共查询到20条相似文献,搜索用时 15 毫秒
1.
Posidonia oceanica is an endemic seagrass species in the Mediterranean Sea. In order to assess levels of genetic structure in this species, the microsatellite polymorphism was analysed from meadows collected in several localities, along the coasts of the Tyrrhenian Sea (Mediterranean Sea). The existence of single population units and the recruitment of seedlings collected in some localities were investigated. Moreover, genetic structure at different spatial scales and biogeographic relationships among populations were also assessed. Our analysis showed the existence of clear patterns of genetic structure in P. oceanica in the area considered in the analysis. P. oceanica, in fact, is present in separate meadows that represent discrete populations, characterized by low genetic diversity. Comparable levels of genetic variability between mature meadows and seedlings were found. Patterns of genetic relatedness among populations seem to be in accord with direction of dominant current flux in the whole area, separating South Tyrrhenian from North Tyrrhenian populations. Moderate levels of gene flow between populations and genetic substructure within populations, together with the finding of the limited role of sexual reproduction in increasing genetic variability, should be a cause for concern for the persistence of this essential resource in the Mediterranean basin. 相似文献
2.
We studied the role of genetic variability of donor beds in establishing transplantation criteria for the Mediterranean seagrass Posidonia oceanica. Horizontal rhizomes, collected from three geographically distinct populations, were transplanted into a common bed at a highly human‐impacted locality. The transplantation site was located near one of the donor populations. After three years, the shoots collected in the population adjacent to the transplanting site showed the lowest growth performance. Genetic variability, assessed through the analysis of hypervariable microsatellite regions, and growth performance followed a similar trend. The shoots growing and branching at the highest rate were those collected from populations with the highest heterozygosity values, despite greater geographic distance. No genetic differences were found between the transplanted shoots and shoots from donor meadows, as expected due to the low rate of sexual reproduction in P. oceanica and the short time that had passed since the transplants. The problem of affecting the local gene pool by the introduction of foreign genotypes could arise, but introduction of new alleles could balance the degradation of genetic variability caused by human impact. In general our study suggests that the genetic variability of source material is an important aspect to consider in the development of seagrass restoration strategies. 相似文献
3.
I. A. SERRA A. M. INNOCENTI G. DI MAIDA S. CALVO M. MIGLIACCIO E. ZAMBIANCHI C. PIZZIGALLI S. ARNAUD‐HAOND C. M. DUARTE E. A. SERRAO G. PROCACCINI 《Molecular ecology》2010,19(3):557-568
The Mediterranean Sea is a two‐basin system, with the boundary zone restricted to the Strait of Sicily and the narrow Strait of Messina. Two main population groups are recognized in the Mediterranean endemic seagrass Posidonia oceanica, corresponding to the Western and the Eastern basins. To address the nature of the East–West cleavage in P. oceanica, the main aims of this study were: (i) to define the genetic structure within the potential contact zone (i.e. the Strait of Sicily) and clarify the extent of gene flow between the two population groups, and (ii) to investigate the role of present water circulation patterns vs. past evolutionary events on the observed genetic pattern. To achieve these goals, we utilized SSR markers and we simulated, with respect to current regime, the possible present‐day dispersal pattern of Posidonia floating fruits using 28‐day numerical Lagrangian trajectories. The results obtained confirm the presence of the two main population groups, without any indices of reproductive isolation, with the break zone located at the level of the Southern tip of Calabria. The populations in the Strait of Sicily showed higher affinity with Western than with Eastern populations. This pattern of genetic structure probably reflects historical avenues of recolonization from relict glacial areas and past vicariance events, but seems to persist as a result of the low connectivity among populations via marine currents, as suggested by our dispersal simulation analysis. 相似文献
4.
F. Alberto L. Correia S. Arnaud‐Haond C. Billot C. M. Duarte E. Serro 《Molecular ecology resources》2003,3(2):253-255
The seagrass Posidonia oceanica is endemic to the Mediterranean Sea, where it plays an important role in coastal ecosystem dynamics. Because of this important role and concerns about the observed regression of some meadows, population genetic studies of this species have been promoted. However, the markers used until now were not polymorphic enough to efficiently assess the level and spatial pattern of genetic variability. Hypervariable molecular markers were obtained by screening a genomic library enriched for microsatellite dinucleotide repeats. Among 25 primer pairs defined, eight amplified polymorphic microsatellites with an encouraging level of variability at the two geographical scales sampled. 相似文献
5.
A. CARPANETO A. NASO A. PAGANETTO L. CORNARA E.-R. PESCE & F. GAMBALE 《Plant, cell & environment》2004,27(3):279-292
Posidonia oceanica (L) Delile, a seagrass endemic of the Mediterranean sea, provides food and shelter to marine organisms. As environment contamination and variation in physico‐chemical parameters may compromise the survival of the few Posidonia genotypes living in the Mediterranean, comprehending the molecular mechanisms controlling Posidonia growth and development is increasingly important. In the present study the properties of ion channels in P. oceanica plasma membranes studied by the patch‐clamp technique in protoplasts obtained from the young non‐photosynthetic leaves were investigated. In protoplasts that were presumably originated from sheath cells surrounding the vascular bundles of the leaves, an outward‐rectifying time‐dependent channel with a single channel conductance of 58 ± 2 pS which did not inactivate, was selective for potassium and impermeable to monovalent cations such as Na+, Li+ and Cs+ was identified. In the same protoplasts, an inward‐rectifying channel that has a time‐dependent component with single channel conductance of the order of 10 pS, a marked selectivity for potassium and no permeation to sodium was also identified, as was a third type of channel that did not display any ionic selectivity and was reversibly inhibited by tetraethylammonium and lanthanum. A comparison of Posidonia channel characteristics with channels identified in terrestrial plants and other halophytic plants is included. 相似文献
6.
7.
Posidonia oceanica, a seagrass endemic to the Mediterranean forms extended and extremely persistent meadows. It is a clonal plant with an apparently irregular pattern of flowering events. An extensive bibliographic review allowed the reconstruction of past flowering events of this species around the Mediterranean, with a high degree of confidence for the last 30 years. The data series on annual flowering prevalence (FP, flowering records per total records) and flowering intensity (FI, fraction of flowering shoots) produced have been compared with four series on Sea Surface annual Temperature maxima (SSTmax) obtained for the NW Mediterranean (averaged from the local data series of l'Estartit and Villefranche: 1957–2005) and for the Eastern, Western basin and the whole Mediterranean sea (extracted from NCEP Reynolds interpolated SST maps: 1982–2005). Significant warming trends are detected in the Mediterranean SSTmax series, at a rate of (mean+SE) 0.04±0.01°C yr−1 (R2=0.24, P<0.01, N=24 years), in the Eastern basin series (0.06±0.01°C yr−1, R2=0.43, P<0.001, N=24 years) and in the long SSTmax series of the NW Mediterranean (0.02±0.01 C yr−1, R2=0.12, P<0.02, N=49 years). The magnitudes of the SSTmax anomalies around the absolute warming trend do not increase with time in any SSTmax series. Peaks of FP and FI in the Mediterranean seem to occur each 9–11 years, and coincide with peaks of annual SSTmax. Annual FP and FI increase with the residuals of annual SSTmax warming trend in all Mediterranean basins (FPMED: R2=0.27, P<0.01, N=23; FPNW: R2=0.34, P<0.01, N=31; FPE: R2=0.20; P<0.10, N=23). An outstanding event of P. oceanica flowering across the Mediterranean has been registered in Autumn 2003; 1 month after the highest annual SSTmax recorded in the series. The hypothesis of flowering induction by thermal stress as the possible cause of this relationship is discussed, as well as the potential use of P. oceanica flowering record as early indicator of biological change induced by global sea warming in Mediterranean marine ecosystems. 相似文献
8.
C. Micheli F. Spinosa S. Aliani G. P. Gasparini A. Molcard A. Peirano 《Plant biosystems》2013,147(2):333-339
Abstract An external genetic input of Posidonia oceanica fruits dispersed by currents in the Ligurian Sea (Western Mediterranean) was investigated. During 2003–2004, when a massive fruiting event occurred, fruits were collected from plants at Monterosso al Mare (meadow) and compared with stranded fruits sampled in front of the meadow and downcurrent in Tuscany along 80 km of the coast. After their growth in culture, the plants were analysed using 10 random amplified polymorphic DNA (RAPD) molecular markers. Cluster analysis of similarity showed four distinct genetic populations. One group included parental plants from Monterosso and stranded fruits with the same genetic traits. The second group was formed by fruits stranded in the southern sector (Tuscany), and the third and the fourth groups were samples taken onshore, in front of the meadow, which appeared very different from the other two groups. Results evidenced the probability of the arrival of a new genetic population of nearly 40%, and it seems likely that the stranded fruits of external provenance did not come from the nearest P. oceanica meadows of Tuscany but were probably carried ashore by the Corsica current, as supported by an oceanographic analysis. 相似文献
9.
A meta‐analysis reveals a positive correlation between genetic diversity metrics and environmental status in the long‐lived seagrass Posidonia oceanica 下载免费PDF全文
The seagrass Posidonia oceanica is a key engineering species structuring coastal marine systems throughout much of the Mediterranean basin. Its decline is of concern, leading to the search for short‐ and long‐term indicators of seagrass health. Using ArcGIS maps from a recent, high‐resolution (1–4 km) modelling study of 18 disturbance factors affecting coastal marine systems across the Mediterranean (Micheli et al. 2013, http://globalmarine.nceas.ucsb.edu/mediterranean/ ), we tested for correlations with genetic diversity metrics (allelic diversity, genotypic/clonal diversity and heterozygosity) in a meta‐analysis of 56 meadows. Contrary to initial predictions, weak but significantly positive correlations were found for commercial shipping, organic pollution (pesticides) and cumulative impact. This counterintuitive finding suggests greater resistance and resilience of individuals with higher genetic and genotypic diversity under disturbance (at least for a time) and/or increased sexual reproduction under an intermediate disturbance model. We interpret the absence of low and medium levels of genetic variation at impacted locations as probable local extinctions of individuals that already exceeded their resistance capacity. Alternatively, high diversity at high‐impact sites is likely a temporal artefact, reflecting the mismatch with pre‐environmental impact conditions, especially because flowering and sexual recruitment are seldom observed. While genetic diversity metrics are a valuable tool for restoration and mitigation, caution must be exercised in the interpretation of correlative patterns as found in this study, because the exceptional longevity of individuals creates a temporal mismatch that may falsely suggest good meadow health status, while gradual deterioration of allelic diversity might go unnoticed. 相似文献
10.
Arturo Zenone Alexander Kovalev Fabio Badalamenti Stanislav N. Gorb 《Restoration Ecology》2024,32(3):e14084
Seagrasses provide various ecosystem functions in coastal areas of the world. In the Mediterranean Sea, Posidonia oceanica is an endemic species threatened by several activities despite being protected by national and international laws. Currently, several transplanting initiatives have been carried out using different methods, among which those including seeds and seedlings are considered the most ecological and low-cost ones. Beach-cast fruits and seeds can be found in spring and their appearance can easily be reported, through a citizen science approach, by the community. One of the obstacles in using these methods is identifying the best substrate in which to place P. oceanica seeds to facilitate root adhesion of the seedlings prior to their transplantation into the sea. In the present study, we analyzed, using a 3D surface optical microscope, the roughness of natural rocks to identify the availability of specific roughness ranges suitable for adhesion and root anchoring of P. oceanica seedlings. Conventional roughness parameters and roughness power spectral density were calculated for the inner and outer surfaces of 9 different rock samples. Among the rock samples examined, the calcarenitic ones and in particular marsala calcarenite, due to the presence of the “ideal roughness for seedlings” can be considered one of the best consolidated substrates to be used for the construction of ad hoc devices on which plantlet of P. oceanica can grow for the purpose of restoration. 相似文献
11.
The response of Posidonia oceanica (Linnaeus) Delile to the warm-water episode of summer 1999 was studied by means of the technique of lepidochronology. Study sites include three sites affected by the mass mortality event of benthic invertebrates and one not affected. The results showed a significant decline in some parameters (number of leaves and/or rhizome growth) for the three sites affected by the mass mortality event for the year following the warm-water episode (1999-2000). A similar decline was not observed for the unaffected site. The fact that high temperatures could have a negative impact on deep Posidonia oceanica near its cold limit of distribution is an unexpected result. 相似文献
12.
A study on plant features and motile fauna was carried out within a Posidonia oceanica (L.) Delile bed in Cap Zebib (north‐eastern Tunisian coastline). Fauna was sampled in two stations located at 3 and 12 m depth. A total of 154 species represented by 5592 individuals were collected. Taxa with the highest number of species included Crustacea (22), Mollusca (47) and Polychaeta (46). Among Crustacea, Leptocheirus pilosus, Elasmopus rapax and Lysianassa longicornis were recorded for the first time in Tunisian P. oceanica meadows. The species richness was found to be generally higher at the shallow station. Multivariate analyses showed a pronounced temporal variation in collected populations’ structure. Moreover, the distribution of some groups, in particular molluscs and crustaceans, appeared to be mainly influenced by ‘depth’ factor showing a clear zonation pattern for some species. It was also showed with Spearman test that the faunal features of the two latter taxa (molluscs and crustaceans) are related with the shoot density and Leaf Area Index. However, no correlation was found between the plant parameters and polychaetes community characteristics. In addition, environmental factors, i.e. temperature and dissolved oxygen were found to be correlated with species richness and Shannon–Wiener diversity for each zoological group. 相似文献
13.
Fabio Badalamenti Giuseppe Di Carlo Giovanni D’Anna Michele Gristina Marco Toccaceli 《Hydrobiologia》2006,555(1):253-261
Between 1981 and 1993 a methane pipeline was deployed between Sicily (Italy) and Tunisia. This involved the construction of
a pipeline trench, which damaged the Posidonia oceanica (L.) Delile meadow at Capo Feto (SW Sicily, Italy) and disturbed the surrounding meadow. Seagrass growth and population dynamics
were examined at different depth ranges and at increasing distances from the construction site outer limit (5, 15, 30, 50 m).
Results showed significant differences between the shallow (10±3.3 m) and the deep (20±4.6 m) meadow as well as differences
among distances. The age structure of P. oceanica varied along the distance gradient and with depth. The mortality rate decreased with distance from the trench at all depth
ranges, showing that the plants close to the excavation suffered a higher level of disturbance. Turnover and annual gross
shoot recruitment rate (Rgross) were higher in the shallow portion of the meadow than in the deep range. Forecast of future meadow development (Rnet) close to the trench indicates that, if present conditions are maintained, shoot density will be reduced by 50% over the
next 6 to 17 yrs. 相似文献
14.
Aim The aims of this study were to assess the distribution of putative Mediterranean refugia of plants, to compare the locations of refugia and those of regional hotspots of plant biodiversity, and to provide a critical analysis of the Mediterranean refugium paradigm. Furthermore, we consider how biogeographical and genetic results can be combined to guide global conservation strategies. Location The Mediterranean region. Methods We started from a detailed analysis of the scientific literature (1993–2007) in order to identify refugia in the Mediterranean region, based on intra‐specific phylogeographical studies of plant species. We used population locations together with gene‐pool identity to establish the database, comparing patterns of phylogeographical concordance with the locations of Mediterranean refugia. We then tested the biogeographical congruence between two biodiversity components, namely phylogeographical refugia and regional hotspots. Results We identified 52 refugia in the Mediterranean bioclimatic region and confirmed the role played by the three major peninsulas, with a shared total of 25 refugia. We emphasize the importance of areas that have previously been attributed a lesser role (large Mediterranean islands, North Africa, Turkey, Catalonia). Of the 52 refugia identified, 33 are situated in the western Mediterranean Basin and 19 in the eastern part. The locations of the phylogeographically defined refugia are significantly associated with the 10 regional hotspots of plant biodiversity, with 26 of these refugia (i.e. 50%) occurring within the hotspots. Main conclusions The locations of refugia are determined by complex historical and environmental factors, the cumulative effects of which need to be considered because they have occurred since the Tertiary, rather than solely during the last glacial period. Refugia represent climatically stable areas and constitute a high conservation priority as key areas for the long‐term persistence of species and genetic diversity, especially given the threat posed by the extensive environmental change processes operating in the Mediterranean region. The refugia defined here represent ‘phylogeographical hotspots’; that is, significant reservoirs of unique genetic diversity favourable to the evolutionary processes of Mediterranean plant species. 相似文献
15.
Although climate warming is affecting most marine ecosystems, the Mediterranean is showing earlier impacts. Foundation seagrasses are already experiencing a well‐documented regression in the Mediterranean which could be aggravated by climate change. Here, we forecast distributions of two seagrasses and contrast predicted loss with discrete regions identified on the basis of extant genetic diversity. Under the worst‐case scenario, Posidonia oceanica might lose 75% of suitable habitat by 2050 and is at risk of functional extinction by 2100, whereas Cymodocea nodosa would lose only 46.5% in that scenario as losses are compensated with gained and stable areas in the Atlantic. Besides, we predict that erosion of present genetic diversity and vicariant processes can happen, as all Mediterranean genetic regions could decrease considerably in extension in future warming scenarios. The functional extinction of Posidonia oceanica would have important ecological impacts and may also lead to the release of the massive carbon stocks these ecosystems stored over millennia. 相似文献
16.
Andrea Cosacov Alicia N. Sérsic Victoria Sosa Leigh A. Johnson Andrea A. Cocucci 《Journal of Biogeography》2010,37(8):1463-1477
Aim We perform a phylogeographical study of an endemic Patagonian herbaceous plant to assess whether geographical patterns of genetic variation correspond to in situ Pleistocene survival or to glacial retreat and post‐glacial expansion. We also seek to determine the locations of potential glacial refugia and post‐glacial colonization routes. Location Southern Andes and Patagonian steppe. Methods We used Calceolaria polyrhiza, a widely distributed Patagonian herbaceous plant that occurs mainly in the understorey of Nothofagus rain forests and in the arid Patagonian steppe, as our model system. The chloroplast intergenic spacer trnH–psbA was sequenced for 590 individuals from 68 populations. Sequence data were analysed using phylogenetic (maximum parsimony, maximum likelihood and Bayesian inference) and population genetic (spatial analyses of molecular variance, mismatch distributions and neutrality tests) methods. Nested clade phylogeographic analyses, and divergence time estimates using a calibrated molecular clock, were also conducted. Results A total of 27 haplotypes identified in the present study clustered into four primary genealogical lineages, revealing three significant latitudinal phylogeographical breaks. The two high Andean lineages probably split first, during the late Miocene, and the Patagonian lineage split around 4 Ma, coincident with the establishment of the Patagonian steppe. Within each haplogroup, major diversification occurred in the Pleistocene. The Patagonian groups show a pattern consistent with a rapid post‐glacial expansion and colonization of the Andean flanks, achieved independently by four lineages. The highest haplotype diversity was found along a longitudinal transect that is remarkably congruent with the limit of the ice‐sheet extension during the Greatest Patagonian Glaciation. A north‐east expansion is evident, which is probably associated with the ‘Arid Diagonal’ fluctuations. Main conclusions Glacial climate fluctuations had a substantial impact on the diversification, distribution and demography of the study species. A scenario of multiple periglacial Pleistocene refugia and subsequent multiple recolonization routes, from eastern Patagonia to the Andean flanks, may explain the phylogeographical patterns observed. However, current genetic structure also preserves the imprints of older events that probably occurred in the Miocene and Pliocene, providing evidence that multiple processes, operating at different spatial and temporal scales, have moulded biodiversity in Patagonia. 相似文献
17.
18.
Niche conservatism and niche divergence are both important ecological mechanisms associated with promoting allopatric speciation across geographical barriers. However, the potential for variable responses in widely distributed organisms has not been fully investigated. For allopatric sister lineages, three patterns for the interaction of ecological niche preference and geographical barriers are possible: (i) niche conservatism at a physical barrier; (ii) niche divergence at a physical barrier; and (iii) niche divergence in the absence of a physical barrier. We test for the presence of these patterns in a transcontinentally distributed snake species, the common kingsnake ( Lampropeltis getula ), to determine the relative frequency of niche conservatism or divergence in a single species complex inhabiting multiple distinct ecoregions. We infer the phylogeographic structure of the kingsnake using a range-wide data set sampled for the mitochondrial gene cytochrome b . We use coalescent simulation methods to test for the presence of structured lineage formation vs. fragmentation of a widespread ancestor. Finally, we use statistical techniques for creating and evaluating ecological niche models to test for conservatism of ecological niche preferences. Significant geographical structure is present in the kingsnake, for which coalescent tests indicate structured population division. Surprisingly, we find evidence for all three patterns of conservatism and divergence. This suggests that ecological niche preferences may be labile on recent phylogenetic timescales, and that lineage formation in widespread species can result from an interaction between inertial tendencies of niche conservatism and natural selection on populations in ecologically divergent habitats. 相似文献
19.
Filipe Alberto Sónia Massa Pablo Manent Elena Diaz-Almela Sophie Arnaud-Haond Carlos M. Duarte Ester A. Serrão 《Journal of Biogeography》2008,35(7):1279-1294
Aim A central question in evolutionary ecology is the nature of environmental barriers that can limit gene flow and induce population genetic divergence, a first step towards speciation. Here we study the geographical barrier constituted by the transition zone between the Atlantic Ocean and the Mediterranean Sea, using as our model Cymodocea nodosa, a seagrass distributed throughout the Mediterranean and in the Atlantic, from central Portugal to Mauritania. We also test predictions about the genetic footprints of Pleistocene glaciations. Location The Atlantic–Mediterranean transition region and adjacent areas in the Atlantic (Mauritania to south‐west Portugal) and the Mediterranean. Methods We used eight microsatellite markers to compare 20 seagrass meadows in the Atlantic and 27 meadows in the Mediterranean, focusing on the transition between these basins. Results Populations from these two regions form coherent groups containing several unique, high‐frequency alleles for the Atlantic and for the Mediterranean, with some admixture west of the Almeria–Oran Front (Portugal, south‐west Spain and Morocco). These are populations where only one or a few genotypes were found, for all but Cadiz, but remarkably still show the footprint of a contact zone. This extremely low genotypic richness at the Atlantic northern edge contrasts with the high values (low clonality) at the Atlantic southern edge and in most of the Mediterranean. The most divergent populations are those at the higher temperature range limits: the southernmost Atlantic populations and the easternmost Mediterranean, both potential footprints of vicariance. Main conclusions A biogeographical transition region occurs close to the Almeria–Oran front. A secondary contact zone in Atlantic Iberia and Morocco results from two distinct dispersal sources: the Mediterranean and southernmost Atlantic populations, possibly during warmer interglacial or post‐glacial periods. The presence of high‐frequency diagnostic alleles in present‐day disjunct populations from the southernmost Atlantic region indicates that their separation from all remaining populations is ancient, and suggests an old, stable rear edge. 相似文献
20.
Molecular phylogeography of Troglophilus cave crickets (Orthoptera,Rhaphidophoridae): A combination of vicariance and dispersal drove diversification in the East Mediterranean region 下载免费PDF全文
Giuliana Allegrucci Valerio Ketmaier Claudio Di Russo Mauro Rampini Valerio Sbordoni Marina Cobolli 《Journal of Zoological Systematics and Evolutionary Research》2017,55(4):310-325
In this study, we investigated the molecular phylogenetic divergence and historical biogeography of cave crickets belonging to the genus Troglophilus (Orthoptera, Rhaphidophoridae) from caves in eastern Mediterranean and Anatolia regions. Three mitochondrial DNA genes (COI, 12S rDNA, and 16S rDNA) and two nuclear ones (18S rDNA and 28S rDNA) were amplified and partially sequenced to reconstruct phylogenetic relationships among most of the known Troglophilus species. Results showed a well‐resolved phylogeny with three main clades representing the Balkan, the Anatolian, and the Cycladian–Cretan lineages. Based on Bayesian analyses, we applied a relaxed molecular clock model to estimate the divergence times between these three lineages. Dating estimates indicate that radiation of the ingroup might have been triggered by the opening of the Mid‐Aegean trench, while the uplift of the Anatolian Plateau in Turkey and the changes of relief, emergence, and disappearance of orographic and hydrographical barriers in the Balkan Peninsula are potential paleogeographic events responsible for the initial diversification of the genus Troglophilus. A possible biogeographic scenario, reconstructed using S‐DIVA with RASP software, suggested that the current distribution of Troglophilus species can be explained by a combination of both dispersal and vicariance events that occurred in particular in the ancestral populations. The radiation of Troglophilus species likely started from the Aegean and proceeded eastward to Anatolia and westward to the Balkan region. Results are additionally compared to those available for Dolichopoda, the only other representative genus of Rhaphidophoridae present in the Mediterranean area. 相似文献