile hormone titre and a precocious onset of metamorphosis in the 5th larval instar. The C. inanitus bracovirus (CiBV) alone causes a reduction in host ecdysteroid titres at the pupal cell formation stage and prevents pupation. Here we report three new findings. (1) We show that parasitization causes a reduction in haemolymph ecdysteroid titre immediately after the moult to the 5th instar; similarly low values were seen in nonparasitized larvae after the moult to the 6th instar. These data along with parasitoid removal experiments indicate that the low ecdysteroid titre after the moult is a very early sign of the upcoming metamorphosis. (2) In vitro experiments with prothoracic glands and brain extracts showed that CiBV affects both prothoracic glands and prothoracicotropic hormone after the stage of pupal cell formation. (3) In the haemolymph of parasitized larvae the ecdysteroid titre increased in the late cell formation stage, i.e. immediately before egression of the parasitoid. In vitro experiments showed that late 2nd instar parasitoids release ecdysteroids and are thus very likely responsible for the rise in host ecdysteroids.  相似文献   

19.
Radioimmunoassay has been used to determine the characteristics of ecdysteroid synthesis by ring glands and brain-ring gland preparations from late 3rd-instar larvae of Drosophila melanogaster cultured in vitro. The rate of synthesis and secretion is linear for at least 4 hr in culture. Using a 4-hr culture period, variation in the rate of ecdysteroid synthesis by brain-ring gland preparations during larval, prepupal and pupal development has been examined. The rate of synthesis and secretion is highest in late 3rd-instar larvae and decreases after puparium formation. During pupal development, at a time when the endogenous ecdysteroid titre is again increasing, the rate of ecdysteroid synthesis by brain-ring gland preparations remains low and is only 10% of that prior to puparium formation. It is, therefore, likely that the ring gland is not a major source of ecdysteroids during this period.  相似文献   

20.
家蚕蜕皮与变态的内分泌调控   总被引:3,自引:1,他引:2  
顾世红 《昆虫知识》1999,36(2):70-74
家蚕的蜕皮与变态是由前胸腺分泌的脱皮素(molting hormone或 ecdysteroid简称 MH)及由咽侧体分泌的保幼激素(juvenile hormone)控制的,而促有前胸腺激素(prothoracicotropic hormone,以下简称PTTH)的功能为刺激前胸腺分泌蜕皮素。笔者近10年来从家蚕内分泌体系的一系列研究中发现,蜕皮素浓度的变化可以通过控制咽侧体的保幼激素的生物合成来影响幼虫发育,而PTTH的信息传递可通过调控前胸腺的功能,进而影响血淋巴中蜕皮素浓度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号