共查询到20条相似文献,搜索用时 15 毫秒
1.
Hormonal regulation of Gi2 alpha-subunit phosphorylation in intact hepatocytes. 总被引:2,自引:1,他引:2 下载免费PDF全文
M Bushfield G J Murphy B E Lavan P J Parker V J Hruby G Milligan M D Houslay 《The Biochemical journal》1990,268(2):449-457
Hepatocytes contain the Gi2 and Gi3 forms of the 'Gi-family' of guanine-nucleotide-binding proteins (G-proteins), but not Gi1. The anti-peptide antisera AS7 and I3B were shown to immunoprecipitate Gi2 and Gi3 selectively, and the antiserum CS1 immunoprecipitated the stimulatory G-protein Gs. Treatment of intact, 32P-labelled hepatocytes with one of glucagon, TH-glucagon ([1-N-alpha-trinitrophenylhistidine, 12-homoarginine]glucagon), Arg-vasopressin, angiotensin-II, the phorbol ester TPA (12-O-tetradecanoylphorbol 13-acetate) and 8-bromo-cyclic AMP elicited a time- and dose-dependent increase in the labelling of the alpha-subunit of immunoprecipitated Gi2 which paralleled the loss of ability of low concentrations of the non-hydrolysable GTP analogue guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) to inhibit forskolin-stimulated adenylate cyclase activity ('Gi'-function). The immunoprecipitation of phosphorylated Gi-2 alpha-subunit by the antiserum AS7 was blocked in a dose-dependent fashion by the inclusion of the C-terminal decapeptide of transducin, but not that of Gz (a 'Gi-like' G-protein which lacks the C-terminal cysteine group which is ADP-ribosylated by pertussis toxin in other members of the Gi family), in the immunoprecipitation assay. No labelling of the alpha-subunits of either Gi3 or Gs was observed. alpha-Gi2 was labelled in the basal state and this did not change over 15 min in the absence of ligand addition. In contrast to the monophasic dose-effect curves seen with vasopressin, angiotensin and TPA, the dose-effect curve for the glucagon-mediated increase in the labelling of alpha-Gi2 was markedly biphasic where the loss of Gi function paralleled the high-affinity component of the labelling of alpha-Gi2 caused by glucagon. TPA, TH-glucagon, angiotensin-II and vasopressin achieved similar maximal increases in the labelling of alpha-Gi2, which was approximately half that found after treatment of hepatocytes with either high glucagon concentrations (1 microM) or 8-bromocyclic AMP. Analysis of the phosphoamino acid content of immunoprecipitated alpha-Gi2 showed the presence of phosphoserine only. Incubation of hepatocyte membranes with [gamma-32P]ATP and purified protein kinase C, but not protein kinase A, led to the incorporation of label into immunoprecipitated alpha-Gi2. This labelling was abolished if membranes were obtained from cells which had received prior treatment with ligands shown to cause the phosphorylation of alpha-Gi2 in intact cells. We suggest that there are two possible sites for the phosphorylation of alpha-Gi2; one for C-kinase and the other for an unidentified kinase whose action is triggered by A-kinase activation. 相似文献
2.
Insulin stimulates tyrosine phosphorylation of its receptor beta-subunit in intact rat hepatocytes. 下载免费PDF全文
R Ballotti A Kowalski M F White Y Le Marchand-Brustel E Van Obberghen 《The Biochemical journal》1987,241(1):99-104
We studied the phosphorylation of the beta subunit of the insulin receptor in intact freshly isolated rat hepatocytes, labelled with [32P]Pi. Insulin receptors partially purified by wheat-germ agglutinin chromatography were immunoprecipitated with either antibodies to insulin receptor or antibodies to phosphotyrosine. Receptors derived from cells incubated in the absence of insulin contained only phosphoserine. Addition of insulin to hepatocytes led to a dose-dependent increase in receptor beta-subunit phosphorylation, with half-maximal stimulation being observed at 2 nM-insulin. Incubation of cells with 100 nM-insulin showed that, within 1 min of exposure to the hormone, maximal receptor phosphorylation occurred, which was followed by a slight decrease and then a plateau. This insulin-induced stimulation of its receptor phosphorylation was largely accounted for by phosphorylation on tyrosine residues. Sequential immunoprecipitation of receptor with anti-phosphotyrosine antibodies and with anti-receptor antibodies, and phosphoamino acid analysis of the immunoprecipitated receptors, revealed that receptors that failed to undergo tyrosine phosphorylation were phosphorylated on serine residues. The demonstration of a functional hormone-sensitive insulin-receptor kinase in normal cells strongly supports a role for this receptor enzymic activity in mediating biological effects of insulin. 相似文献
3.
Prostate secretory protein of 94 amino acids (PSP94) is a small non-glycosylated, cysteine rich protein with a molecular mass of 10 kDa. It has also been referred to as beta-microseminoprotein (beta-MSP) and proteins homologous to it have been reported in a number of species. Comparison of the amino acid sequence of these proteins suggests that, it is a rapidly evolving protein. However, all the ten cysteine residues are well conserved in these homologues, indicating their possible role in maintaining the structure and function of these proteins. In the present study, PSP94 was purified from human seminal plasma and characterized further and it showed the presence of five disulfide bonds. Reduction of disulphide bonds of PSP94 led to significant changes in the secondary and tertiary structure of PSP94. CD of disulphide bond reduced PSP94 indicates an overall decrease in the beta sheet content from 79.8% to 46.4%. Tertiary structural changes as monitored by fluorescence quenching reveal that reduction of disulphide bonds of PSP94 followed by the modification of the free thiol groups leads to complete exposure of Trp32 and Trp92 and that one or more side chain carboxyl groups move closer to their indole side chains. Antibodies against native and modified PSP94 demonstrated that the changes following reduction of disulphide linkages are within the immunodominant region of the protein. Changes induced in the functional properties of PSP94, if any, by modification were investigated with respect to IgG binding as PSP94 has been reported to be similar to immunoglobulin binding factor purified from seminal plasma. A novel finding from this study is that both native PSP94 as well as modified protein have the ability to bind human IgG, suggesting the involvement of sequential epitopes of PSP94 in IgG binding. 相似文献
4.
Gilham D Perreault KR Holmes CF Brindley DN Vance DE Lehner R 《Biochimica et biophysica acta》2005,1736(3):189-199
It is recognized that the majority of very low density lipoprotein (VLDL) associated triacylglycerol (TG) is synthesized from fatty acids and partial acylglycerols generated by lipolysis of intra-hepatic storage rather than made de novo. Triacylglycerol hydrolase (TGH) is involved in mobilizing stored TG. Modulating the ability of TGH to hydrolyze stored lipids represents a potentially regulated and rate limiting step in VLDL assembly. Phosphorylation of lipases and carboxylesterases trigger diverse but functionally significant events. We explored the potential for regulating the mobilization of hepatic TG through phosphorylation of TGH. Insulin is known to suppress VLDL secretion from liver, and glucagon can be considered an opposing hormone. However, neither insulin nor glucagon treatment of hepatocytes led to phosphorylation of TGH or changes in its activity. Augmenting intracellular TG stores by incubations with oleic acid also did not lead to changes in TGH activity. Therefore, changes in phosphorylation state are not a mechanism for regulating TGH activity, access to TG substrate pools or for TGH-mediated contributions to VLDL assembly and secretion. 相似文献
5.
J R Colca D B DeWald J D Pearson B J Palazuk J P Laurino J M McDonald 《The Journal of biological chemistry》1987,262(24):11399-11402
Phosphorylation of cellular proteins is known to play an important role in mediating the metabolic effects of insulin in target cells. Here we show that exposure of intact adipocytes to physiological concentrations of insulin results in phosphorylation of the calcium receptor protein, calmodulin. The identity of the phosphorylated protein as being calmodulin in intact cells was demonstrated by two-dimensional electrophoresis, N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W7)-affinity chromatography, and positive staining with the Ca2+ binding protein stain Stains All. Phosphorylation of calmodulin occurred at physiological insulin concentrations with maximum stimulation (608 +/- 114% over basal) at 50 microunits/ml (3.3 X 10(-10) M) insulin. The 32Pi incorporated into calmodulin was stable to base, indicating that phosphotyrosine was involved and thus implicating the insulin-receptor tyrosine kinase as being responsible for its phosphorylation. The phosphorylation of calmodulin may represent an important component of the mechanism for intracellular signaling not only for insulin, but potentially for other physiological regulators of cellular metabolism. 相似文献
6.
Fulton D Harris MB Kemp BE Venema RC Marrero MB Stepp DW 《American journal of physiology. Heart and circulatory physiology》2004,287(6):H2384-H2393
Previously, using an animal model of syndrome X, the obese Zucker rat (OZR), we documented impaired endothelium-dependent vasodilation. The aim of this study was to determine whether reduced expression or altered posttranslational regulation of endothelial nitric oxide synthase (eNOS) underlies the vascular dysfunction in OZR rats. There was no significant difference in the relative abundance of eNOS in hearts, aortas, or skeletal muscle between lean Zucker rats (LZR) and OZR regardless of age. There was no difference in eNOS mRNA levels, as determined by real-time PCR, between LZR and OZR. The inability of insulin resistance to modulate eNOS expression was also documented in two additional in vivo models, the ob/ob mouse and the fructose-fed rat, and in vitro via adenoviral expression of protein tyrosine phosphatase 1B in endothelial cells. We next investigated whether changes in the acute posttranslational regulation of eNOS occurs with insulin resistance. Phosphorylation of eNOS at S632 (human S633) and T494 was not different between LZR and OZR; however, phosphorylation of S1176 was significantly enhanced in OZR. Phosphorylation of S1176 was not different in the ob/ob mouse or in fructose-fed rats. The association of heat shock protein 90 with eNOS, a key regulatory step controlling nitric oxide and aberrant O2- production, was not different between OZR and LZR. Taken together, these results suggest that changes in eNOS expression or posttranslation regulation do not underlie the vascular dysfunction seen with insulin resistance and that other mechanisms, such as altered localization, reduced availability of cofactors, substrates, and the elevated production of O2-, may be responsible. 相似文献
7.
Lee YH Cheng CM Chang YF Wang TY Yuo CY 《Biochemical and biophysical research communications》2007,354(2):391-395
Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in human tumor cells but not in normal cells. In addition, Apoptin also exhibits tumor-specific nuclear localization and tumor-specific phosphorylation on threonine 108 (T108). Here, we studied the effects of T108 phosphorylation on the tumor-specific nuclear localization and apoptotic activity of Apoptin. We first showed that a hemagglutinin (HA)-tagged Apoptin, but not the green fluorescent protein-fused Apoptin used in many previous studies, exhibited the same intracellular distribution pattern as native Apoptin. We then made and analyzed an HA-Apoptin mutant with its T108 phosphorylation site abolished. We found that Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization and abolishing the T108 phosphorylation of Apoptin does affect its apoptotic activity in tumor cells but only partially. Our results support the previous finding that Apoptin contains two distinct apoptosis domains located separately at the N- and C-terminal regions and suggest that the T108 phosphorylation may only be required for the apoptotic activity mediated through the C-terminal apoptosis domain. 相似文献
8.
Insulin stimulates the tyrosyl phosphorylation and activation of the 52 kDa peripheral plasma-membrane cyclic AMP phosphodiesterase in intact hepatocytes. 总被引:1,自引:0,他引:1 下载免费PDF全文
The 52 kDa subunit of the peripheral-plasma-membrane insulin-stimulated high-affinity cyclic AMP phosphodiesterase can be specifically detected by the antibody PM1 by Western-blotting procedures and also can be immunoprecipitated from a hepatocyte extract. PM1-mediated immunoprecipitation from hepatocyte extracts showed that insulin treatment of intact 32P-labelled hepatocytes caused the rapid phosphorylation of the peripheral-plasma-membrane cyclic AMP phosphodiesterase. Phosphoamino acid analysis and the use of a phosphotyrosine-specific antibody indicated that phosphorylation occurred on tyrosyl residue(s) of this phosphodiesterase. Prior treatment of hepatocytes with glucagon (10 nM) completely blocked the insulin-mediated tyrosyl phosphorylation of this 52 kDa protein, as detected with both the PM1 and the anti-phosphotyrosine antibodies. Treatment of hepatocytes with glucagon alone did not increase the phosphorylation state of the peripheral-plasma-membrane cyclic AMP phosphodiesterase. The specific anti-phosphotyrosine antibody also detected the insulin-stimulated phosphorylation of proteins of 180 kDa, 95 kDa and 39 kDa. Prior treatment of hepatocytes with glucagon decreased the ability of insulin to phosphorylate the 180 kDa and 39 kDa species, but not the 95 kDa species. 相似文献
9.
The antiserum AS7 can specifically immunoprecipitate alpha-Gi from membrane extracts as well as from a mixture of purified alpha-Gi and alpha-Go as ascertained using [32P]ADP-ribosylated G-proteins. Using this antiserum to immunoprecipitate alpha-Gi from hepatocytes labelled with 32P it was evident that alpha-Gi was phosphorylated under basal (resting) conditions. Challenge of hepatocytes with the tumour promoting phorbol ester TPA, however, elicited a marked enhancement of the phosphorylation state of alpha-Gi. This was accompanied by the loss of inhibitory effect of Gi on adenylate cyclase, as judged by the inability of low concentrations of p[NH]ppG to inhibit forskolin-stimulated adenylate cyclase activity. Such actions were mimicked by treatment of hepatocytes with either glucagon or TH-glucagon, an analogue of glucagon which is incapable of activating adenylate cyclase and elevating intracellular cyclic AMP concentrations. Pre-treatment of hepatocytes with either glucagon, TPA or insulin did not affect the ability of pertussis toxin to cause the NAD+-dependent, [32P]ADP-ribosylation of alpha-Gi in membrane fractions isolated from such pre-treated hepatocytes. We suggest that protein kinase C can elicit the phosphorylation and functional inactivation of alpha-Gi in intact hepatocytes. As pertussis toxin only causes the ADP-ribosylation of the holomeric form of Gi, it may be that phosphorylation leaves alpha-Gi in its holomeric state. 相似文献
10.
Niche breadth explains the range size of European-centred butterflies,but dispersal ability does not
Johannes Hausharter Sonia Rashid Johannes Wessely Patrick Strutzenberger Dietmar Moser Andreas Gattringer Konrad Fiedler Karl Hülber Stefan Dullinger 《Global Ecology and Biogeography》2023,32(9):1535-1548
Aim
The breadth of ecological niches and dispersal abilities have long been discussed as important determinants of species' range sizes. However, studies directly comparing the relative effects of both factors are rare, taxonomically biased and revealed inconsistent results.Location
Europe.Time Period
Cenozoic.Major Taxa
Butterflies, Lepidoptera.Methods
We relate climate, diet and habitat niche breadth and two indicators of dispersal ability, wingspan and a dispersal tendency index, to the global range size of 369 European-centred butterfly species. The relative effects of these five predictors and their variation across the butterfly phylogeny were assessed by means of phylogenetic generalized least squares models and phylogenetically weighted regressions respectively.Results
Climate niche breadth was the most important single predictor, followed by habitat and diet niche breadth, while dispersal tendency and wingspan showed no relation to species' range size. All predictors together explained 59% of the variation in butterfly range size. However, the effects of each predictor varied considerably across families and genera.Main Conclusions
Range sizes of European-centred butterflies are strongly correlated with ecological niche breadth but apparently independent of dispersal ability. The magnitude of range size–niche breadth relationships is not stationary across the phylogeny and is often negatively correlated across the different dimensions of the ecological niche. This variation limits the generalizability of range size–trait relationships across broad taxonomic groups. 相似文献11.
12.
Depression is often preceded by stressful life events and accompanied with elevated cortisol levels and glucocorticoid resistance. It has been suggested that a major depressive disorder may result from impaired coping with and adaptation to stress. The question is whether or not hypothalamus-pituitary-adrenal (HPA)-axis dysfunction influences the process of adaptation. We examined the effect of a dysregulated HPA-axis on the adaptation to acoustic stimuli in rats with or without preceding restraint stress. HPA-axis function was altered via slow release of corticosterone (CORT, 90 mg) from subcutaneously implanted pellets for 7 or 14 days. The rate of body temperature increases during restraint (10 min) and the response to acoustic stimuli (of 80+120 dB) were used to quantify daily stress reactivity. Rats habituated to either stress regardless of CORT treatment. CORT treatment combined with restraint decreased the initial reactivity and the variability in response, but the rate of habituation was not influenced. These results show that suppressing normal HPA-axis function by chronic exposure to CORT does affect the course of habituation, but not habituation per se. This implies that altered HPA-axis function in depressed patients may not be causally related to stress coping, but instead may influence the course of the disorder. 相似文献
13.
Baroja ML Luxenberg D Chau T Ling V Strathdee CA Carreno BM Madrenas J 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(1):49-55
CTLA-4 is a negative regulator of T cell responses. Sequence analysis of this molecule reveals the presence of two cytoplasmic tyrosine residues at positions 165 and 182 that are potential Src homology (SH)-2 domain binding sites. The role of phosphorylation of these residues in CTLA-4-mediated signaling is unknown. Here, we show that sole TCR ligation induces zeta-associated protein (ZAP)-70-dependent tyrosine phosphorylation of CTLA-4 that is important for cell surface retention of this molecule. However, CTLA-4 tyrosine phosphorylation is not required for down-regulation of T cell activation following CD3-CTLA-4 coengagement. Specifically, inhibition of extracellular signal-regulated kinase (ERK) activation and of IL-2 production by CTLA-4-mediated signaling occurs in T cells expressing mutant CTLA-4 molecules lacking the cytoplasmic tyrosine residues, and in lck-deficient or ZAP-70-deficient T cells. Therefore, CTLA-4 function involves interplay between two different levels of regulation: phosphotyrosine-dependent cell surface retention and phosphotyrosine-independent association with signaling molecules. 相似文献
14.
C M Roifman G X Wang M Freedman Z Q Pan 《Journal of immunology (Baltimore, Md. : 1950)》1992,148(4):1136-1142
IL-7 is a glycoprotein involved in the regulation of lymphocyte precursor growth. In addition, it has a comitogenic effect on mature T cells but not on mature B cells. The exact mechanism whereby IL-7R mediates these cell growth properties remains unknown. Because many growth factor receptor systems on various cell types transduce signals by activating a tyrosine kinase, we have studied here the effect of IL-7R ligation on protein tyrosine phosphorylation. We found that human rIL-7 consistently induced tyrosine phosphorylation of five major proteins, of 175, 155, 135, 110, and 85 kDa, and five minor proteins. The effect of human rIL-7 on tyrosine phosphorylation of these substrates was concentration and time dependent. One of the known substrates that is phosphorylated on tyrosine residues after binding of growth factors to their receptors is the phosphoinositide-specific phospholipase C. Several phospholipase C isozymes have been recently recognized; one isozyme, phospholipase C-gamma 1, was demonstrated to be phosphorylated rapidly after ligand binding to the platelet-derived growth factor receptor and the T cell Ag receptor. We show here that, in contrast to Ag receptor ligation, activation of IL-7R does not induce tyrosine phosphorylation on phospholipase C-gamma 1. Consistent with these results, human rIL-7 failed to increase phosphatidylinositol turnover and did not induce a rise in cytosolic free Ca2+ in the thymocytes, mature T cells, or pre-pre-B cells. The results indicate that the IL-7R mediates the activation of the tyrosine phosphorylation pathway but does not induce the phosphatidylinositol-phospholipase C pathway. 相似文献
15.
Endocytosis of the transferrin receptor requires the cytoplasmic domain but not its phosphorylation site 总被引:32,自引:0,他引:32
The transferrin receptor (TR) mediates cellular iron uptake by bringing about the endocytosis of transferrin. We investigated whether the cytoplasmic domain of 65 N-terminal amino acids or phosphorylated sites within this domain constitute a structure that is required for TR endocytosis. To test this hypothesis, we modified the cytoplasmic serine residues or introduced a deletion of 36 amino acids by in vitro mutagenesis of a cDNA expression vector for human TR. Upon expression in transfected mouse Ltk- cells, both the wild-type and phosphorylation site mutant receptors mediated transferrin internalization, whereas the truncated receptor did not. These results provide evidence that the cytoplasmic domain, or part of it, is essential for internalization of the TR, but argue against a role for receptor phosphorylation in endocytosis. 相似文献
16.
Murakami K Yokoyama S Murata N Ozawa Y Irie K Shirasawa T Shimizu T 《Biochemical and biophysical research communications》2011,410(1):34-39
tRNA-guanine transglycosylases (TGTs) are responsible for incorporating 7-deazaguanine-modified bases into certain tRNAs in eubacteria (preQ1), eukarya (queuine) and archaea (preQ0). In each kingdom, the specific modified base is different. We have found that the eubacterial and eukaryal TGTs have evolved to be quite specific for their cognate heterocyclic base and that Cys145 (Escherichia coli) is important in recognizing the amino methyl side chain of preQ1 (Chen et al., Nuc. Acids Res. 39 (2011) 2834 [15]). A series of mutants of the E. coli TGT have been constructed to probe the role of three other active site amino acids in the differential recognition of heterocyclic substrates. These mutants have also been used to probe the differential inhibition of E. coli versus human TGTs by pteridines. The results indicate that mutation of these active site amino acids can “open up” the active site, allowing for the binding of competitive pteridine inhibitors. However, even the “best” of these mutants still does not recognize queuine at concentrations up to 50 μM, suggesting that other changes are necessary to adapt the eubacterial TGT to incorporate queuine into RNA. The pteridine inhibition results are consistent with an earlier hypothesis that pteridines may regulate eukaryal TGT activity (Jacobson et al., Nuc. Acids Res. 9 (1981) 2351 [8]). 相似文献
17.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a calmodulin (CaM)- and actin-binding protein and prominent protein kinase C (PKC) substrate. In vitro phosphorylation of MARCKS by PKC has been shown to induce the release of both CaM and actin, leading to the suggestion that MARCKS may regulate CaM availability during agonist-induced signalling. In support of this hypothesis we previously demonstrated that thrombin-induced MARCKS phosphorylation in endothelial cells (EC) parallels activation of myosin light chain kinase, a CaM-dependent enzyme. To test this theory further, we transfected CHO cells, which normally do not express significant levels of MARCKS, with a MARCKS cDNA. The thrombin-stimulated phosphorylation of myosin light chains and the sensitivity to CaM antagonists in the MARCKS overexpressing cells was the same as that in control CHO cells. MARCKS associated with the actin cytoskeleton in EC was markedly increased upon treatment with the PKC activator, PMA, but only modestly enhanced by thrombin treatment. Similarly, colocalisation of MARCKS with actin was enhanced when the EC were challenged with PMA but not thrombin. These data may be partially explained by PKC-independent phosphorylation of MARCKS in response to thrombin stimulation. 相似文献
18.
《FEBS letters》2014,588(9):1699-1705
The Triple Gene Block 1 (TGBp1) protein encoded by the Potato virus X is a multifunctional protein that acts as a suppressor of RNA silencing or facilitates the passage of virus from cell to cell by promoting the plasmodesmata opening. We previously showed that the membrane raft protein StRemorin1.3 is able to impair PVX infection. Here, we show that overexpressed StRemorin1.3 does not impair the silencing suppressor activity of TGBp1, but affects its ability to increase plasmodesmata permeability. A similar effect on plasmodesmata permeability was observed with other movement proteins, suggesting that REM is a general regulator of plasmodesmal size exclusion limit. These results add to our knowledge of the mechanisms underlying the StREM1.3 role in virus infection. 相似文献
19.
Wilson C Hargreaves M Howlett KF 《American journal of physiology. Endocrinology and metabolism》2006,290(2):E341-E346
The subcellular localization of insulin signaling proteins is altered by various stimuli such as insulin, insulin-like growth factor I, and oxidative stress and is thought to be an important mechanism that can influence intracellular signal transduction and cellular function. This study examined the possibility that exercise may also alter the subcellular localization of insulin signaling proteins in human skeletal muscle. Nine untrained males performed 60 min of cycling exercise (approximately 67% peak pulmonary O2 uptake). Muscle biopsies were sampled at rest, immediately after exercise, and 3 h postexercise. Muscle was fractionated by centrifugation into the following crude fractions: cytosolic, nuclear, and a high-speed pellet containing membrane and cytoskeletal components. Fractions were analyzed for protein content of insulin receptor, insulin receptor substrate (IRS)-1 and -2, p85 subunit of phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3 (GSK-3). There was no significant change in the protein content of the insulin signaling proteins in any of the crude fractions after exercise or 3 h postexercise. Exercise had no significant effect on the phosphorylation of IRS-1 Tyr612 in any of the fractions. In contrast, exercise increased (P < 0.05) the phosphorylation of Akt Ser473 and GSK-3alpha/beta Ser9/21 in the cytosolic fraction only. In conclusion, exercise can increase phosphorylation of downstream insulin signaling proteins specifically in the cytosolic fraction but does not result in changes in the subcellular localization of insulin signaling proteins in human skeletal muscle. Change in the subcellular protein localization is therefore an unlikely mechanism to influence signal transduction pathways and cellular function in skeletal muscle after exercise. 相似文献
20.
Misexpression of the catenin p120(ctn)1A perturbs Xenopus gastrulation but does not elicit Wnt-directed axis specification 总被引:2,自引:0,他引:2
Modulators of cadherin function are of great interest given that the cadherin complex actively contributes to the morphogenesis of virtually all tissues. The catenin p120(ctn) (formerly p120cas) was first identified as a src- and receptor-protein tyrosine kinase substrate and later shown to interact directly with cadherins. In common with beta-catenin and plakoglobin (gamma-catenin), p120(ctn) contains a central Armadillo repeat region by which it binds cadherin cytoplasmic domains. However, little is known about the function of p120(ctn) within the cadherin complex. We examined the role of p120(ctn)1A in early vertebrate development via its exogenous expression in Xenopus. Ventral overexpression of p120(ctn)1A, in contrast to beta-catenin, did not induce the formation of duplicate axial structures resulting from the activation of the Wnt signaling pathway, nor did p120(ctn) affect mesoderm induction. Rather, dorsal misexpression of p120(ctn) specifically perturbed gastrulation. Lineage tracing of cells expressing exogenous p120(ctn) indicated that cell movements were disrupted, while in vitro studies suggested that this may have been a consequence of reduced adhesion between blastomeres. Thus, while cadherin-binding proteins beta-catenin, plakoglobin, and p120(ctn) are members of the Armadillo protein family, it is clear that these proteins have distinct biological functions in early vertebrate development. This work indicates that p120(ctn) has a role in cadherin function and that heightened expression of p120(ctn) interferes with appropriate cell-cell interactions necessary for morphogenesis. 相似文献