首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pyruvate-to-ethanol pathway in Entamoeba histolytica is unusual when compared with most investigated organisms. Pyruvate decarboxylase (EC 4.1.1.1), a key enzyme for ethanol production, is not found. Pyruvate is converted into acetyl-CoA and CO2 by the enzyme pyruvate synthase (EC 1.2.7.1), which has been demonstrated previously in this parasitic amoeba. Acetyl-CoA is reduced to acetaldehyde and CoA by the enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10) at an enzyme activity of 9 units per g of fresh cells with NADH as a reductant. Acetaldehyde is further reduced by either a previously identified NADP+-linked alcohol dehydrogenase or by a newly found NAD+-linked alcohol dehydrogenase at an enzyme activity of 136 units per g of fresh cells. Ethanol is identified as the product of soluble enzymes of amoeba acting on pyruvate or acetyl-CoA. This result is confirmed by radioactive isotopic, spectrophotometric and gas-chromatographic methods.  相似文献   

2.
Effects of insulin on cardiac lysosomes and protein degradation   总被引:3,自引:0,他引:3  
Hearts perfused in the absence of added insulin had 1) accelerated rates of protein degradation, as assessed by release of phenylalanine and tyrosine; 2) increased rates of release of seven other amino acids; 3) decreased lysosomal latency and sedimentable lysosomal enzyme activity; 4) increased numbers of autophagic vacuoles in cardiac muscle cells; and 5) decreased activity of beta-N-acetylglucosaminidase in dense lysosomes (1.06-1.09 g/ml), as compared to hearts perfused in the presence of the hormone. After 3 h of perfusion in the absence of insulin, the changes that developed in protein degradation, lysosomal latency, and sedimentability, and in enzyme activity in dense lysosomes, were reversed by insulin addition during 90 min of subsequent perfusion. These studies suggest a role for insulin in controlling the activity of the lysosomal system and the involvement of this system in protein degradation, particularly in insulin-deprived tissue.  相似文献   

3.
Five ribonuclease activities, separable by polyacrylamide gel electrophoresis, have been detected in erythroid bone marrow cells from anaemic rabbits. Their intracellular distribution has been investigated and compared with that of the ribonucleases in reticulocytes. Both the acid and alkaline ribonuclease activities of reticulocytes are much lower (30--50 fold) than those of bone marrow erythroid cells. The most marked decrease in enzyme activity occurs in the fractions containing ribosomes and mitochondria plus lysosomes. In these subcellular organelles there was also a qualitative change in the ribonuclease electrophoretic pattern, whereas the cytosol enzymes of marrow erythroid cells and reticulocytes remained largely unchanged. Several ribonucleases released from reticulocyte membranes with urea were similar to those present in the lysosomal plus mitochondrial fraction, as shown by detection of enzyme activity after polyacrylamide gel electrophoresis. The decline in ribonuclease activity was found to begin in the orthochromatic cells, which have a highly condensed nucleus and are no longer active in DNA and RNA synthesis, and to coincide with a decrease in acid phosphatase activity and loss of lysosomes.  相似文献   

4.
Summary Treatment of cultured HeLa cells with 5 mM sodium butyrate causes an inhibition of growth as well as extensive chemical and morphological differentiation. Lysosomal enzyme activity changes have been associated with both normal and neoplastic growth as well as many aspects of the neoplastic process. The comparative ultrastructural results show that the butyrate-treated cells have a more extensive internal membraneous system than the untreated cells, whereas other organelles seem unaffected by the butyrate treatment. Methods for the histochemical localization of lysosomal acid phosphatase show a twofold increase in particulate reaction product in the butyrate-treated HeLa cells. Isolation of lysosomes followed by a comparative enzyme analysis shows a two to three fold increase in acid phosphatase activity per cell after 24 h of butyrate treatment, as well as three to four fold increase in β-glucuronidase activity. These increases reverse within 24 h of removal of the butyrate from the culture medium. These results as interpreted suggest that butyrate treatment may be preventing sublethal autolysis by arresting the leakage of the lysosomal enzymes from the lysosome into the cytosol and thus allowing the cell to chemically and morphologically differentiate. This work was supported by National Institute of Health Grant HD 14085-03.  相似文献   

5.
An acid ribonuclease has been purified from HeLa cell lysosomes. The specific activity of the RNase in lysosomes is 8-fold higher than that in nuclei and 15-fold higher than that in the postlysosomal fraction. The purified enzyme showed no detectable DNase, phosphodiesterase, phosphatase, or alkaline RNase activity. The acid RNase binds to Con A-agarose and is inferred to be a glycoprotein. It has a low isoelectric point at pH 3.0 to 3.5, and the optimal pH for activity is between 5.0 and 5.5. The enzyme requires no divalent cation for optimal activity and is totally inhibited by 1 mM Cu2+ or Hg2+. Monovalent cations including Na+, K+, and NH4+ stimulate the activity in low ionic strength buffer. The enzyme degrades rRNA faster than tRNA, and tRNA faster than poly(U); poly(A) and poly(C) are highly resistant. The products from rRNA are mostly oligonucleotides with 3'-phosphate ends. An acid RNase is also present in the lysosomes of L-cells grown in a medium free of serum; it is probably identical to the one described here.  相似文献   

6.
Changes in ultrastructures and in enzyme activities were investigated electron microscopically, cytochemically and biochemically when mouse myeloid leukemia cells, Ml cell line, successfully differentiated to normal macrophages after incubation with a conditioned medium harvested from secondary embryo fibroblasts, or a lipopolysaccharide from Salmonella typhosa. The number of mitochondria increased significantly accompanied by the enhanced activity of cytochrome oxidase per cell, although the activity in each mitochondrion remained unchanged. The rough-surfaced endoplasmic reticulum elongated and often exhibited a concentrically multilayered lamellae. Glucose-6-phosphatase activity, a marker enzyme for the endoplasmic reticulum, also increased. Primary lysosomes were newly formed where acid phosphatase activity was positively demonstrated. Ten-nm cytoplasmic microfilaments, mainly forming bundles, and other microfilaments less than 6 nm wide were formed newly and abundant. Budding of type C viruses from the plasma membranes was reduced strikingly. Another established cell line, Mm-1, which spontaneously differentiated from the Ml cell line, was characterized completely by a macrophage, in which azurophilic granules (primary lysosomes), secondary lysosomes possessing strong activity of acid phosphatase and 10-nm microfilaments were most remarkable. These non-transplantable Mm-1 cells sometimes exhibited budding of viruses.  相似文献   

7.
Cytochemical investigations have associated acid inorganic trimetaphosphatase (TMPase) activity with the lysosomes of certain cell types. We have used the modified staining technique of Berg to show that this enzyme activity is present in normal mononuclear phagocytes and macrophage cell lines. We have found this enzyme activity to be present in murine RAW264 macrophages, in human U937 macrophages, in normal human blood monocytes, and in guinea pig peritoneal macrophages. All of the RAW264 and U937 macrophages showed intense TMPase activity. Many of the human monocytes and most of the guinea pig macrophages were labeled by this method. The reaction product was associated with the lysosomes of these cell types. The lysosomal staining-pattern was similar to that of acid phosphatase. Differences with regard to Golgi staining were noted. This indicates that TMPase is a lysosomal enzyme of mammalian macrophages. The distinction between TMPase and acid phosphatase activity has been demonstrated by measuring the pH optimum of each enzyme. Using substrates identical to those of the ultrastructural cytochemistry, we show that the pH optimum of TMPase is 4.0 and that of acid phosphatase is 5.0. The enzymatic activities are therefore ultrastructurally and biochemically distinct. Following phagocytosis of latex, yeast (Saccharomyces cerevisiae), or Corynebacterium parvum, TMPase has been found to be associated with phagosomes. This enzyme may take part in the degradation of phagocytosed materials, particularly microorganisms which contain inorganic polyphosphates and metaphosphates.  相似文献   

8.
K Ono 《Histochemistry》1979,62(2):113-124
Ultrastructural localization of acid phosphatase activity was investigated in ultrathin (0.05 micron) and semithin (0.5 and 0.75 micron) sections of the small intestinal epithelial cells of adult rats. The results showed that the enzyme activity was localized on the membrane of microvilli, lateral cell membranes, lysosomes, the Golgi complex, and the GERL of Novikoff (a part of the smooth-surfaced endoplasmic reticulum located in close proximity to the inner Golgi saccules) of duodenal absorptive cells. The lysosomes contained within the duodenal and jejunal absorptive cells appeared to be mainly heterolysosomes rather than autolysosomes. The enzyme activity of absorptive cells was lower in the jejunum than in the duodenum, and was barely detectable except in the GERL and lysosomes of the ileum. The average numbers of lysosomes having a diameter of 0.2 approximately 1.0 microns, per cell profile in sections of 214 duodenal, 226 jejunal and 318 ileal epithelial cells were 8.9 +/- 0.189, 6.4 +/- 0.155 and 3.5 +/- 0.027 (mean +/- SE), respectively. From these results, it was assumed that both the Golgi apparatus and GERL produce some lysosomes in the duodenal and jejunal absorptive cells, but only GERL does so in the ileum. It was considered also that because of an unexpectedly high number of lysosomes containes within the epithelial absorptive cells of the proximal intestine of adult rats, these cells may possess the strong heterophagic, as well as absorptive capacity.  相似文献   

9.
To determine the integrity of lysosomes during their isolation from rat thyroid glands and their subsequent incubation at 37 degrees C, the sedimentability of lysosomal acid phosphatase and thyroglobulin (amount of undisrupted lysosomes) and the latency of sedimentable acid phosphatase (permeability of undisrupted lysosomes) were measured concomitantly. The following results were obtained: (a) During isolation of lysosomes in 0.25 M sucrose medium, mild homogenization of thyroid tissue or cholesterol addition did not modify the amount of undisrupted lysosomes but reduced their permeability. Homogenization in 0.5 M sucrose decreased both the amount and the permeability of undisrupted lysosomes. It also reduced their content of recently iodinated thyroglobulin (Tg). Cholesterol addition had no effect in 0.5 M sucrose medium. (b) During incubations at 37 degrees C of lysosomes, the amount of undisrupted lysosomes decreased progressively while their permeability increased. According to the incubation pH, the permeability of lysosomes prepared in 0.25 M sucrose was either more (pH 8) or less (pH 6) extensively increased than that of lysosomes prepared in 0.5 M sucrose. From these results, we concluded: (a) that isolation and incubation of the thyroid lysosomal fraction induce increased permeability of lysosomes prior to their complete disruption: (b) that recently formed lysosomes (high content of recently iodinated Tg) and aged lysosomes (low content of recently iodinated Tg) differ significantly. Recently formed lysosomes are more permeable, are stabilized by cholesterol and are more extensively disrupted in 0.5 M sucrose medium. During incubations, the permeabilities of these two classes of lysosomes are also differently affected by external pH.  相似文献   

10.
Kinetics of chloroquine and daunorubicin (DNR) uptake by cultured L cells (subline LSM) has been studied. With their constant concentrations in the medium the uptake of both chloroquine and DNR was characterized as a two phase process. Within 1.5-2 hours, these cells accumulated as much as 90 per cent of the total chloroquine and DNR amounts taken up during the whole incubation period. The segregation and accumulation of these substances took place in lysosomes. Chloroquine and DNR concentrations within lysosomes exceed those in the medium by 1100 and 5000 times, respectively. The chloroquine and DNR accumulation in lysosomes inhibited activities of some lysosomal hydrolases tested: cathepsins B and D, N-acetyl-beta, D-glucosaminidase and acid phosphatase. Unlike, the activity of acid lipase was not affected by chloroquine, and was sufficiently stimulated (by 55%) by DNR. The mechanism of inhibition of lysosomal enzymes by chloroquine and DNR is not yet known, although some suggestions are made. Possible consequences of lysosomal activity inhibition for cell metabolism are discussed in addition to a possible role of lysosomotropic agents as regulators of lysosomal functional activity.  相似文献   

11.
Summary The electron microscopical localization of acid phosphatase activity was investigated in ultra-thin and semi-thin sections of unvacuolated notochordal cells of chick embryos from stages 9 to 14 (as defined by Hamburger & Hamilton). At stage 9, many notochordal cells show a lightly positive reaction for acid phosphatase activity. Thereafter, the acid phosphatase-positive cells of the notochord increase in number and, at stage 14, the reaction products for the enzyme are distributed throughout almost all the cisternae of the nuclear envelope and a well-differentiated endoplasmic reticulum, the parallel cisternal and reticular parts of the Golgi complex, and various lysosomes in nearly all notochordal cells. In the cisternae of the nuclear envelope and endoplasmic reticulum, the acid phosphatase reaction products are in a fine granular form. In the outermost layer of the cisternal parts of the Golgi complex, faint lead deposits similar to those in the endoplasmic reticulum are found, but in other cisternal and reticular regions which may correspond to the GERL, considerable amounts of reaction products are present. Knob-like projections are also seen protruding from the reticular parts of the Golgi complex. These results suggest that, at least up to stage 14, the notochordal cells are actively synthesizing acid phosphatase which is directly transported from the endoplasmic reticulum to the Golgi complex. The enzyme may be accumulated by the Golgi complex from which primary lysosomes are formed. Furthermore, the pattern of the ultrastructural localization of acid phosphatase activity in embryonic notochordal cells of the chick differs from that of adult cells of other animals.  相似文献   

12.
The specific activity of alpha-mannosidase (EC 3.2.1.24) has been found to increase more than a thousandfold during development of the cellular slime mold, Dictyostelium discoideum. The enzyme accumulates in both spore and stalk cells. Studies with preferential inhibitors of macromolecular synthesis indicate that accumulation of alpha-mannosidase requires concomitant protein synthesis and prior ribonucleic acid synthesis. Control of the period of synthesis by the overall developmental program is demonstrated in two temporally deranged morphological mutants. alpha-Mannosidase is found in lysosomes of D. discoideum in association with other acid hydrolases which may be involved in metabolism of extracellular polysaccharide.  相似文献   

13.
N Pipan  M Sterle 《Histochemistry》1979,59(3):225-232
The activity of mitochondrial cytochrome oxidase and peroxisomal catalase in the phagolysosomes and apoptotic bodies of mucoid epithelial cells was analysed. Tissue from 2-6 day old mice was used. The activity of acid phosphatase in lysosomes was also estimated. Cytochrome oxidase was demonstrated in well-preserved mitochondria inside phagosomes. Mitochondria in cells exhibiting apoptotic death also show activity of cytochrome oxidase. The enzyme activity in swollen mitochondria ceases before the membranes of the cristae disappear completely. Apoptotic bodies are phagocytosed by sister mucoid cells and, later on, they are digested inside the cell. Phagosomes which contain already degraded mitochondria show still active catalase in sequestered peroxisomes. The acid phosphatase involved in degradation of phagocytosed material originates from endocytosed lysosomes and primary and secondary lysosomes which fuse with the membranes of phagosomes.  相似文献   

14.
Summary The amount and distribution of the lysosomal enzyme acid phosphatase in light- and dark-adapted eyes of the brackish-water annelid Nereis limnicola were studied by standard cytochemical techniques. Precipitate from the acid phosphatase reaction was observed in Golgi-endoplasmic reticulum-lysosomal complexes, primary lysosomes, and secondary lysosomes, formed by fusion of primary lysosomes with phagocytic and pinocytic vesicles containing products of presumed rhabdomeric degradation. The acid phosphatase reaction occurred in these organelles in both sensory and supportive cells of both light- and darkadapted ocelli. Secondary lysosomes were more abundant in sensory cells of illuminated ocelli than in those maintained in the dark. Sparse reaction product was found in Golgi cisternae, none in rough endoplasmic reticulum. We suggest that the increase of lysosomal activity in light-adapted eyes is correlated with the breakdown of photosensory microvilli upon exposure to light. A diagram of our interpretation of recycling of photoreceptoral membrane in N. limnicola is presented.  相似文献   

15.
Characterization of basal lysosomes in exocrine acinar cells   总被引:7,自引:0,他引:7  
Exocrine acinar cells possess a unique system of basally located lysosomes. Cytochemically, these lysosomes do not contain acid phosphatase, but react positively for trimetaphosphatase (C Oliver: J Histochem Cytochem 28:78, 1980). The present study extends the morphological and cytochemical characterization of these lysosomes in pancreatic, parotid, and exorbital lacrimal acinar cells from Sprague-Dawley rats and National Institutes of Health Swiss mice. The basal lysosomes are highly pleomoric in nature, and frequently appear as a system of anastomosing tubules of varying width. The lysosomes have a close morphological relationship with both the rough endoplasmic reticulum and mitochondria. In addition to trimetaphosphatase activity, the lysosomes are reactive for aryl sulfatase B, thiolacetic acid esterase, and cholinesterase. Since the cholinesterase activity could not be inhibited by specific inhibitors, this activity is most likely due to the presence of nonspecific esterases. The results of this study confirm the lysosomal nature of the basal lysosomes and underscore the necessity of using multiple enzyme activities to identify and characterize lysosomes.  相似文献   

16.
Summary The activity of mitochondrial cytochrome oxidase and peroxisomal catalase in the phagolysosomes and apoptotic bodies of mucoid epithelial cells was analysed. Tissue from 2–6 day old mice was used. The activity of acid phosphatase in lysosomes was also estimated. Cytochrome oxidase was demonstrated in well-preserved mitochondria inside phagosomes. Mitochondria in cells exhibiting apoptotic death also show activity of cytochrome oxidase. The enzyme activity in swollen mitochondria ceases before the membranes of the cristae disappear completely. Apoptotic bodies are phagocytosed by sister mucoid cells and, later on, they are digested inside the cell. Phagosomes which contain already degraded mitochondria show still active catalase in sequestered peroxisomes. The acid phosphatase involved in degradation of phagocytosed material originates from endocytosed lysosomes and primary and secondary lysosomes which fuse with the membranes of phagosomes.  相似文献   

17.
In order to study the intracellular localization of the proteolytic processing steps in the maturation of alpha-glucosidase and cathepsin D in cultured human skin fibroblasts we have used incubation with glycyl-L-phenylalanine-beta-naphthylamide (Gly-Phe-NH-Nap) as described by Jadot et al. [Jadot, M., Colmant, C., Wattiaux-de Coninck, S. & Wattiaux, R. (1984) Biochem. J. 219,965-970] for the specific lysis of lysosomes. When a homogenate of fibroblasts was incubated for 20 min with 0.5 mM Gly-Phe-NH-Nap, a substrate for the lysosomal enzyme cathepsin C, the latency of the lysosomal enzymes alpha-glucosidase and beta-hexosaminidase decreased from 75% to 10% and their sedimentability from 75% to 20-30%. In contrast, treatment with Gly-Phe-NH-Nap had no significant effect on the latency of galactosyltransferase, a marker for the Golgi apparatus, and on the sedimentability of glutamate dehydrogenase and catalase, markers for mitochondria and peroxisomes, respectively. The maturation of alpha-glucosidase and cathepsin D in fibroblasts was studied by pulse-labelling with [35S]methionine, immunoprecipitation, polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate and fluorography. When homogenates of labelled fibroblasts were incubated with Gly-Phe-NH-Nap prior to immunoprecipitation, 70-80% of all proteolytically processed forms of metabolically labelled alpha-glucosidase and cathepsin D was recovered in the supernatant. The earliest proteolytic processing steps in the maturation of alpha-glucosidase and cathepsin D appeared to be coupled to their transport to the lysosomes. Although both enzymes are transported via the mannose-6-phosphate-specific transport system, the velocity with which they arrived in the lysosomes was consistently different. Whereas newly synthesized cathepsin D was found in the lysosomes 1 h after synthesis, alpha-glucosidase was detected only after 2-4 h. When a pulse-chase experiment was carried out in the presence of 10 mM NH4Cl there was a complete inhibition of the transport of cathepsin D and a partial inhibition of that of alpha-glucosidase to the lysosomes. Leupeptin, an inhibitor of lysosomal thiol proteinases, had no effect on the transport of labelled alpha-glucosidase to the lysosomes. However, the early processing steps in which the 110-kDa precursor is converted to the 95-kDa intermediate form of the enzyme were delayed, a transient 105-kDa form was observed and the conversion of the 95-kDa intermediate form to the 76-kDa mature form of the enzyme was completely inhibited.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The specific activity of lipoxygenase from several strains of the zygomycete Mortierella varied from 1.02 to 2.02 microMol diene per min per mg protein). The enzyme equally used linoleic or arachidonic acid as a substrate. An increase in lipoxygenase activity was observed after adding corn oil to the culture medium. Tests with inhibitors having different chemical structures revealed that the lipoxygenase activity from Mortierella cells was inhibited only by esculetin, ethanol and nordihydroguaiaretic acid (NDGA). NDGA inhibited the enzyme in vitro (IC50 = 142 microM), but its addition in the exponential phase of growth activated the enzyme.  相似文献   

19.
Evidence of acid phosphatase in the cytoplasm as a distinct entity   总被引:1,自引:0,他引:1  
A study of subcellular acid phosphatase distribution in mammalian tissues shows that isozymes with specific functions are compartmentalized in the cells. The enzyme may be generalized into two types: type A and type B. They are shown by several means to be distinct entities. Type A is confined to the cytoplasm and is inhibited by Cu2+, HCHO, and the coupling agents (for enzyme staining) fast blue RR salt and fast Garnet GBC salt (newly discovered inhibitors), but is insensitive to fluoride and L-(+)-tartrate. Type B is localized in the organelles, presumably lysosomes, in both soluble form and membrane-bound form, with inhibitor sensitivity exactly opposite to that of type A enzyme. Types A and B consist of different sets of isozymes, with sensitivities to inhibitors resembling those observed with the crude extracts of subcellular fractions. Acid phosphatase that exhibits a phosphoryl transfer property was identified as type A enzyme. Type A enzyme has a slightly higher optimal pH and is inhibited by alloxan, whereas for type B, the addition of alloxan broadens the optimal pH to a higher range and elevates the activity of pH 7.4 from negligible to about 30-40% of that obtained under optimal conditions. The alloxan-mediated elevation of type B enzyme activity to this level at the physiological pH may be of considerable significance. Type B enzyme has a high affinity for metabolic intermediates and nucleotides, while type A has an extremely low affinity for these substrates. Cytoplasmic acid phosphatase (type A) is a significant enzyme population and its activity is not related to the lysosome density in the cells. Type A enzyme in the cytoplasm is thus shown to be an entity distinctly different from type B enzyme in the lysosomes. These findings suggest that the physiological functions of type A acid phosphatase, such as metabolic regulatory processes, merit further studies because of the phosphoryl transfer activity and cytoplasmic localization of the enzyme.  相似文献   

20.
Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号