首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Products formed from the lactoperoxidase (LPO) catalyzed oxidation of thiocyanate ion (SCN-) with hydrogen peroxide (H2O2) have been studied by 13C-NMR at pH 6 and pH 7. Ultimate formation of hypothiocyanite ion (OSCN-) as the major product correlates well with the known optical studies. The oxidation rate of SCN- appears to be greater at pH < or = 6.0. At [H2O2]/[SCN-] ratios of < or = 0.5, OSCN- is not formed immediately, but an unidentified intermediate is produced. At [H2O2]/[SCN-] > 0.5, SCN- appears to be directly oxidized to OSCN-. Once formed, OSCN- slowly degrades over a period of days to carbon dioxide (CO2), bicarbonate ion (HCO3-), and hydrogen cyanide (HCN). An additional, previously unrecognized product also appears after formation of OSCN-. On the basis of carbon-13 chemical shift information this new species is suggested to result from rearrangement of OSCN- to yield the thiooxime isomer, SCNO- or SCNOH.  相似文献   

2.
Horseradish peroxidase-catalysed oxidation of thiocyanate by hydrogen peroxide has been studied by 15N-NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pH values. The extent of the oxidation and the identity of the oxidized product of the thiocyanate has been investigated in the SCN-/H2O2/HRP system and compared with the corresponding data on the SCN-/H2O2/LPO system. The NMR studies show that (SCN)2 is the oxidation product of thiocyanate in the SCN-/H2O2/HRP system, and its formation is maximum at pH less than or equal to 4 and that the oxidation does not take place at pH greater than or equal to 6. Since thiocyanate does not bind to HRP at pH greater than or equal to 6 (Modi et al. (1989) J. Biol. Chem. 264, 19677-19684), the binding of thiocyanate to HRP is considered to be a prerequisite for the oxidation of thiocyanate. It is further observed that at [H2O2]/[SCN-] = 4, (SCN)2 decomposes very slowly back to thiocyanate. The oxidation product of thiocyanate in the SCN-/H2O2/LPO system has been shown to be HOSCN/OSCN- which shows maximum inhibition of uptake by Streptococcus cremoris 972 bacteria when hydrogen peroxide and thiocyanate are present in equimolar amounts (Modi et al. (1991) Biochemistry 30, 118-124). However, in case of HRP no inhibition of oxygen uptake by this bacteria was observed. Since thiocyanate binds to LPO at the distal histidine while to HRP near 1- and 8-CH3 heme groups, the role of distal histidine in the activity of SCN-/H2O2/(LPO, HRP) systems is indicated.  相似文献   

3.
Oxidation of chloride and thiocyanate by isolated leukocytes   总被引:8,自引:0,他引:8  
Peroxidase-catalyzed oxidation of chloride (Cl-) and thiocyanate (SCN-) was studied using neutrophils from human blood and eosinophils and macrophages from rat peritoneal exudates. The aims were to determine whether Cl- or SCN- is preferentially oxidized and whether leukocytes oxidize SCN- to the antimicrobial oxidizing agent hypothiocyanite (OSCN-). Stimulated neutrophils produced H2O2 and secreted myeloperoxidase. Under conditions similar to those in plasma (0.14 M Cl-, 0.02-0.12 mM SCN-), myeloperoxidase catalyzed the oxidation of Cl- to hypochlorous acid (HOCl), which reacted with ammonia and amines to yield chloramines. HOCl and chloramines reacted with SCN- to yield products without oxidizing activity, so that high SCN- blocked accumulation of chloramines in the extracellular medium. Under conditions similar to those in saliva and the surface of the oral mucosa (20 mM Cl-, 0.1-3 mM SCN-), myeloperoxidase catalyzed the oxidation of SCN- to OSCN-, which accumulated in the medium to concentrations of up to 40-70 microM. Sulfonamide compounds increased the yield of stable oxidants to 0.2-0.3 mM by reacting with OSCN- to yield derivatives analogous to chloramines. Stimulated eosinophils produced H2O2 and secreted eosinophil peroxidase, which catalyzed the oxidation of SCN- to OSCN- regardless of Cl- concentration. Stimulated macrophages produced H2O2 but had low peroxidase activity. OSCN- was produced when SCN- was 0.1 mM or higher and myeloperoxidase, eosinophil peroxidase, or lactoperoxidase was added. The results indicate that SCN- rather than Cl- may be the physiologic substrate (electron donor) for eosinophil peroxidase and that OSCN- may contribute to leukocyte antimicrobial activity under conditions that favor oxidation of SCN- rather than Cl-.  相似文献   

4.
The peroxidase-catalyzed oxidation of SCN- by H2O2 is an important in vivo reaction because it limits the accumulation of toxic H2O2 and provides significant concentrations of the antimicrobial agents, HOSCN and OSCN-. Data presented in this report suggest that the reaction: (Formula: see text) is in a state of dynamic equilibrium in vivo. Since OSCN- can form the weak acid HOSCN (pKa = 5.3), the equilibrium constant expression (Kox) for thiocyanate peroxidation is dependent on the concentration of hydrogen ions as well as the concentrations of H2O2, SCN-, HOSCN, OSCN- and water, and on the HOSCN ionization constant, Ka: (Formula: see text). The concentration of water is assumed to be constant and unaffected by the other components and is omitted from the Kox equation. The value of Kox was estimated from in vitro data to be 3.7 X 10(3) M-1 (S.D. = 0.8 X 10(3) M-1, n = 8). Using this value for Kox and observations of salivary concentrations of SCN- and HOSCN + OSCN- from several previous reports, the equilibrium concentrations of H2O2 in whole saliva were calculated to range from 8 to 13 microM. This range is consistent with reported estimates of 10 microM as the hydrogen peroxide tolerance limit for human cells.  相似文献   

5.
A steady-state kinetic analysis was made of thiocyanate (SCN-) oxidation catalyzed by human peroxidase (SPO) isolated from parotid saliva. For comparative purposes, bovine lactoperoxidase (LPO) was also studied. Both enzymes followed the classical Theorell-Chance mechanism under the initial conditions [H2O2] less than 0.2mM, [SCN-] less than 10mM, and pH greater than 6.0. The pH-independent rate constants (k1) for the formation of compound I were estimated to be 8 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 5 X 10(6) M-1 s-1 (SD = 1, n = 11) for SPO. The pH-independent second-order rate constants (k4) for the oxidation of thiocyanate by compound I were estimated to be 5 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 9 X 10(6) M-1 s-1 (SD = 2, n = 11) for SPO. Both enzymes were inhibited by SCN- at pH less than 6. The pH-independent equilibrium constant (Ki) for the formation of the inhibited enzyme-SCN- complex was estimated to be 24 M-1 (SD = 12, n = 8) for LPO and 44 M-1 (SD = 4, n = 10) for SPO. An apparent pH dependence of the estimated values for k4 and Ki for both LPO and SPO was consistent with a mechanism based on assumptions that protonation of compound I was necessary for the SCN- peroxidation step, that a second protonation of compound I gave an inactive form, and that the inhibited enzyme-SCN- complex could be further protonated to give another inactive form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Peroxidation of SCN- to OSCN-, catalysed by myeloperoxidase and lactoperoxidase, was studied. The rate of this reaction showed sharp optima between pH 5 and 7.5, the position of which is determined by the concentrations of both SCN- and H2O2. At low pH values, both SCN- and H+ inhibited myeloperoxidase and lactoperoxidase competitively with respect to H2O2. The inhibition constants of SCN- for myeloperoxidase and lactoperoxidase (2 and 6 mM, respectively) are independent of pH. For these enzymes a Ki for H+ of 1 microM was found that corresponded to an ionisable group on the enzymes (pKa = 6) which controls the enzymic activity. A kinetic expression is proposed that explains most of the data. The physiological consequences of the corresponding mechanism are discussed.  相似文献   

7.
Chronic respiratory infections in cystic fibrosis result from CFTR channel mutations but how these impair antibacterial defense is less clear. Airway host defense depends on lactoperoxidase (LPO) that requires thiocyanate (SCN-) to function and epithelia use CFTR to concentrate SCN- at the apical surface. To test whether CFTR mutations result in impaired LPO-mediated host defense, CF epithelial SCN- transport was measured. CF epithelia had significantly lower transport rates and did not accumulate SCN- in the apical compartment. The lower CF [SCN-] did not support LPO antibacterial activity. Modeling of airway LPO activity suggested that reduced transport impairs LPO-mediated defense and cannot be compensated by LPO or H2O2 upregulation.  相似文献   

8.
The reaction of nitrite (NO2-) with horseradish peroxidase and lactoperoxidase was studied. Sequential mixing stopped-flow measurements gave the following values for the rate constants of the reaction of nitrite with compounds II (oxoferryl heme intermediates) of horseradish peroxidase and lactoperoxidase at pH 7.0, 13.3 +/- 0.07 mol(-1) dm3 s(-1) and 3.5 +/- 0.05 x 10(4) mol(-1) dm3 s(-1), respectively. Nitrite, at neutral pH, influenced measurements of activity of lactoperoxidase with typical substrates like 2,2'-azino-bis[ethyl-benzothiazoline-(6)-sulphonic acid] (ABTS), guaiacol or thiocyanate (SCN-). The rate of ABTS and guaiacol oxidation increased linearly with nitrite concentration up to 2.5-5 mmol dm(-3). On the other hand, two-electron SCN- oxidation was inhibited in the presence of nitrite. Thus, nitrite competed with the investigated substrates of lactoperoxidase. The intermediate, most probably nitrogen dioxide (*NO2), reacted more rapidly with ABTS or guaiacol than did lactoperoxidase compound II. It did not, however, effectively oxidize SCN- to OSCN-. NO2- did not influence the activity measurements of horseradish peroxidase by ABTS or guaiacol method.  相似文献   

9.
10.
Because of the important biological functions of peroxidases, there is growing interest in the measurement of their concentrations in various secretions. At present, there is no standard method which allows for comparisons in reported activities. This report describes procedures which can be used to measure peroxidase enzyme concentrations by commonly employed assays. Regression equations have been determined which can be used to calculate concentrations of bovine lactoperoxidase (LPO), human salivary peroxidase (SPO), and human myeloperoxidase (MPO) from activities measured with the following donors: pyrogallol, guaiacol, 2,2'-azinobis(3-ethylbenzylthiazoline-6-sulfonic acid), and thiocyanate (SCN-). The peroxidation rates of these donors depend upon the concentrations of hydrogen peroxide (H2O2) used in the individual assays and thus, for accurate, reproducible results, these concentrations must be carefully controlled. The SCN- normally present in human saliva will reduce observed reaction rates by simple competition kinetics in the ABTS, guaiacol and pyrogallol assays and will increase the rates observed when Cl- is used as a donor in NBS assay for MPO. Therefore, SCN- must be removed from saliva samples prior to peroxidase activity determination by all assays except the thionitrobenzoic acid (NBS) assay. LPO cannot be used as a standard for either SPO or MPO because the specific activities of LPO, SPO, and MPO are significantly different.  相似文献   

11.
Components of the lactoperoxidase system were measured during incubation in Isosensitest broth, with enzymatic (glucose oxidase, GO) or chemical (sodium carbonate peroxyhydrate, SCP) means to generate H2O2. When low levels of thiocyanate (SCN-) were used in the GO system, H2O2 was detected and lactoperoxidase (LP) was inactivated when SCN- was depleted. With 10-fold higher SCN-, LP remained active and H2O2 was not detectable. The oxidation product of the LP reaction, most likely hypothiocyanite, was present in low concentrations. When SCP was used for the immediate generation of H2O2 in a system employing low SCN-, half the LP activity was lost within minutes but thereafter it remained stable. Low concentrations of oxidation product were measured and H2O2 was not detected during the course of the experiment. At high SCN- levels, relatively high concentrations of oxidation product were produced immediately, with H2O2 undetectable. The results suggest that the final product of the LP reaction depends on the method of H2O2 generation and the relative proportions of the substrates. Antibacterial activity of the two LPS was tested against an enterotoxigenic strain of Escherichia coli. Both systems showed bactericidal activity within 4 h incubation at 37 degrees C.  相似文献   

12.
We investigated the potential role of the co-substrate, thiocyanate (SCN-), in modulating the catalytic activity of myeloperoxidase (MPO) and other members of the mammalian peroxidase superfamily (lactoperoxidase (LPO) and eosinophil peroxidase (EPO)). Pre-incubation of SCN- with MPO generates a more complex biological setting, because SCN- serves as either a substrate or inhibitor, causing diverse impacts on the MPO heme iron microenvironment. Consistent with this hypothesis, the relationship between the association rate constant of nitric oxide binding to MPO-Fe(III) as a function of SCN- concentration is bell-shaped, with a trough comparable with normal SCN- plasma levels. Rapid kinetic measurements indicate that MPO, EPO, and LPO Compound I formation occur at rates slower than complex decay, and its formation serves to simultaneously catalyze SCN- via 1e- and 2e- oxidation pathways. For the three enzymes, Compound II formation is a fundamental feature of catalysis and allows the enzymes to operate at a fraction of their possible maximum activities. MPO and EPO Compound II is relatively stable and decays gradually within minutes to ground state upon H2O2 exhaustion. In contrast, LPO Compound II is unstable and decays within seconds to ground state, suggesting that SCN- may serve as a substrate for Compound II. Compound II formation can be partially or completely prevented by increasing SCN- concentration, depending on the experimental conditions. Collectively, these results illustrate for the first time the potential mechanistic differences of these three enzymes. A modified kinetic model, which incorporates our current findings with the mammalian peroxidases classic cycle, is presented.  相似文献   

13.
S Modi  D V Behere  S Mitra 《Biochemistry》1989,28(11):4689-4694
The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.  相似文献   

14.
Lactoperoxidase is an enzyme that contributes to the antimicrobial defense in secretory fluids and that has attracted interest as a potential biopreservative for foods and other perishable products. Its antimicrobial activity is based on the formation of hypothiocyanate (OSCN-) from thiocyanate (SCN-), using H2O2 as an oxidant. To gain insight into the antibacterial mode of action of the lactoperoxidase enzyme system, we generated random transposon insertion mutations in Escherichia coli MG1655 and screened the resultant mutants for an altered tolerance of bacteriostatic concentrations of this enzyme system. Out of the ca. 5,000 mutants screened, 4 showed significantly increased tolerance, and 2 of these had an insertion, one in the waaQ gene and one in the waaO gene, whose products are involved in the synthesis of the core oligosaccharide moiety of lipopolysaccharides. Besides producing truncated lipopolysaccharides and displaying hypersensitivity to novobiocin and sodium dodecyl sulfate (SDS), these mutants were also shown by urea-SDS-polyacrylamide gel electrophoresis analysis to have reduced amounts of porins in their outer membranes. Moreover, they showed a reduced degradation of p-nitrophenyl phosphate and an increased resistance to ampicillin, two indications of a decrease in outer membrane permeability for small hydrophilic solutes. Additionally, ompC and ompF knockout mutants displayed levels of tolerance to the lactoperoxidase system similar to those displayed by the waa mutants. These results suggest that mutations which reduce the porin-mediated outer membrane permeability for small hydrophilic molecules lead to increased tolerance to the lactoperoxidase enzyme system because of a reduced uptake of OSCN-.  相似文献   

15.
The lactoperoxidase-catalyzed oxidation of thiocyanate (SCN-) was studied in the pH range 3-8. The ultraviolet spectra of the oxidation products, the hypothiocyanite ion, OSCN- (at pH 8) and hypothiocyanous acid, HOSCN (at pH 3), were recorded. The absorbance maxima for OSCN- and HOSCN were observed at 220 and 240 nm, respectively. The extinction coefficients for OSCN- and HOSCN were determined to be 3870 (at 220 nM) and 95 M-1 X cm-1 (at 240 nM), respectively. Pure solutions of OSCN- (at pH 8) and HOSCN (at pH 3) were stable, but the mixtures of these two species at intermediate pH values were unstable. The decomposition could be divided into two periods, an initial period of rapid increase in oxidizing equivalents and a second period of decomposition. Decomposition during the second period followed first-order kinetics, and the pH-dependence of the apparent first-order rate constant was consistent with a decomposition mechanism which involved HOSCN. The first-order rate constant for this step was estimated to be 6 X 10(-3) s-1 at 37 degrees C.  相似文献   

16.
Peroxidases catalyze the oxidation of nitrite to nitrate in the presence of hydrogen peroxide. Two pathways may occur: one entailing the intermediate formation of NO(2) and the other implying the generation of peroxynitrite. The products of nitrite (NO(2) (-) ) oxidation by salivary peroxidase (SPO) and commercial bovine lactoperoxidase (LPO) are studied by utilizing an electrochemical assay that allows the direct, continuous monitoring of NO and/or NO(2) and by HPLC to assess nitrates at the end of the reaction. Dialyzed saliva and LPO, in the presence of H(2) O(2) , convert nitrite into nitrate and form some NO, with a molar ratio of 10(3) . In our experimental conditions, no NO(2) was detectable among the products of nitrite oxidation. SCN(-) inhibits NO formation and so does I(-) , although at higher concentrations. No effects are observed with Cl(-) or Br(-) . We conclude that SPO and LPO transform NO(2) (-) into nitrate-forming small amounts of NO in the presence of H(2) O(2) as an intermediate or a by-product, synthesized through the peroxynitrite pathway.  相似文献   

17.
Thiocyanate catalyzes myeloperoxidase-initiated lipid oxidation in LDL   总被引:1,自引:0,他引:1  
There is evidence that LDL oxidation may render the lipoprotein atherogenic. The myeloperoxidase-hydrogen peroxide (MPO/H2O2) system of activated phagocytes may be involved in this process. Chloride is supposed to be the major substrate for MPO, generating reactive hypochlorous acid (HOCl), modifying LDL. The pseudo-halide thiocyanate (SCN-) has been shown to be a suitable substrate for MPO, forming reactive HOSCN/SCN*. As relatively abundant levels of SCN- are found in plasma of smokers--a well-known risk group for cardiovascular disease--the ability of SCN- to act as a catalyst of LDL atherogenic modification by MPO/H2O2 was tested. Measurement of conjugated diene and lipid hydroperoxide formation in LDL preparations exposed to MPO/H2O2 revealed that SCN- catalyzed lipid oxidation in LDL. Chloride did not diminish the effect of SCN- on lipid oxidation. Surprisingly, SCN inhibited the HOCl-mediated apoprotein modification in LDL. Nitrite--recently found to be a substrate for MPO--showed some competing properties. MPO-mediated lipid oxidation was inhibited by heme poisons (azide, cyanide) and catalase. Ascorbic acid was the most effective compound in inhibiting the SCN- -catalyzed reaction. Bilirubin showed some action, whereas tocopherol was ineffective. When LDL oxidation was performed with activated human neutrophils, which employ the MPO pathway, SCN- catalyzed the cell-mediated LDL oxidation. The MPO/H2O2/SCN- system may have the potential to play a significant role in the oxidative modification of LDL--an observation further pointing to the link between the long-recognized risk factors of atherosclerosis: elevated levels of LDL and smoking.  相似文献   

18.
19.
We report that a lactoperoxidase (LPO) metabolite derived from nitrite (NO2-) catalyses one-electron oxidation of biological electron donors and antioxidants such as NADH, NADPH, cysteine, glutathione, ascorbate, and Trolox C. The radical products of the reaction have been detected and identified using either direct EPR or EPR combined with spin trapping. While LPO/H2O2 alone generated only minute amounts of radicals from these compounds, the yield of radicals increased sharply when nitrite was also present. In aerated buffer (pH 7) the nitrite-dependent oxidation of NAD(P)H by LPO/H2O2 produced superoxide radical, O2*-, which was detected as a DMPO/*O2H adduct. We propose that in the LPO/H2O2/NO2-/biological electron donor systems the nitrite functions as a catalyst because of its preferential oxidation by LPO to a strongly oxidizing metabolite, most likely a nitrogen dioxide radical *NO2, which then reacts with the biological substrates more efficiently than does LPO/H2O2 alone. Because both nitrite and peroxidase enzymes are ubiquitous our observations point at a possible mechanism through which nitrite might exert its biological and cytotoxic action in vivo, and identify some of the physiological targets which might be affected by the peroxidase/H2O2/nitrite systems.  相似文献   

20.
The interaction of aromatic donor molecules with lactoperoxidase (LPO) was studied using 1H-NMR and optical difference spectroscopy techniques. pH dependence of substrate proton resonance line-widths indicated that the binding was facilitated by protonation of an amino acid residue (with pKa of 6.1) which is presumably a distal histidine. Dissociation constants evaluated from both optical difference spectroscopy and 1H-NMR relaxation measurements were found to be an order of magnitude larger than those for binding to horse radish peroxidase (HRP), indicating relatively weak binding of the donors to LPO. The dissociation constants evaluated in presence of excess of I- and SCN- showed a considerable increase in their values, indicating that the iodide and thiocyanate ions compete for binding at the same site. The dissociation constant of the substrate binding was, however, not affected by cyanide binding to the ferric centre of LPO. All these results indicate that the organic substrates bind to LPO away from the ferric center. Comparison of the dissociation constants between the different substrates suggested that hydrogen bonding of the donors with the distal histidine amino acid, and hydrophobic interaction between the donors and the active site contribute significantly towards the associating forces. Free energy, entropy and enthalpy changes associated with the LPO-substrate equilibrium have been evaluated. These thermodynamic parameters were found to be all negative and relatively low compared to those for binding to HRP. The distances of the substrate protons from the ferric center were found to be in the range 9.4-11.1 A which are 2-3 A larger than those reported for the HRP-substrate complexes. These structural informations suggest that the heme in LPO may be more deeply buried in the heme crevice than that in the HRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号