首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

2.
Pigeon and chicken skeletal muscle phosphorylase kinase purified to a nearly homogeneous state is able to phosphorylate both cardiac and skeletal troponin I and T. After 1-hr incubation, the enzyme transfers up to 0.35 mole of phosphorus per mole of skeletal troponin I, up to 0.5 mole of cardiac troponin I and up to 0.1 mole of cardiac and skeletal troponin T. Avian muscle phosphorylase kinase does not phosphorylate the first serine residue of cardiac and skeletal troponin T, but catalyzes the phosphate incorporation into the site(s) of troponin T located in the central or C-terminal parts of the protein molecule. The rate of troponin phosphorylation by pigeon muscle phosphorylase kinase is pH-dependent: the 6.8/8.2 ratio for troponin I is close to 0,2, whereas that with troponin T varies in the range of 0.5-0.7. Troponin phosphorylation by avian phosphorylase kinase depends on the presence of Ca2+ in the incubation mixture. In the presence of 3 mM EGTA troponin I phosphorylation is inhibited by 70-90%, whereas that of troponin T--by 50%. The experimental results indicate that the phosphorylation of troponin I and T is catalyzed either by two different active centers or by different conformations of the single center of avian phosphorylase kinase.  相似文献   

3.
Phosphorylase kinase has been purified from white and red chicken skeletal muscle to near homogeneity, as judged by sodium dodecyl sulphate (SDS) gel electrophoresis. The molecular mass of the native enzyme, estimated by chromatography on Sepharose 4B, is similar to that of rabbit skeletal muscle phosphorylase kinase, i.e. 1320 kDa. The purified enzyme both from white and red muscles showed four subunits upon polyacrylamide gel electrophoresis in the presence of SDS, corresponding to alpha', beta, gamma' and delta with molecular masses of 140 kDa, 129 kDa, 44 kDa and 17 kDa respectively. Based on the molecular mass of 1320 kDa for the native enzyme and on the molar ratio of subunits as estimated from densitometric tracings of the polyacrylamide gels, a subunit formula (alpha' beta gamma' delta)4 has been proposed. The antiserum against the mixture of the alpha' and beta subunits of chicken phosphorylase kinase gave a single precipitin line with the chicken enzyme but did not cross-react with the rabbit skeletal muscle phosphorylase kinase. The pH 6.8/8.2 activity ratio of phosphorylase kinase from chicken skeletal muscle varied from 0.3 to 0.5 for different preparations of the enzyme. Chicken phosphorylase kinase could utilize rabbit phosphorylase b as a substrate with an apparent Km value of 0.02 mM at pH 8.2. The apparent V (18 mumol min-1 mg-1) and Km values for ATP at pH 8.2 (0.20 mM) were of the same order of magnitude as that of the purified rabbit phosphorylase kinase b. The activity of chicken phosphorylase kinase was largely dependent on Ca2+. The chicken enzyme was activated 2-4-fold by calmodulin and troponin C, with concentrations for half-maximal activation of 2 nM and 0.1 microM respectively. Phosphorylation with the catalytic subunit of cAMP-dependent protein kinase (up to 2 mol 32P/mol alpha beta gamma delta monomer) and autophosphorylation (up to 8 mol 32P/mol alpha beta gamma delta monomer) increased the activity 1.5-fold and 2-fold respectively. Limited tryptic and chymotryptic hydrolysis of chicken phosphorylase kinase stimulated its activity 2-fold. Electrophoretic analysis of the products of proteolytic attack suggests some differences in the structure of the rabbit and chicken gamma subunits and some similarities in the structure of the rabbit red muscle and chicken alpha'.  相似文献   

4.
During relative rest of trained rats the phosphorylase b kinase activity is increased by 24% (pH 6.8). Physical load causes an increase of the phosphorylase b kinase activity of untrained and trained rats by 44 and 33%, respectively. The degree of phosphorylase b kinase phosphorylation by a homologous soluble cAMP-dependent protein kinase from the muscles of trained rats at rest is 1.9 times that of the control group. The cAMP-dependent phosphorylation of phosphorylase b kinase of untrained and trained rats under physical load is increased 2.5-fold. The data obtained are indicative of the regulatory role of cAMP-dependent phosphorylation in biochemical adaptation of skeletal muscles when their function is increased.  相似文献   

5.
Glycogen phosphorylase, a dimer of identical subunits, is activated by phosphorylase kinase-catalyzed phosphorylation of one serine residue in each subunit. In this paper, the effect of the phosphorylation of one subunit on the phosphorylation of the other subunit was examined. The three forms of phosphorylase, phosphorylase b (nonphosphorylated), phosphorylase ab (one subunit phosphorylated), and phosphorylase a (both subunits phosphorylated), were separated by anion-exchange high-performance liquid chromatography (HPLC). Purified phosphorylase ab was found to be stable under the conditions of the phosphorylase kinase assay. Initial rate kinetics showed that phosphorylase kinase had a lower KM for phosphorylase ab (3.9 +/- 0.24 microM) than for phosphorylase b (14.9 +/- 2.6 microM). Using the HPLC separation as a simultaneous assay for the three forms of phosphorylase during the phosphorylase kinase reaction, it was found that the pseudo-first-order rate constant for the second phosphorylation step (k2) was 3.7 times greater than that for the first step (k1). The activator AMP reduced the ratio k2/k1 from 3.7 without AMP to 1.4. When the monomeric gamma delta complex of phosphorylase kinase subunits was used as the enzyme, the ratio k2/k1 was 2.1, compared to 3.7 with the multimeric holophosphorylase kinase. One explanation for these data is that phosphorylation of one subunit of phosphorylase b causes conformational changes that make the other subunit a better substrate for the kinase. In this context, the effect of AMP is to reduce the conformational differences between phosphorylases b and ab, and the gamma delta complex is less sensitive to the conformational differences between the two forms of phosphorylase.  相似文献   

6.
Three forms of phosphorylase (I, II and III), two of which (I and II) were active in the presence of AMP and one (III) was active without AMP, were isolated from human skeletal muscles. The pI values for phosphorylases b(I) and b(II) were found to be identical (5.8-5.9). During chromatofocusing a low molecular weight protein (M(r) = 20-21 kDa, pI 4.8) was separated from phosphorylase b(II). This process was accompanied by an increase of the enzyme specific activity followed by its decline. During reconstitution of the complex the activity of phosphorylase b(II) returned to the initial level. Upon phosphorylation the amount of 32P incorporated into phosphorylase b(II) was 2 times as low as compared with rabbit phosphorylase b and human phosphorylase b(I). It may be supposed that in the human phosphorylase b(II) molecule one of the two subunits undergoes phosphorylation in vivo. This form of the enzyme is characterized by a greater affinity for glycogen and a lower sensitivity to allosteric effectors (AMP, glucose-6-phosphate, caffeine) compared with phosphorylase b(I). Thus, among the three phosphorylase forms obtained in this study, form b(II) is the most unusual one, since it is partly phosphorylated by phosphorylase kinase to form a complex with a low molecular weight protein which stabilizes its activity. A partially purified preparation of phosphorylase kinase was isolated from human skeletal muscles. The enzyme activity necessitates Ca2+ (c0.5 = 0.63 microM). At pH 6.8 the enzyme is activated by calmodulin (c0.5 = 15 microM). The enzyme activity ratio at pH 6.8/8.2 is equal to 0.18.  相似文献   

7.
Phosphofructokinase 2 and fructose 2,6-bisphosphatase extracted from either chicken liver or pigeon muscle co-purified up to homogeneity. The two homogeneous proteins were found to be dimers of relative molecular mass (Mr) close to 110,000 with subunits of Mr 54,000 for the chicken liver enzyme and 53,000 for the pigeon muscle enzyme. The latter also contained a minor constituent of Mr 54,000. Incubation of the chicken liver enzyme with the catalytic subunit of cyclic-AMP-dependent protein kinase in the presence of [gamma-32P]ATP resulted in the incorporation of about 0.8 mol phosphate/mol enzyme. Under similar conditions, the pigeon muscle enzyme was phosphorylated to an extent of only 0.05 mol phosphate/mol enzyme and all the incorporated phosphate was found in the minor 54,000-Mr constituent. The maximal activity of the native avian liver phosphofructokinase 2 was little affected by changes of pH between 6 and 10. Its phosphorylation by cyclic-AMP-dependent protein kinase resulted in a more than 90% inactivation at pH values below 7.5 and in no or little change in activity at pH 10. Intermediary values of inactivation were observed at pH values between 8 and 10. Muscle phosphofructokinase 2 had little activity at pH below 7 and was maximally active at pH 10. Its partial phosphorylation resulted in a further 25% decrease of its already low activity measured at pH 7.1 and in a negligible inactivation at pH 8.5. Phosphoenolpyruvate and citrate inhibited phosphofructokinase 2 from both origins non-competitively. The muscle enzyme and the phosphorylated liver enzyme displayed much more affinity for these inhibitors than the native liver enzyme. Fructose 2,6-bisphosphatase from both sources had about the same specific activity but only the chicken liver enzyme was activated about twofold upon incubation with ATP and cyclic-AMP-dependent protein kinase. All enzyme forms were inhibited by fructose 6-phosphate and this inhibition was released by inorganic phosphate and by glycerol 3-phosphate. Both liver and muscle fructose 2,6-bisphosphatases formed a 32P-labeled enzyme intermediate when incubated in the presence of fructose 2,6-[2-32P]bisphosphate.  相似文献   

8.
A protein kinase which depends on the simultaneous presence of Ca2+ and the modulator protein for its histone phosphorylation activity has been demonstrated in rabbit skeletal muscle and partially purified. The purified enzyme was not activated by cAMP, cGMP, or incubation with trypsin. Nor was the enzyme inhibited by the protein inhibitor of cAMP-dependent protein kinase. In addition to histone, myosin light chains and phosphorylase kinase served as substrates for the protein kinase, and their phosphorylation also depended on the presence of Ca2+ and the modulator protein. The phosphorylation of phosphorylase kinase was accompanied with a marked activation of the enzyme. The results suggest that the protein kinase has multiple functions and may be involved in the mediation of Ca2+ effects in many biological processes. It is proposed that this enzyme be designated as the modulator-dependent protein kinase. The modulator-dependent protein kinase may be identical to the myosin light chain kinase; chicken gizzard light chain kinase has been shown activatable by the modulator protein (Dabrowska, R., Sherry, J. M. F., Aramatorio, D. K., and Hartshorne, D. J. (1978) Biochemistry 17, 253-258).  相似文献   

9.
Yeast phosphorylase is phosphorylated and activated by a cyclic AMP-independent protein kinase (called phosphorylase kinase) and a cyclic AMP-dependent protein kinase. Only in the presence of both kinases is phosphorylase fully activated and phosphorylated. No evidence was found for the presence of two phosphorylation sites as an identical phosphopeptide pattern of phosphorylase is obtained after phosphorylation by either one or both kinases. The kinases probably phosphorylate identical sites but recognize different subunits of phosphorylase. Phosphorylase kinase phosphorylates the high-Mr subunit while cAMP-dependent protein kinase phosphorylates the low-Mr subunit.  相似文献   

10.
This report provides a characterization of the effects of varying the concentrations of Mg2+, ATP, phosphorylase kinase, and the cAMP-dependent protein kinase on the activation and phosphorylation of phosphorylase kinase. The results show the following. (a) The Km for MgATP2- for the cAMP-dependent protein kinase-catalyzed phosphorylation is decreased by increasing Mg2+, probably as a consequence of decreasing the free ATP:MgATP2- ratio and increasing free Mg2+. (b) Whereas beta subunit phosphorylation of phosphorylase kinase plays a prominent role in determining its activity, alpha subunit phosphorylation can also modulate activity. (c) The phosphorylation of the alpha subunit, which occurs following the initial cAMP-dependent phosphorylation of the beta subunit, is catalyzed by the cAMP-dependent protein kinase and is not a consequence of EGTA-insensitive (or EGTA-sensitive) autophosphorylation occurring as a result of the enhanced phosphorylase kinase activity. (d) The relationship between subunit phosphorylation and phosphorylase kinase activation is complex and particularly dependent upon concentrations of cAMP-dependent protein kinase and phosphorylase kinase in the activation reaction. The data suggest the possibilities that the pathway of phospho-intermediates involved in the activation process probably varies with the activation conditions, that the efficacy of a specific site to be covalently modified is dependent upon the phosphorylation status of other sites, and that the effect of phosphorylation in regulating activity may also be dependent on the phosphorylation status of other sites. It is clear from the data that the activation process for phosphorylase kinase can be very complex, and it is possible that this complexity might have significant physiological ramifications.  相似文献   

11.
We have investigated the effects of insulin on the phosphorylation of glycogen phosphorylase in skeletal muscle. Rat epitrochlearis muscles were incubated in vitro with 32Pi to label cellular phosphoproteins, before being treated with hormones. Phosphorylase, phosphorylase kinase, and glycogen synthase were immunoprecipitated under conditions that prevented changes in their phosphorylation states. Based on measurements of the activity ratio (-AMP/+AMP) and the 32P content of phosphorylase, 4-8% of the phosphorylase in untreated muscles appeared to be phosphorylated. Epinephrine promoted increases of approximately 4-fold in the 32P content and activity ratio. Neither these effects nor the epinephrine-stimulated increases in phosphorylation of glycogen synthase and phosphorylase kinase were attenuated by insulin. However, insulin at physiological concentrations rapidly decreased the 32P content of phosphorylase in muscles incubated without epinephrine. Results from peptide mapping experiments indicate that phosphorylase was phosphorylated at a single site in both control and insulin on phosphorylase represented a decrease in 32P of approximately 50%. By comparison, the 32P content of glycogen synthase and the beta subunit of phosphorylase kinase were decreased by only 20 and 16%, respectively; the 32P content of the kinase alpha subunit was not affected by insulin. The results provide direct evidence that insulin decreases the amount of phosphate in phosphorylase and phosphorylase kinase. These findings have important implications with respect to both the regulation of glycogen metabolism in skeletal muscle and the mechanism of insulin action.  相似文献   

12.
Calcium transport into sarcoplasmic reticulum fragments isolated from dog cardiac and mixed skeletal muscle (quadriceps) and from mixed fast (tibialis), pure fast (caudofemoralis) and pure slow (soleus) skeletal muscles from the cat was studied. Cyclic AMP-dependent protein kinase and phosphorylase b kinase stimulated the rate of calcium transport although some variability was observed. A specific protein kinase inhibitor prevented the effect of protein kinase but not of phosphorylase b kinase. The addition of cyclic AMP to the sarcoplasmic reticulum preparations in the absence of protein kinase had only a slight stimulatory effect despite the presence of endogenous protein kinase. Cyclic AMP-dependent protein kinase catalyzed the phosphorylation of several components present in the sarcoplasmic reticulum fragments; a 19000 to 21 000 dalton peak was phosphorylated with high specific activity in sarcoplasmic reticulum preparations isolated from heart and from slow skeletal muscle, but not from fast skeletal muscle. Phosphorylase b kinase phosphorylated a peak of molecular weight 95000 in all of the preparations. Cyclic AMP-dependent protein kinase-stimulated phosphorylation was optimum at pH 6.8; phosphorylase b kinase phosphorylation had a biphasic curve in cardiac and slow skeletal muscle with optima at pH 6.8 and 8.0. The addition of exogenous phosphorylase b kinase or protein kinase increased the endogenous level of phosphorylation 25-100%. All sarcoplasmic reticulum preparations contained varying amounts of adenylate cyclase, phosphorylase b and a (b:a = 30.1), "debrancher" enzyme and glycogen (0.3 mg/mg protein), as well as varying amounts of protein kinase and phosphorylase b kinase which were responsible for a significant endogenous phosphorylation. Thus, the two phosphorylating enzymes stimulated calcium uptake in the sarcoplasmic reticulum of a variety of muscles possessing different physiologic characteristics and different responses to drugs. In addition, the phosphorylation catalyzed by these enzymes occurred at two different protein moieties which make physiologic interpretation of the role of phosphorylation difficult. While the role phosphorylation in these mechanisms is complex, the presence of a glycogenolytic enzyme system may be an important link in this phenomenon. The sarcoplasmic reticulum represents a new substrate for phosphorylase b kinase.  相似文献   

13.
When phosphorylase kinase from rabbit skeletal muscle was activated by phosphorylation and then cross-linked with 1,5-difluoro-2,4-dinitrobenzene at pH 6.8, dimers of beta subunits were formed that were not observed during cross-linking of nonphosphorylated enzyme under the same conditions. The ability to form these dimers was due to phosphorylation of the beta subunit because when enzyme phosphorylated in the alpha and beta subunits was incubated with a protein phosphatase relatively specific for the beta subunit (Ganapathi, M.K., Silberman, S.R., Paris, H., and Lee, E.Y.C. (1981) J. Biol. Chem. 256, 3213-3217), the ability to form the cross-linked beta dimers was lost. Significant amounts of two complexes also judged to be dimers of beta subunits were observed when nonphosphorylated phosphorylase kinase was cross-linked after preincubation with Ca2+ plus Mg2+ ions, after proteolysis by chymotrypsin, or when it was cross-linked at pH 8.2, three conditions known to stimulate the activity of the nonphosphorylated enzyme. From these results, we conclude that 1,5-difluoro-2,4-dinitrobenzene can serve as a structural probe for activated states of phosphorylase kinase. The activation is associated with a conformational change in which two beta subunits either move closer together or have a reactive group on one, or both, of them unmasked. Our results suggest that the diverse mechanisms listed above for stimulating phosphorylase kinase activity cause a common conformational change to occur.  相似文献   

14.
This study reports on the divalent metal ion specificity for phosphorylase kinase autophosphorylation and, in particular, provides a comparison between the efficacy of Mg2+ and Mn2+ in this role. As well as requiring Ca2+ plus divalent metal ion-ATP2- as substrate, both phosphorylase kinase autoactivation and phosphorylase conversion are additionally modulated by divalent cations. However, these reactions are affected differently by different ions. Phosphorylase kinase-catalyzed phosphorylase conversion is maximally enhanced by a 4- to 10-fold lower concentration of Mg2+ than is autocatalysis and, whereas both reactions are stimulated by Mg2+, autophosphorylation is activated by Mn2+, Co2+, and Ni2+ while phosphorylase a formation is inhibited. This difference may be due to an effect of free Mn2+ on phosphorylase rather than the inability of phosphorylase kinase to use MnATP as a substrate when catalyzing phosphorylase conversion since Mn2+, when added at a level which minimally decreases [MgATP], greatly inhibits phosphorylase phosphorylation. The interactions of Mn2+ with phosphorylase kinase are different from those of Mg2+. Not only are the effects of these ions on phosphorylase activation opposite, but they also provoke different patterns of subunit phosphorylation during phosphorylase kinase autocatalysis. With Mn2+, the time lag of phosphorylation of both the alpha and beta subunits of phosphorylase kinase in autocatalysis is diminished in comparison to what is observed with Mg2+, and the beta subunit is only phosphorylated to a maximum of 1 mol/mol of subunit. With both Mg2+ and Mn2+ the alpha subunit is phosphorylated to a level in excess of 3 mol/mol, a level similar to that obtained for beta subunit phosphorylation in the presence of Mg2+. The support of autophosphorylation by both Co2+ and Ni2+ has characteristics similar to those observed with Mn2+. Although Mn2+ stimulation of autophosphorylation occurs at levels much higher than normal physiological levels, the possible potential of phosphorylase kinase autophosphorylation as a control mechanism is illustrated by the 80- to 100-fold activation that occurs in the presence of Mn2+, a level far in excess of the enzyme activity change normally seen with covalent modification. Autophosphorylation of phosphorylase kinase demonstrates a Km for Mg X ATP2- of 27.7 microM and a Ka for Mg2+ of 3.1 mM. The reaction mechanism of autophosphorylation is intramolecular. This latter observation may indicate that phosphorylase kinase autocatalysis could be of potential physiological relevance and could occur with equal facility in cells containing either constitutively high or low levels of this enzyme.  相似文献   

15.
The effects of glycogen on the non-activated and activated forms of phosphorylase kinase were studied. It was found that in the presence of glycogen the activity of non-activated kinase at pH 6.8 and 8.2 and that of the activated (in the course of phosphorylation) form are enhanced. The degree of activation depends on glycogen concentration. At saturating concentrations, this enzyme activity increases 2-3-fold; the enzyme affinity for the protein substrate, phosphorylase b, also shows an increase. The polysaccharide has no effect on the activity of phosphorylase kinase stimulated by limited proteolysis. In the presence of glycogen, the rate of autocatalytic phosphorylation of the enzyme is increased. Glycogen stabilizes the enzyme activity upon dilution. The experimental results suggest that the polysaccharide directly affects the phosphorylase kinase molecule. The maximal binding was shown to occur at the enzyme/polysaccharide ratio of 1:10 (w/w) in the presence of Ca2+ and Mg2+.  相似文献   

16.
The hormonal regulation of L-type pyruvate kinase in hepatocytes from phosphorylase b kinase-deficient (gsd/gsd) rats was investigated. Adrenaline (10 microM) and glucagon (10 nM) each led to an inactivation and phosphorylation of pyruvate kinase. Dose-response curves for adrenaline-mediated inactivation of pyruvate kinase, phosphorylation of pyruvate kinase and the stimulation of gluconeogenesis from 1.8 mM-lactate were similar for hepatocytes from control and gsd/gsd rats. Time-course studies indicated that adrenaline-mediated inactivation and phosphorylation of pyruvate kinase proceeded more slowly in phosphorylase kinase-deficient hepatocytes than in control hepatocytes. The age-dependent change in the adrenergic control of pyruvate kinase was similar between control and phosphorylase kinase-deficient hepatocytes. Adrenaline, glucagon and noradrenaline activated the cyclic AMP-dependent protein kinase and inhibited pyruvate kinase in phosphorylase kinase-deficient hepatocytes. Vasopressin (0.2-2 nM), angiotensin (10nM) and A23187 (10 microM) had no effect on the activity ratio of the cyclic AMP-dependent protein kinase or pyruvate kinase in these cells. It is concluded that phosphorylase kinase plays no significant role in the hormonal control of pyruvate kinase and that phosphorylation and inactivation of this enzyme results predominantly from the action of the cyclic AMP-dependent protein kinase.  相似文献   

17.
Muscle glycogen phosphorylase kinase [EC 2.7.1.38] has the ability to phosphorylate five fractions of calf thymus histone. H1 histone is the most preferable substrate, and maximally about 1.3 mol of phosphate is incorporated into every mole of this histone. This reaction absolutely depends on CA2+, and the molecular activity is about one third of that of cyclic AMP-dependent protein kinase (protein kinase A). The affinity of phosphorylase kinase for H1 histone is higher than that of protein kinase A. Calmodulin stimulates this histone phosphorylation. Analysis of the N-bromosuccinimide-bisected fragments of fully phosphorylated H1 histone has revealed that the enzyme phosphorylates mostly seryl residues in both amino- and carboxyl-terminal portions, although phosphorylation of the carboxyl-terminal portion is twice as much as that of the amino-terminal portion. Fingerprint analysis indicates that the phosphorylation sites in H1 histone for this enzyme are different from the sites phosphorylated by protein kinase A. This catalytic activity also differs from that of a newly found multifunctional protein kinase which may be activated by the simultaneous presence of Ca2+ and phospholipid.  相似文献   

18.
Phosphorylase b and two peptides with sequences homologous to phosphorylation site 2 (syntide 2) and site 3 (syntide 3) of glycogen synthase were compared as substrates for purified muscle phosphorylase kinase. The substrate specificity of phosphorylase kinase varied according to whether heparin (at pH 6.5) or Ca2+ (at pH 8.2) was used as a stimulator of its activity. Phosphorylase b was preferentially phosphorylated in the presence of Ca2+; the rate of syntide 2 phosphorylation was the same for both stimulators; and the phosphorylation of syntide 3 was completely dependent on the presence of heparin. A kinetic analysis confirmed this stimulator-dependent substrate specificity since both the Vmax and Km for these substrates were affected diversely by heparin and Ca2+. Heparin stimulated phosphorylase kinase maximally at pH 6.5, whereas the effect of Ca2+ was optimal at a pH above 8. However, the stimulator-related substrate specificity could not be explained by the different pH values at which the effects of the stimulators were assessed. Nor did substrate-directed effects by heparin or Ca2+ apparently play a role. No indications were found for a stimulator-dependent specificity in the phosphorylation of sites in protein substrates of phosphorylase kinase (phosphorylase b, the alpha- and beta-subunits of phosphorylase kinase, or glycogen synthase). The diverse substrate specificity of the calcium- and heparin-dependent activities of phosphorylase kinase could be explained in two ways: either by the existence of separate calcium- and heparin-stimulated catalytic sites, or by just one catalytic site with two active conformations. The second possibility is favored by the observation that both calcium and heparin stimulated the isolated gamma-subunit (gamma X calmodulin complex) of phosphorylase kinase.  相似文献   

19.
A variety of proteases have been evaluated as potential structural and conformational probes of nonphosphorylated and phosphorylated phosphorylase kinase. In general, the enzyme's alpha subunit is rapidly degraded, followed in most cases by hydrolysis of the beta subunit; the gamma subunit is resistant to most proteases. Trypsin clearly distinguishes between the nonactivated and activated conformers of phosphorylase kinase, in that the beta subunit in phosphorylated enzyme, as opposed to nonphosphorylated enzyme, is markedly protected from tryptic attack. In contrast, only a small difference in the rates of proteolysis of the alpha subunit in phosphorylated and nonphosphorylated enzyme is seen, even when a protease is used that is highly selective for the alpha subunit, such as chymotrypsin or endoproteinase Arg C. Incubation of nonphosphorylated phosphorylase kinase with either Mg2+ or Ca2+, which are activating cations, also protects the beta subunit from tryptic hydrolysis, whereas Mn2+, which inhibits the kinase activity, has little effect on proteolysis. The allosteric activator ADP also causes the beta subunit to become refractory to trypsin and mimics the effects of phosphorylation. Similar effector-induced conformational changes in the beta subunit are also observed with enzyme in which the alpha subunit has previously been selectively destroyed. These data indicate that activation of phosphorylase kinase by dissimilar mechanisms is associated with a conformational change in the enzyme's beta subunit that is detectable by trypsin and confirm earlier studies from this laboratory employing a chemical cross-linker as a conformational probe for activated and nonactivated conformers of the enzyme (Fitzgerald, T. J., and Carlson, G. M. (1984) J. Biol. Chem. 259, 3266-3274).  相似文献   

20.
Phosphorylase kinase was purified (110-fold) from bovine stomach smooth muscle by a procedure involving DEAE-cellulose chromatography, ammonium sulfate fractionation and glycerol density ultracentrifugation. On sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) the final enzyme preparation shows a single protein band of 43 kDa. The purified protein exhibits a close similarity with bovine aortic actin, as revealed by amino acid analysis and sequencing of a tryptic decapeptide fragment, although it differs widely from actin in several respects. In our effort to separate phosphorylase kinase activity from the 43 kDa protein we used a variety of chromatographic procedures, but in all cases the catalytic activity (when eluted) was accompanied by the 43 kDa protein band. Bovine stomach phosphorylase kinase exhibits an apparent molecular mass of 950 kDa, it shows a low Vmax value for phosphorylase b (85 nmol.min-1.mg-1), a pH 6.8/8.2 activity ratio of 0.23, it has an absolute requirement for Ca2+ and it is activated 1.8-fold by Ca2+/calmodulin. Furthermore, the protein kinase activity is neither inhibited by antibodies against rabbit skeletal muscle phosphorylase kinase nor activated by protein phosphorylation. These results suggest that bovine stomach phosphorylase kinase is tightly bound to an aggregate of actin-like molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号