首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel peptide named calcification-associated peptide (CAP)-2 was isolated from the exoskeleton of the crayfish, Procambarus clarkii. CAP-2 consists of 65 amino acid residues and has a 44% sequence identity with CAP-1 characterized previously. It has a chitin-binding domain observed in many arthropod cuticle proteins. CAP-2 showed inhibitory activity on calcium carbonate precipitation and chitin-binding ability. A CAP-2 cDNA was cloned using RT-PCR and RACE and the open reading frame encoded a precursor peptide consisting of a signal peptide and CAP-2. RT-PCR revealed that CAP-2 mRNA was exclusively expressed in the epidermal tissue during the postmolt stage, the site and stage being associated with calcification. Calcium-binding assay using recombinant CAP-2 revealed that this peptide had affinity for calcium ions with a Kd value of about 1 mM. All these results suggest that CAP-2 serves as a nucleator or a regulator in the calcification of the exoskeleton.  相似文献   

2.
Summary Quantitative TEM refutes the hypothesis of multivesicular body formation at dawn via the degradation of photoreceptor. No significant relationship exists between multivesicular bodies and rhabdom diameter or between multivesicular bodies and coated vesicles. The density of multivesicular bodies is related to the vesicle-producing Golgi bodies. A new theory concerning the formation and possible function of multivesicular bodies is discussed.  相似文献   

3.
4.
Summary The central projections of primary afferents in the terminal ganglion of the crayfish can be seen when an axonal filling with nickel chloride with subsequent silver intensification was used for identification. We describe here the topological relationships of the projections to the landmark structures of the neuropil.The terminal ganglion has five pairs of sensory nerves associated with the mechanosensory hairs and internal proprioceptors. The projection fields of the primary sensory neurons in the nerves Rl and R2 are almost entirely restricted to the ipsilateral half of the ganglion, whereas those of the nerves R3, R4 and R5 cross the midline to form three sensory commissures, A6SCI, A7SCI and A7SCII. The projection fields are segregated from each other, although all are restricted to the ventral neuropil which lies under the ventral intermediate tract (VIT). The intersegmental projections that ascend via the connective ipsilateral to their origins could be observed. This pattern of projection correlates well with the receptive fields exhibited by several mechanosensory interneurons on the body surface of the final segment.  相似文献   

5.
Summary The morphological features of descending interneurons that responded to the artificial bending of statolith hairs were assessed with intracellular recording and staining techniques. Seven statocyst interneurons were identified on the basis of their structure and response characteristics and designated as interneurons S1 to S7. All seven identified interneurons project to the optic lobe, where the optic nerve also projects, and to the dorsal part of the tritocerebrum, where the eyestalk motoneurons originate. All except interneuron S6 also extend their major branches to other neuropilar regions. S2 projects to the dorsal part of the deutocerebrum, where the statocyst nerve terminates, and S3 to the dorsal part of deutocerebrum and the antennal lobe. Four other interneurons (S1, S4, S5, S7) also extend their branches to the parolfactory lobe to which the statocyst nerve projects as well as to the deutocerebrum and antennal lobe. The extensive dendritic projections of S1–S7 suggest that they are complex multimodal interneurons rather than simple relay interneurons, receiving at least visual and statocyst sensory information. The function of the antennal lobe branches, however, has yet to be determined since the functional role of antennal input in equilibrium control is unknown.  相似文献   

6.
The caudal photoreceptors (CPRs) of crayfish (Procambarus clarkii) can trigger walking and abdominal movements by their response to light.
1.  In a restrained, inverted crayfish, illumination of A6 evoked a CPR discharge followed by leg movements and bursting from the abdominal tonic flexor (TF) motoneurons. Intracellular electrical stimulation of a single CPR at high frequency (80 Hz) evoked similar responses.
2.  Responses only occurred when a single CPR axon was driven at 60 Hz or more and outlasted the stimulus.
3.  CPR stimulation also excites the pattern-initiating network (Moore and Larimer 1987) in the abdomen.
4.  The axon of the CPR projects from ganglion A6 to the brain. Terminal branches occur in the subesophageal ganglion and the brain. A small descending interneuron is dye-coupled to CPR in the subesophageal ganglion.
5.  In animals with cut circumesophageal connectives, the CPRs can evoke walking and the abdominal motor pattern.
6.  The relationship of the abdominal motor pattern to walking is altered by restraint and/or inversion. In freely moving crayfish, the cyclic abdominal motor pattern is only observed with backward walking. In restrained, inverted crayfish, the motor pattern occurs with both forward or backward walking.
  相似文献   

7.
To investigate the effects of Procambarus clarkii on macroinvertebrate diversity, we conducted a mesocosm experiment simulating small pools in rice field pads after the rice season. We hypothesized that crayfish predation would negatively impact macroinvertebrate diversity, and the magnitude of this impact should vary with the size of P. clarkii. We conducted a short-term mesocosm experiment to determine macroinvertebrate diversity in the presence of three size classes and in the absence of crayfish, as well as the diet composition of crayfish from the three size classes. At the end of the experiments, the diet of crayfish was composed of the most available taxa (Culicidae, Chironomus, Tanytarsini and Orthocladinae). These results also show evidence that, in confined areas, crayfish are important predators of major rice pests such as rice Chironominae larvae. Macroinvertebrate diversity was negatively affected by crayfish presence, but the effect was inversely proportional to crayfish size. The highest diversity index was obtained in the absence of P. clarkii, and juvenile crayfish significantly reduced macroinvertebrate diversity. Thus, the impact of P. clarkii on aquatic macroinvertebrates is size dependent and may be relevant in small pools formed in rice field pads from early autumn to late winter. Overall, our findings suggest that the negative effects of P. clarkii on macroinvertebrate diversity may be particularly strong in local natural assemblages confined to puddles of water or small ponds in wetland areas.  相似文献   

8.
Changes of - and -alanine and other free amino acids were examined in muscle and hepatopancreas of the crayfish Procambarus clarkii before and after a 1-month starvation in freshwater, 50% seawater, and seawater. Total free amino acids and - and -alanine in both tissues decreased during starvation. The largest decrease was found in the animals starved in freshwater. In 50% seawater and full-strength seawater, the ratio of -alanine to total alanine increased in both tissues, although the level was reduced a little. A large dose of -alanine administered into the tail muscle of freshwater crayfish was converted to -alanine and -alanine returned to the control level within a week. A large amount of -alanine was transported from muscle to hepatopancreas. -Alanine injected into freshwater crayfish was converted to -alanine, but was not transported to the hepatopancreas. In the case of -alanine injection into the muscle of crayfish acclimated to 50% seawater, large amounts of - and -alanine were maintained in the muscle during the experimental period of 4 days. These data indicate that -alanine is metabolized actively in crayfish tissues and accumulated as an important osmolyte during osmotic stress.  相似文献   

9.
10.
The sensory inputs to the common inhibitory motoneuron that innervates every leg muscle of the crayfish Procambarus clarkii (Girard) were analyzed by performing intracellular recordings from its neurite within the neuropil of the 5th thoracic ganglion. Two types of sensory inputs involved in locomotion were studied, those from a movement coding proprioceptor (the coxobasal chordotonal organ) and those from sensory neu rons coding contact forces exerted at the tip of the leg on the substrate (the dactyl sensory afferents). Sinusoidal movements applied to the chordotonal organ strand induced a stable biphasic response in the common inhibitory motoneuron that consisted of bursts of spikes during release and stretch of the strand, corresponding to raising and lowering of the leg, respectively. Using ramp movements imposed on the chordotonal strand, we demonstrated that only movement-coding chordotonal afferents produce excitatory post-synaptic potentials in the common inhibitory motoneuron; these connections are monosynaptic. Mechanical or electrical stimulation of the dactyl sensory afferents resulted in an increase in the tonic discharge of the common inhibitory motoneuron through polysynaptic excitatory pathways. These two types of sensory cues reinforce the central command of the common inhibitory motoneuron and contribute to enhancing its activity during leg movements, and thus facilitate the relaxation of tonic muscle fibres during locomotion.Abbreviations ADR anterior distal root - A Lev anterior levator nerve - CB coxo-basipodite joint - CBCO coxo-basal chordotonal organ - CI common inhibitory motoneuron - Dep depressor nerve - DSA dactyl sensory afferents - EPSP excitatory post-synaptic potential - IN interneuron - MN motoneuron - PDR posterior distal root - P Lev posterior levator nerve - Pro promotor nerve - Rem remotor nerve  相似文献   

11.
A cDNA encoding a putative translationally controlled tumor protein (TCTP) was isolated from a cDNA library made with mRNA isolated from red ripe strawberry fruits. This protein is highly conserved in all species analyzed. Expression of strawberry TCTP increased along the ripening of strawberry fruits, and is constitutively expressed in vegetative tissues. The putative function of this protein remains still unknown  相似文献   

12.
A pair of antagonistic motoneurons, one excitatory and one inhibitory, innervates the distal accessory flexor muscle in the walking limb of the crayfish Procambarus clarkii. The number and size of synapses formed by these two axons on the muscle fibers (neuromuscular synapses) and on each other (axo-axonal synapses) were estimated using thin-section electron microscopy. Although profiles of nerve terminals of the two axons occur in roughly equal proportions, the frequency of occurrence of neuromuscular synapses differed markedly: 73% were excitatory and 27% were inhibitory. However, inhibitory synapses were 4–5 times larger than excitatory ones, and consequently, the total contact areas devoted to neuromuscular synapses were similar for both axons. Axo-axonal synapses were predominantly from the inhibitory axon to the excitatory axon (86%), and a few were from the excitatory axon to the inhibitory axon (14%). The role of the inhibitory axo-axonal synapse is presynaptic inhibition, but that of the excitatory axo-axonal synapse is not known. The differences in size of neuromuscular synapses between the two axons may reflect intrinsic determinants of the neuron, while the similarity in total synaptic area may reflect retrograde influences from the muscle for regulating synapse number.  相似文献   

13.
14.
A. O. Oluoch 《Hydrobiologia》1990,208(1-2):85-92
This paper describes the breeding biology of the Louisiana red swamp crayfish (Procambarus clarkii Girard) that has been introduced in a tropical lake, Naivasha. Notable differences in crayfish biology are found between the place of origin in Louisiana and lake Naivasha.In Naivasha sexual maturity in females is reached at a larger size (42 mm carapace length (CL), 76 mm full length (FL)) than in males (40 mm CL, 71 mm FL). The corresponding figures for Chalmette area of Louisiana are 31–32 mm CL for both sexes and at Ben Hur Research Centre, Louisiana, 33 mm CL. The females weigh between 15 and 20 g at the onset of egg deposition. The corresponding Louisiana values are from 5 to 10 g. Crayfish in Naivasha as in Louisiana breed both inside burrows which are 10–70 cm deep, and on the sediment in shallow water at a depth of between 0.5 and 4 m. These observations suggest that reproduction is very much a lake edge activity. The number of breeding individuals in Naivasha varies with the trend of the water surface level. Sexually active females (form I) as judged from secondary sexual characters (appearance of basal hooks at the base of 3rd and 4th walking legs) persist throughout the year at no less than 60% of the adult male population. This is confirmed by the appearance of recently hatched juveniles (3.4 to 6.5 mm CL) in the water throughout the year. Similarly berried females in Naivasha are found throughout the year, though with peaks at irregular intervals. In Louisiana breeding takes place only from August through November with a single peak in October. The fecundity of crayfish in Naivasha is 433 (SE ± 21, N = 133) and there is a positive correlation between body length and egg number.  相似文献   

15.
A monoclonal antibody (MAb UB42) is described that binds to thylakoids in pea chloroplasts, as shown by EM-immunogold labelling. The antibody recognised proteins of ca. 23–29 kDa in western blots of a pea leaf homogenate. A cDNA library was prepared from pea epidermal cells in the vector ZAP II, and immunoscreening of the library with UB42 led to the isolation of a clone, pUB42. This was sequenced and had an open reading frame of 269 codons encoding a predicted polypeptide of 28.9 kDa. The sequence showed extensive homology with three closely related polypeptides belonging to a family of chlorophyll a/b-binding proteins from the light harvesting complex of photosytem I (LHCI). Collectively, the results suggest that MAb UB42 recognises an epitope on the type II chlorophyll a/b-binding protein from LHCI and that clone pUB42 encodes this protein.  相似文献   

16.
A cDNA encoding -amino acid oxidase (DAO;EC 1.4.3.3) has been isolated from a BALB/c mouse kidney cDNA library by hybridization with the cDNA for the porcine enzyme. Analysis of the nucleotide (nt) sequence of the clone revealed that it has a 1647-nt sequence with a 5′-terminal untranslated region of 68 nt that encodes 345 amino acids (aa), and a 3′-terminal untranslated region of 544 nt that contains the polyadenylation signal sequence ATTAAA. The deduced aa sequence showed 77 and 78% aa identity with the porcine and human enzymes, respectively. Two catalytically important aa residues, Tyr228 and His307, of the porcine enzyme, were both conserved in these three species. RNA blot hybridization analysis indicated that a DAO mRNA, of 2 kb, exists in mouse kidney and brain, but not liver. Synthesis of a functional mouse enzyme in Escherichia coli was achieved through the use of a vector constructed to insert the coding sequence of the mouse DAO cDNA downstream from the tac promoter of plasmid pKK223-3, which was designed so as to contain the lac repressor gene inducible by isopropyl-β- -thiogalactopyranoside. Immunoblot analysis confirmed the synthesis and induction of the mouse DAO protein, and the molecular size of the recombinant mouse DAO was found to be identical to that of the mouse kidney enzyme. Moreover, the maximum activity of the mouse recombinant DAO was estimated to be comparable with that of the porcine DAO synthesized in E. coli cells.  相似文献   

17.
Sarcoplasmic Calcium-binding Protein (SCP) is believed to function as the invertebrate equivalent of vertebrate parvalbumin, namely to “buffer” cytosolic Ca2+. We have cloned and characterized a novel SCP from axial abdominal muscle of crayfish Procambarus clarkii (referred to as pcSCP1), and have examined tissue specific distribution and expression as a function of molting stage in non-epithelial and epithelial tissues. The complete sequence of pcSCP1 consists of 1052 bp with a 579 bp open reading frame, coding for 193 amino acid residues (molecular mass of 21.8 kDa). There is a 387 bp 3′ terminal non-coding region with a poly (A) tail. The deduced pcSCP1 protein sequence matched most closely with published SCP sequences from another crayfish Astacus leptodactylus (92.8%) and from shrimp (78.6–81.2%) and fruit fly (53%). Real-time PCR analysis confirmed that pcSCP1 is ubiquitously expressed in all tissues tested (gill, hepatopancreas, intestine, antennal gland, muscle); however it is most abundant in muscle particularly in the axial abdominal muscle. The real-time PCR analysis revealed that pcSCP1 expression is downregulated in pre- and postmolt stages compared with intermolt. Epithelial (hepatopancreas and antennal gland) SCP expression exhibited a more dramatic decrease than that observed in muscle. Expression trends for pcSCP1 paralleled published trends for sarco/endoplasmic reticular calcium ATPase (SERCA), suggesting that their cellular function in regulating intracellular Ca2+ is linked.  相似文献   

18.
Summary An orthorhombic structure -chitin, probably in the form of a chitin-protein complex, was identified in the matrix of the shell of Anodonta cygnea by X-ray diffraction. Aragonite crystals of pseudohexagonal symmetry were also found by a Lauegram on the nacreous layer of the shell. The orthorhombic structure of these two compounds together with the identical reticular spacing d110 corroborate, in Anodonta cygnea, the indirect chitin-aragonite relationships already suggested for molluscan shells.Observations with SEM in the inner surface of the shell showed CaCO3 crystals with irregular geometrical shapes in spring and summer and regular geometrical shapes in autumn and winter. The more elaborate aspect appearing in winter corresponds to an accurate hexagonal shape. This suggests that the observed variability may depend on the balance between calcium and hydrogen ions in the extrapallial fluid.Abbreviations OME outer mantle epithelium - SEM scanning electron microscopy  相似文献   

19.
Summary We studied the neuroanatomy of the terminal (sixth abdominal) ganglion in the crayfish Procambarus clarkii with silver-impregnated sections and nickel fills. We describe the fiber tracts, commissures and neuropilar areas, and give the topological relationships of motoneurons and intersegmental interneurons with reference to their neuropilar landmark structures.All five anterior abdominal ganglia have an almost identical number of 600–700 neurons with a similar pattern of distribution. Each contains a single neuromere with a common plan of neuropil organization. In contrast, the terminal ganglion consists of two neuromeres which appear to be derived from the intrinsic sixth abdominal and telson ganglion. The basic organization of each neuromere parallels that of the third abdominal ganglion in the appearance and arrangement of fiber tracts and commissures, although some modifications occur. The fusion of two neuromeres is represented by the duplication of segmentally homologous neurons, MoGs and LGs, whose topological relationships to the neuropil structures are similar to those of the anterior ganglion.We also discuss the origin of the telson and its ganglion (the seventh abdominal neuromere), and dispute the classical theory that the telson derives from a postsegmental region.  相似文献   

20.
Three pairs of nonspiking giant interneurons (NGIs; G1, G2, and G3) of the crayfish brain responded with depolarizing and hyperpolarizing graded potentials to body tilt in roll to the ipsi- and contralateral sides in the dark. The higher and the larger the angle of body tilt, the larger was the amplitude of the geotactic responses. In ipsilaterally statocystectomized animals, all the NGIs responded with hyperpolarizing potentials only to the contralateral side-down tilt, whereas in contralaterally statocystectomized animals, they responded with depolarizing potentials only to the ipsilateral side-down tilt. In bilaterally statocystectomized animals, none of the NGIs responded to body tilt in the dark, but in the presence of an overhead light, they exhibited depolarizing and hyperpolarizing potentials in response to body tilt to the ipsi-and contralateral sides, respectively. All the NGIs responded with depolarizing and hyperpolarizing graded potentials to illumination of the contra- and ipsilateral eyes, respectively. The amplitude of these visual responses, however, varied in association with the amplitude of the geotactic response produced by body tilt. These results indicate that the NGIs integrate the sensory inputs from eyes and statocysts and that the interaction between sensory inputs from the left and right sensory organs with either the same modality or with different modalities enhance the directional sensitivity of NGIs as premotoneurons in the compensatory oculomotor system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号