首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ward JM  Sze H 《Plant physiology》1992,99(3):925-931
To determine whether the detergent-solubilized and purified vacuolar H+-ATPase from plants was active in H+ transport, we reconstituted the purified vacuolar ATPase from oat roots (Avena sativa var Lang). Triton-solubilized ATPase activity was purified by gel filtration and ion exchange chromatography. Incorporation of the vacuolar ATPase into liposomes formed from Escherichia coli phospholipids was accomplished by removing Triton X-100 with SM-2 Bio-beads. ATP hydrolysis activity of the reconstituted ATPase was stimulated twofold by gramicidin, suggesting that the enzyme was incorporated into sealed proteoliposomes. Acidification of K+-loaded proteoliposomes, monitored by the quenching of acridine orange fluorescence, was stimulated by valinomycin. Because the presence of K+ and valinomycin dissipates a transmembrane electrical potential, the results indicate that ATP-dependent H+ pumping was electrogenic. Both H+ pumping and ATP hydrolysis activity of reconstituted preparations were completely inhibited by <50 nanomolar bafilomycin A1, a specific vacuolar type ATPase inhibitor. The reconstituted H+ pump was also inhibited by N,N′-dicyclohexylcarbodiimide or NO3 but not by azide or vanadate. Chloride stimulated both ATP hydrolysis by the purified ATPase and H+ pumping by the reconstituted ATPase in the presence of K+ and valinomycin. Hence, our results support the idea that the vacuolar H+-pumping ATPase from oat, unlike some animal vacuolar ATPases, could be regulated directly by cytoplasmic Cl concentration. The purified and reconstituted H+-ATPase was composed of 10 polypeptides of 70, 60, 44, 42, 36, 32, 29, 16, 13, and 12 kilodaltons. These results demonstrate conclusively that the purified vacuolar ATPase is a functional electrogenic H+ pump and that a set of 10 polypeptides is sufficient for coupled ATP hydrolysis and H+ translocation.  相似文献   

2.
The fluorescent analog of adenosine triphosphate (ATP)1 1,N6-ethenoadenosine triphosphate, (εATP), has been utilized as a substitute for ATP in the myosin and heavy meromyosin ATPase systems. For myosin, the analog εATP replaced ATP with a somewhat larger Km (2.6 × 10?4 mole ??1 for εATP as opposed to 8.8 × 10?5 mole ??1 for ATP), indicating that the apparent affinity of the enzyme for εATP is less than for ATP. Perhaps of more interest, further comparison yielded a Vmax for εATP about two and one half times the value for ATP (20 μmole PO4 sec?1 g protein?1 as opposed to 8.1 μmole sec?1 g protein?1). Results for the HMM-εATPase system were similar, yielding a Km value of 1.47 × 10?4 mole ??1 and a Vmax of 54.2 μmole PO4 sec?1 g protein?1, as opposed to corresponding Km and Vmax values of 1.23 × 10?4 mole ??1 and 20.4 μmole PO4 sec?1 g protein?1, respectively for the HMM-ATP interaction. The pH dependence of εATPase for both systems was comparable to ATP, suggesting a similarity in the mechanism of hydrolysis of the two nucleotides. Activation of εATPase by Ca2+ in the presence of 0.5 M KCl was comparable to ATPase for both systems, but inhibition by Mg2+ seemed to be more effective for εATPase. These results indicate that εATP is an excellent substitute for ATP in the myosin and heavy meromyosin systems and because of its insertion into the active site of these muscle proteins, it promises to be a very useful probe for conformation studies at this level.  相似文献   

3.
Summary Calpain I purified from human erythrocyte cytosol activates both the ATP hydrolytic activity and the ATP-dependent Ca2+ transport function of the Ca2+-translocating ATPase solubilized and purified from the plasma membrane of human erythrocytes and reconstituted into phosphatidylcholine vesicles. Following partial proteolysis of the enzyme by calpain I, both the initial rates of calcium ion uptake and ATP hydrolysis were increased to near maximal levels similar to those obtained upon addition of calmodulin. The proteolytic activation resulted in the loss of further stimulation of the rates of Ca2+ translocation or ATP hydrolysis by calmodulin as well as an increase of the affinity of the enzyme for calcium ion. However, the mechanistic Ca2+/ATP stoichiometric ratio was not affected by the proteolytic treatment of the reconstituted Ca2+-translocating ATPase. The proteolytic activation of the ATP hydrolytic activity of the reconstituted enzyme could be largely prevented by calmodulin. Different patterns of proteolysis were obtained in the absence or in the presence of calmodulin during calpain treatment: the 136-kDa enzyme was transformed mainly into a 124-kDa active ATPase fragment in the absence of calmodulin, whereas a 127-kDa active ATPase fragment was formed in the presence of calmodulin. This study shows that calpain I irreversibly activates the Ca2+ translocation function of the Ca2+-ATPase in reconstituted proteoliposomes by producing a calmodulin-independent active enzyme fragment, while calmodulin antagonizes this activating effect by protecting the calmodulin-binding domain against proteolytic cleavage by calpain.  相似文献   

4.
Using a reconstituted glycolytic enzyme system from muscle tissue, it was shown that phosphorylase activity was regulated by some process to provide only the required amount of glucose 1-phosphate, regardless of the percentage of phosphorylase in the a form. By carrying out phosphorylase a assays at high enzyme concentration (2 mg ml?1), the same concentration as in the reconstituted system and comparable with in vivo, it was shown that (a) the Km for phosphate was higher and V lower than at low enzyme concentration (2 μg ml?1), (b) the presence of other glycolytic enzymes at 40 mg ml?1 suppressed the activity a further threefold, and (c) phosphocreatine inhibited the enzyme. Taken together, these three effects were sufficient to explain the relative lack of activity of phosphorylase a in the reconstituted system. The inhibition by phosphocreatine is seen as a mode of feedback control on phosphorylase activity in vivo.  相似文献   

5.
Summary A vanadate-sensitive H+-translocating ATPase isolated from red beet plasma membrane has been solubilized in active form and successfully reconstituted into artificial proteoliposomes. The H+-ATPase was solubilized in active form with deoxycholate, CHAPSO or octylglucoside in the presence of glycerol. Following detergent removal by gel filtration and reconstitution into proteoliposomes, ATP:Mg-dependent H+ transport could be measured as ionophore-reversible quenching of acridine orange fluorescence. Solubilization resulted in a three-to fourfold purification of the plasma membrane ATPase, with some additional enrichment of specific activity following reconstitution. H+ transport activity was inhibited half-maximally between 1 and 5 M vanadate (Na3VO4) and nearly abolished by 100 M vanadate. ATPase activity of native plasma membrane showed aK i for vanadate inhibition of 9.5 M, and was inhibited up to 80% by 15 to 20 M vanadate (Na3VO4). ATPase activity of the reconstituted vesicles showed aK i of 2.6 M for vanadate inhibition. The strong inhibition by low concentrations of vanadate indicates a plasma membrane rather than a mitochondrial or tonoplast origin for the reconstituted enzyme.  相似文献   

6.
Saccharomyces cerevisiae ATCC 39859 was immobilized onto small cubes of wood to produce ethanol and very enriched fructose syrup from glucose/fructose mixtures through the selective fermentation of glucose. A maximum ethanol productivity of 21.9 g/l-h was attained from a feed containing 9.7% (w/v) glucose and 9.9% (w/v) fructose. An ethanol concentration, glucose conversion and fructose yield of 29.6 g/l, 62% and 99% were obtained, respectively. This resulted in a final fructose/glucose ratio of 2.7. At lower ethanol productivity levels the fructose/glucose ratio increases, as does the ethanol concentration in the effluent. The addition of 30 mg/l oleic acid to the medium increased the ethanol productivity and its concentration by 13% at a dilution rate of 0.74 h?1.  相似文献   

7.
The three major subunits (α, β and γ) of the coupling factor, F1 ATPase, of Escherichia coli were separated and purified by hydrophobic column chromatography after the enzyme was dissociated by cold inactivation. The ability to hydrolyze ATP was reconstituted by dialyzing the mixture of subunits against 0.05 M Tris-succinate, pH 6.0, containing 2 mM ATP and 2 mM MgCl2. A mixture containing α, β and γ regained ATP hydrolyzing activity. Individual subunits alone or mixtures of any two subunits did not develop ATPase activity, except for a low but significant activity with α plus β. The reconstituted ATPase had a Km of 0.23 mM for ATP and a molecular weight by sucrose gradient density centrifugation of about 280,000.  相似文献   

8.
Abstract: With a partially purified, membrane-bound (Ca + Mg)-activated ATPase preparation from rat brain, the K0.5 for activation by Ca2+ was 0.8 p μm in the presence of 3 mm -ATP, 6 mm -MgCl2, 100 mM-KCI, and a calcium EGTA buffer system. Optimal ATPase activity under these circumstances was with 6-100 μm -Ca2+, but marked inhibition occurred at higher concentrations. Free Mg2+ increased ATPase activity, with an estimated K0.5, in the presence of 100 μm -CaCl2, of 2.5 mm ; raising the MgCl2 concentration diminished the inhibition due to millimolar concentrations of CaCl2, but antagonized activation by submicromolar concentrations of Ca2+. Dimethylsulfoxide (10%, v/v) had no effect on the K0.5 for activation by Ca2+, but decreased activation by free Mg2+ and increased the inhibition by millimolar CaCl2. The monovalent cations K+, Na+, and TI+ stimulated ATPase activity; for K+ the K0.5 was 8 mm , which was increased to 15 mm in the presence of dimethylsulfoxide. KCI did not affect the apparent affinity for Ca2+ as either activator or inhibitor. The preparation can be phosphorylated at 0°C by [γ-32P]-ATP; on subsequent addition of a large excess of unlabeled ATP the calcium dependent level of phosphorylation declined, with a first-order rate constant of 0.12 s?1. Adding 10 mm -KCI with the unlabeled ATP increased the rate constant to 0.20 s?1, whereas adding 10 mm -NaCl did not affect it measurably. On the other hand, adding dimethyl-sulfoxide slowed the rate of loss, the constant decreasing to 0.06 s?1. Orthovanadate was a potent inhibitor of this enzyme, and inhibition with 1 μm -vanadate was increased by both KCI and dimethylsulfoxide. Properties of the enzyme are thus reminiscent of the plasma membrane (Na + K)-ATPase and the sarcoplasmic reticulum (Ca + Mg)-ATPase, most notably in the K+ stimulation of both dephosphorylation and inhibition by vanadate.  相似文献   

9.
Partially (6-fold) purified plasma membrane ATPase from an ethanol-sensitive yeast, Kloeckera apiculata, had an optimum pH of 6.0, an optimum temperature of 35°C, a K m of 3.6 mm ATP and a V max of 11 mol Pi/min.mg protein. SDS-PAGE of the semi-purified plasma membrane showed a major band of 106 kDa. No in vivo activation of the ATPase by glucose was observed. Although 4% (v/v) ethanol decreased the growth rate by 50% it did not affect the ATPase. Concentrations of ethanol 2% (v/v) did, however, inhibit the enzyme in vitro. The characteristics of the enzyme did not change during growth in the presence of ethanol.  相似文献   

10.
Summary Characteristics of the native and reconstituted H+-ATPase from the plasma membrane of red beet (Beta vulgaris L.) were examined. The partially purified, reconstituted H+-ATPase retained characteristics similar to those of the native plasma membrane H+-ATPase following reconstitution into proteoliposomes. ATPase activity and H+ transport of both enzymes were inhibited by vanadate, DCCD, DES and mersalyl. Slight inhibition of ATPase activity associated with native plasma membranes by oligomycin, azide, molybdate or NO 3 was eliminated during solubilization and reconstitution, indicating the loss of contaminating ATPase activities. Both native and reconstituted ATPase activities and H+ transport showed a pH optimum of 6.5, required a divalent cation (Co2+>Mg2+>Mn2+>Zn2+>Ca2+), and preferred ATP as substrate. The Mg:ATP kinetics of the two ATPase activities were similar, showing simple Michaelis-Menten kinetics. Saturation occurred between 3 and 5mM Mg: ATP, with aK m of 0.33 and 0.46mM Mg: ATP for the native and reconstituted enzymes, respectively. The temperature optimum for the ATPase was shifted from 45 to 35°C following reconstitution. Both native and reconstituted H+-ATPases were stimulated by monovalent ions. Native plasma membrane H+-ATPase showed an order of cation preference of K+>NH 4 + >Rb+>Na+>Cs+>Li+>choline+. This basic order was unchanged following reconstitution, with K+, NH 4 + , Rb+ and Cs+ being the preferred cations. Both enzymes were also stimulated by anions although to a lesser degree. The order of anion preference differed between the two enzymes. Salt stimulation of ATPase activity was enhanced greatly following reconstitution. Stimulation by KCl was 26% for native ATPase activity, increasing to 228% for reconstituted ATPase activity. In terms of H+ transport, both enzymes required a cation such as K+ for maximal transport activity, but were stimulated preferentially by Cl even in the presence of valinomycin. This suggests that the stimulatory effect of anions on enzyme activity is not simply as a permeant anion, dissipating a positive interior membrane potential, but may involve a direct anion activation of the plasma membrane H+-ATPase.  相似文献   

11.
—In the presence of synaptosomes prepared from rat brain, only ATP, dATP and ADP but not dADP were active as substrates of phosphatase (ATP phosphohydrolase; EC 3.6.1 4) in the presence of 150mm-Na+ and 20mm-K+. An active adenylate kinase (ATP:AMP phosphotransferase; EC 2.7.4.3.) was demonstrated in the synaptosomal fractions by means of paper chromatography, paper electrophoresis and enzymic reactions, so that the high activity with ADP as substrate could represent an activity of an ATPase. Apparently dADP was not a substrate for the kinase; no dATP was formed when dADP was incubated with the synaptosomal fraction in the presence of Na+, K+ and Mg2+. Small amounts of P1 were liberated with dADP, IDP, GDP or CDP, but not UDP, as substrates, but none was produced in the presence of mononucleotides. The adenine-deoxyribose bond, but not the adenine-ribose bond, was hydrolysed upon the addition of 5% (w/v) TCA to the reaction mixture. The KM for the hydrolysis of ATP but not ITP, in the presence of Mg2+, or of Na+, K+ and Mg2+, was lower for the synaptosomal ATPase than for the microsomal ATPase, and the values for Vmax for synaptosomal ATPase were higher. The activation increment was generally higher for the synaptosomal ATPase and no distinct differences in the properties of the enzyme from either particulate fractions were observed. Mg2+ could be partially replaced by Mn2+ in the synaptosomal ATPase system, but there was little Na+-K+-activation observed in the presence of the latter. The effects of ouabain and of homogenization under various conditions suggested localization of the K+-sensitive site of the ATPase on the surface of the synaptosomal membrane. Activity of the Na+-K+-Mg2+ ATPase increased after freezing and thawing of the sonicated, sucrose or tris-treated preparations but decreased considerably in the synaptosomes treated with 001 m-deoxycholate. Activity of the Mg2+ ATPase in the latter preparation showed little change.  相似文献   

12.
The effects of ethanol in vitro on calmodulin-dependent Ca2+-activated ATPase (CaM–Ca2+-ATPase) activity were studied in synaptic plasma membranes (SPM) prepared from the brain of normal and chronically ethanol-treated rats. In SPM from normal animals, ethanol at 50–200 mM inhibited the Ca2+-ATPase activity. Lineweaver-Burk analysis indicates that the inhibition was the result of a decreased affinity of the enzyme for calmodulin, whereas the maximum activity of the enzyme was not changed. Arrhenius analysis indicates that the enzyme activity was influenced by lipid transition of the membranes, and ethanol in vitro resulted in a shift of the transition temperature toward a lower value. From animals receiving chronic ethanol treatment (3 weeks), the SPM were resistant to the inhibitory effect of ethanol on the enzyme activity. The resistance to ethanol inhibition was correlated with a higher enzyme affinity for calmodulin and a higher transition temperature, as compared with normal SPM. Since the calmodulin-dependent Ca2+-ATPase in synaptic plasma membranes is believed to be the Ca2+ pump controlling free Ca2+ levels in synaptic terminals, its inhibition by ethanol could therefore lead to altered synaptic activity.Abbreviations used ATPase adenosine triphosphatase - CaM calmodulin - CaM–Ca2+-ATPase calmodulin-dependent Ca2+-activated ATPase - EGTA ethylene-bis(oxyethylenenitrilo)tetraacetic acid - EtOH ethanol - Hepes N—2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - SPM synaptic plasma membranes - TFP trifluoperazine - Tris tris(hydroxymethyl)aminomethane - Km Michaelis constant - Td transition temperature - Vmax maximum velocity  相似文献   

13.
Brush border membranes of the rabbit renal tubule have an ATPase which was stimulated 60% by 50 mm HCO3?. The Ka for HCO3? was 36 mm. Kinetic studies of the “HCO3?-ATPase” indicate that HCO3? had no effect on the Km for ATP and ATP did not alter the Ka for HCO3?. Several anions, notably SO32?, also accelerated the rate of dephosphorylation of ATP. The V for “SO32?-ATPase” was fivefold greater than that for “HCO3?-ATPase.” The Ka for SO32? was 0.78 mm. Other anions including Cl? and phosphates, did not enhance ATPase activity. Thus, of the anions present in the glomerular filtrate in appreciable concentrations only HCO3? stimulated the luminal membrane enzyme. The anion-stimulated ATPase activity increased sharply from pH 6.1 to 7.1 and moderately with higher pH. The renal ATPase was not inhibited by SCN? nor methyl sulfonyl chloride and was relatively insensitive to oligomycin and quercetin. Carbonyl cyanide p-trifluoromethoxy phenylhydrazone increased the basal rate of the membranal ATPase, suggesting that the ATPase activity is limited by transmembrane H+ flux. Carbonic anhydrase significantly increased the HCO3?-stimulated ATPase activity. This increment was blocked by Diamox. These findings provide evidence consistent with the hypothesis that the brush border membrane ATPase is involved in the extrusion of H+ from tubular cell to lumen and support suggested interrelationships between HCO3?-stimulated ATPase, H+ secretion, and bicarbonate transport in the kidney.  相似文献   

14.
Using a cell-free extract of Zymomonas mobilis, it has been possible to achieve rapid and sustained ethanol production from added glucose. In one example 18% glucose was totally converted to 9% (w/v) ethanol. The controls on the glycolytic enzymes have been investigated by measuring metabolite levels during the experiment. No substantial accumulations of intermediates occurred when ATP production by the glycolytic metabolism was correctly balanced by ATPase activity. But as alcohol levels increased, some inhibitions of glucose 6-phosphate and pyruvate removal became apparent.  相似文献   

15.
The coupling factor ATPase complex extracted by Triton X-100 from the photosynthetic bacterium Rhodospirillum rubrum could be incorporated into phospholipid vesicles after removal of the Triton. Vesicles reconstituted with this F0 · F1-type ATPase together with bacteriorhodopsin were found to catalyze, in the light, net ATP synthesis which was inhibited by the energy transfer inhibitors oligomycin and N,N-dicyclohexylcarbodiimide as well as by uncouplers. In vesicles reconstituted with the crude ATPase up to 50% of the observed rate of phosphorylation was independent on light and bacteriorhodopsin and insensitive to the above-listed inhibitors. This dark activity was, however, completely blocked by the adenylate kinase inhibitor, p1,p5-di(adenosine-5′)pentaphosphate, which did not affect at all the net light-dependent phosphorylation nor the ATP-32Pi exchange reaction. Vesicles reconstituted with the purified ATPase catalyzed only the light- and bacteriorhodopsin-dependent diadenosine pentaphosphate-insensitive phosphorylation. The rate of this photophosphorylation was found to be proportional to the amount of ATPase and bacteriorhodopsin, and linear for at least 20 min of illumination. These results indicate that the purified ATPase contains the complete assembly of subunits required to transduce electrochemical gradient energy into chemical energy.  相似文献   

16.
Choline kinase (EC 2.7.1.32; ATP: choline phosphotransferase) was purified 200-fold from an extract of acetone powder of rabbit brain by a combination of acid precipitation, ammonium sulphate precipitation, DEAE cellulose chromatography, and ultrafiltration. Maximal activity of 243 nmol of phosphorylcholine synthesized. min?1 mg?l of protein occurred at pH 9.5–10.0 in the presence of 10 mm MgS04, 10 mm choline and 0.005% (w/v) bovine serum albumin. 2-Aminoethanol, 2-methylaminoethanol, and 2-dimethylaminoethanol were also phosphorlyated by the enzyme preparation. The enzyme quantitatively converted low concentrations of choline (2.5–50 μm ) to phosphorylcholine [32P] in the presence of ATP [y32P], and may, therefore, be used to measure small amounts of choline acetylcholine. There were two Km values for choline at pH 9.5; 32 μm and 0.31 mm . At pH 7.4, the higher Km was not observed and enzyme activity was maximal with 0.1 mm choline. The Km for ATP was 1.1 mm . Enzyme activity was inhibited by ATP (20 mm ), AMP, ADP, cytidine diphosphocholine (1 or 10 mm ), and activated by choline esters (1.0 mm ), NaCl or KCl(200 mm ).  相似文献   

17.
Lung surfactant is synthesized in lung epithelial type II cells and stored in the lamellar bodies prior to its secretion onto the alveolar surface. The lamellar bodies, like other secretory organelles, maintain an ATP-dependent pH gradient that is sensitive to inhibitors of H+-ATPase. This report shows that the ATPase activity of lamellar bodies is enriched in a fraction prepared from lamellar bodies that were disrupted after isolation. The apparent Vmax for this enzyme was 150 nmol ATP hydrolyzed per min per mg protein and apparent Km for ATP was approximately 50 μM. The enzyme activity was sensitive to N-ethylmaleimide (NEM), dicyclohexylcarbodiimide (DCCD) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-C1) (all inhibitors of vacuolar-type H+-ATPase) and vanadate (inhibitor of phosphoenzyme-type ATPase). Besides, the activity could also be inhibited with diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and Ca2+. Two proteins (of approximately 45 kDa and 17 kDa) of this fraction showed acid-stable phosphorylation with ATP. The labeling of proteins with ATP (-γ-32P) could be chased with unlabelled ATP, suggesting that phosphorylation and dephosphorylation of these proteins is associated with the ATPase activity. Our results on inhibition characteristics of the enzyme activity suggest that besides a vacuolar type H+-ATPase, the lamellar bodies also contain a phosphoenzyme type ATPase that is sensitive to inhibitors of vacuolar type H+-ATPase.  相似文献   

18.
The haemolysin exporter HlyB and its homologues are central to the unconventional signal-peptide-independent secretion of toxins, proteases and nodulation proteins by bacteria. HlyB is a member of the ATP-binding cassette (ABC) or traffic ATPase superfamily, and resembles closely in structure and function mammalian exporters such as the multidrug-resistance P-glycoprotein, combining both integral membrane and cytosolic domains. Overproduction of the HlyB cytopiasmic domain as a C -terminal peptide fused to glutathione S-transferase allowed the direct affinity purification and concentration of 30-50 mg ml?1 of soluble protein (GST-Bctp) in an apparently dimeric form possessing both transferase and ATPase activity. GST-Bctp bound to ADP-agarose and was eluted specifically by ATP and ADP, affinity behaviour which was confirmed in both the full-length HlyB and the unfused HlyB cytoplasmic domain synthesized in vitro. The stoichiometry of binding to MgATP and MgADP was close to equimolar and both ligands induced substantial conformational change in the protein. Mg2+ -dependent ATPase activity of GST-Bctp Vmax 17mu;mol min?1 mg?1, Km 0.2 mM) was comparable with the activity of the bacterial importer MalK and human P-glycoprotein reconstituted into proteoliposomes, and over an order of magnitude higher than in vitro measurements of disaggregated MalK purified from inclusion bodies. Activity was unaffected by inhibitors of F- and V-type ATPases, non-hydrolysable ATP analogues, or translocation substrate, but was severely inhibited by inhibitors of E1E2 (P-type) ATPases, and the acidic phospholipid phosphatidyl glycerol.  相似文献   

19.
Ca2+ ATPase activity and Ca2+ transport from Triton X-100-solubilized sarcoplasmic reticulum vesicles and soybean phospholipids were reconstituted by passing this mixture through a Bio-Bead SM-2 column. This rapid procedure gave a coupling efficiency of 0.83 mol of Ca2+-mol? of ATP hydrolyzed when 35 mg of soybean phospholipids mg?1 of protein was used.  相似文献   

20.
A microsomal ATP-activated pyridine nucleotide transhydrogenase   总被引:1,自引:0,他引:1  
An ATP-activated transhydrogenase which catalyzes the reduction of TPN+ by DPNH has been demonstrated in the microsomal fraction from the endosperm of immature Echinocystis macrocarpa seeds. The activity is specifically dependent on the presence of ATP (Km of approximately 0.1 mm) of several nucleotides tested. The reaction is stimulated by MgCl2 addition up to concentrations of 6 mm. When 10?2m EDTA is added to the assay mixture in the absence of added MgCl2, a transhydrogenation reaction is observed which no longer shows any dependence on added ATP. A TPN+-dependent ATPase activity can be demonstrated in these preparations, but no fixed stoichiometry between ATP cleavage and TPNH formation could be established. A lag in attaining the maximal rate of transhydrogenation is seen unless the enzyme is preincubated for 10 min with ATP before initiating the reaction. It can further be shown that preincubation of the enzyme with ATP followed by removal of the ATP on a Dowex 1 column produces an enzyme capable of catalyzing the transhydrogenation without the further addition of ATP. 2,4-Dinitrophenol and thyroxin are effective inhibitors of the transhydrogenase and 2,4-dinitrophenol was shown to inhibit the activating effect of ATP during the preincubation period. It is concluded that the role of ATP is in the modification of the enzyme rather than direct participation in the transhydrogenation. The transhydrogenase is inhibited by ADP and AMP. This results in a response of the enzyme to adenylate energy charge in a manner characteristic for regulatory enzymes which participate in ATP-utilizing metabolic sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号