首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidized protein hydrolase (OPH) preferentially degrades oxidatively damaged proteins in vitro and is widely distributed in various cells and tissues. The role of OPH in intact cells exposed to oxidative stress was examined. For this purpose, using COS-7, a cell line derived from African green monkey kidney, COS-7-OPH cells that stably overexpressed OPH were established. When COS-7-OPH cells were exposed to oxidative stress induced by H(2)O(2) and paraquat, accumulation of protein carbonyls in the cells was apparently lower than that of parental COS-7 cells, and COS-7-OPH cells were significantly resistant to the oxidative stress compared with parental COS-7 cells. The majority of overexpressed OPH in the cells was found to be located uniformly in cytosol, and its location was not altered by H(2)O(2)-induced oxidative stress. Above results indicate that OPH in intact cells plays a preventive role against oxidative stress and suggest that OPH relieves cells from accumulation of oxidatively damaged proteins.  相似文献   

2.
Oxidative stress is involved in asthma. This study assessed the carbonylation of sputum proteins in 23 uncontrolled adult asthmatic patients and 23 healthy controls. Carbonylated proteins (68 kDa and 53 kDa) were elevated in asthmatics when compared to controls and the 68-kDa carbonylated protein was significantly correlated with sputum eosinophilia. The kinetics of protein carbonylation in bronchoalveolar lavage fluid (BALF) were then examined in a mouse ovalbumin-induced allergic inflammation model. It was found that the carbonylation of various BALF proteins did not uniformly occur after challenge. The appearance of the 53-kDa carbonylated protein was limited within 24 h, while carbonylation of 68-kDa protein peaked at 48 h and was associated with BALF eosinophilia. Thus, it was demonstrated that the 68-kDa and 53-kDa proteins, corresponding to albumin and α1-antitrypsin, respectively, were specifically carbonylated in allergic inflammation in humans and in mice and that eosinophils may play a role in mediating carbonylation of albumin.  相似文献   

3.
Oxidative stress is often associated with etiology and/or progression of disease conditions, such as cancer, neurodegenerative diseases, and diabetes. At the cellular level, oxidative stress induces carbonylation of biomolecules such as lipids, proteins, and DNA. The presence of carbonyl-containing biomolecules as a hallmark of these diseases provides a suitable target for diagnostic detection. Here, a simple, robust method for detecting cellular aldehydes and ketones in live cells using a fluorophore is presented. A hydrazine-functionalized synthetic fluorophore serves as an efficient nucleophile that rapidly reacts with reactive carbonyls in the cellular milieu. The product thus formed exhibits a wavelength shift in the emission maximum accompanied by an increase in emission intensity. The photochemical characteristics of the fluorophore enable the identification of the fluorophore-conjugated cellular biomolecules in the presence of unreacted dye, eliminating the need for removal of excess fluorophore. Moreover, this fluorophore is found to be nontoxic and is thus appropriate for live cell analysis. Utility of the probe is demonstrated in two cell lines, PC3 and A549. Carbonylation resulting from serum starvation and hydrogen peroxide-induced stress is detected in both cell lines using fluorescence microscopy and a fluorescence plate reader. The fluorescent signal originates from carbonylated proteins and lipids but not from oxidized DNA, and the majority of the fluorescence signal (>60%) is attributed to fluorophore-conjugated lipid oxidation products. This method should be useful for detecting cellular carbonylation in a high-content assay or high-throughput assay format.  相似文献   

4.
Increased reactive oxygen species (ROS) and lipid peroxidation may be implicated in the pathogenesis of preeclampsia by causing cell (membrane) damage and impaired endothelial function. Carbonyl derivatives of proteins, or protein carbonyls, may be sensitive biomarkers of ROS-mediated damage. The aim of the study was to compare levels of protein carbonyls in plasma of preeclamptic, healthy pregnant and healthy nonpregnant women.

Plasma protein carbonyls were measured in 47 preeclamptic, 45 healthy pregnant and 22 healthy non-pregnant women by using a sensitive ELISA-method. ANOVA, the unpaired t-test and Pearson's correlation were used for statistical analysis.

Preeclamptic women had significantly higher plasma protein carbonyl levels than healthy pregnant women (P < 0.0001). Healthy pregnant women showed significantly higher protein carbonyl levels (P < 0.001) as compared to nonpregnant controls.

The higher levels of protein carbonyls as compared to nonpregnant controls suggest that increased oxygen free radical damage occurs in normal pregnancy and to a much higher extent in preeclampsia.  相似文献   

5.
Increased oxidative/nitrosative stress, resulting from generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) appears to play an important role in the inflammatory responses to atherosclerosis. By using MitoTracker Orange CM-H(2)TMRos, CM-H(2)DCFDA (DCF-DA), Dihydrorhodamine 123 (DHR123), DAF-FM, Dihydroethidium (DHE) and JC-1 alone or in all combinations of red and green probes, the present study was designed to monitor the ROS and RNS generation in acute exposure of single monocyte U937-derived macrophage to oxidized low density lipoprotein (Ox-LDL). Acute Ox-LDL (100 microg/ml) treatment increased time-dependently production of intracellular nitric oxide (NO), superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)), and decreased mitochondrial membrane potential (Deltapsi) in single cell. Pretreatment of aminoguanidine (an inhibitor of inducible nitric oxide synthase (iNOS), 10 microM) and vitamin C (an antioxidant agent, 100 microM) for 2h, reduced significantly the Ox-LDL-induced increase of NO and O2*-, and vitamin C completely inhibited increase of intracellular NO and O2*-. In contrast to aminoguanidine, Vitamin C pretreatment significantly prevented Ox-LDL-induced overproduction of NO and O2*- (P<0.01), indicating that antioxidant may be more effective in therapeutic application than iNOS inhibitor in dysfunction of ROS/RNS. By demonstrating a complex imbalance of ROS/RNS via fluorescent probes in acute exposure of single cell to Ox-LDL, oxidative/nitrosative stress might be more detected in the early atherosclerotic lesions.  相似文献   

6.
The yeast Saccharomyces cerevisiae cells had higher antioxidant enzyme activities under growth in ethanol than that in glucose as a carbon and energy source. The correlations between catalase activity and protein carbonyl level (r(2)=0.857), between catalase and glucose-6-phosphate dehydrogenase activities (r(2)=0.924) and between protein carbonyl levels and glucose-6-phosphate dehydrogenase activity (r(2)=0.988) under growth in ethanol were found. Growing in ethanol the strain deficient in cytosolic and peroxisomal catalases had 7.1-fold higher level of carbonyl proteins than that of wild-type strain. Our data suggest that in vivo catalases may protect glucose-6-phosphate dehydrogenase against oxidative inactivation.  相似文献   

7.
Using fluorescence correlation spectroscopy (FCS), we tested the feasibility of rapid detection of oxidative damage of mitochondrial DNA (mtDNA) in a small volume. The complete mtDNA genome was amplified by long polymerase chain reaction (LPCR), and the product was fluorescently labeled with an intercalating dye, YOYO-1. The fluorescence autocorrelation function was analyzed using a simple two-component model with the diffusion time of 0.21 ms for the LPCR primer and 18 ms for the mtDNA LPCR product. When human embryonic kidney 293 (HEK-293) cells were exposed to 0.4 mM H2O2, the fraction of the mtDNA LPCR product decreased significantly. In contrast, the fraction of the nuclear-encoded beta-globin LPCR product remained unchanged. The analysis time of FCS measurement was very short (5 min) compared with that of gel electrophoresis (3 h). Thus, FCS allowed the rapid detection of the vulnerability of mtDNA to oxidative stress within a small volume element at the subfemtoliter level in solution. These results suggest that the LPCR-FCS method can be used for epidemiological studies of diseases caused by mtDNA damage.  相似文献   

8.
9.
Oxidative stress causes damage to nucleic acids, membrane lipids and proteins. One striking effect is the metal-catalyzed, site-specific carbonylation of proteins. In the gram-positive soil bacterium Bacillus subtilis, the PerR-dependent specific stress response and the B-dependent general stress response act together to make cells more resistant to oxidative stress. In this study, we analyzed the carbonylation of cytoplasmic proteins in response to hydrogen peroxide stress in B. subtilis. Furthermore, we asked whether the B-dependent response to oxidative stress also confers protection against protein carbonylation. To monitor the amount and specificity of protein damage, carbonyls were derivatized with 2,4-dinitrophenylhydrazine, and the resulting stable hydrazones were detected by immunoanalysis of proteins separated by one- or two-dimensional gel electrophoresis. The overall level of protein carbonylation increased strongly in cells treated with hydrogen peroxide. Several proteins, including the elongation factors EF-G, TufA and EF-Ts, were found to be highly carbonylated. Induction of the peroxide specific stress response by treatment with sub-lethal peroxide concentrations, prior to exposure to otherwise lethal levels of peroxide, markedly reduced the degree of protein carbonylation. Cells starved for glucose also showed only minor amounts of peroxide-mediated protein carbonylation compared to exponentially growing cells. We could not detect any differences between wild-type and sigB cells starved for glucose or preadapted by heat treatment with respect to the amount or specificity of protein damage incurred upon subsequent exposure to peroxide stress. However, artificial preloading with proteins that are normally induced by B-dependent mechanisms resulted in a lower level of protein carbonylation when cells were later subjected to oxidative stress.Communicated by W. Goebel  相似文献   

10.
Protein arginine methyltransferases (PRMTs) play important roles in both normal physiology and human diseases. Deregulation of PRMT activity has been linked to several pathological states such as cancer and cardiovascular disorders. Herein, we report our work of designing and using new fluorescent reporters to perform single-step analysis of substrate binding and methylation by PRMT1. Both fluorescence intensity and anisotropy of the two reporters, R4-FL and H4-FL, were shown to effectively manifest enzyme-substrate interactions, highlighting their application in investigating PRMT inhibitors. In particular, the methylation process of R4-FL can be directly studied using fluorescence intensity readout. By combining the fluorescent measurement with radioactive analysis, we determined that AMI-1 inhibits PRMT1 activity through the mechanism of blocking peptide substrate binding.  相似文献   

11.
Protein nanoparticles (PNPs) that are nanostructured biomaterials with intrinsic biological function have been widely employed as three-dimensional nanobiomaterials for sensitive bioassays, MRI contrast, semiconductor devices, template for hybrid materials, etc., and stable and long-term maintenance of PNPs seems to be of crucial importance. We evaluated the stability of PNPs and the efficacy of lyophilization for the long-term stability of PNPs, especially using green fluorescent protein nanoparticles (gFPNPs) as a model PNP. Fluorescence intensities and TEM images of gFPNPs were analyzed to monitor their functional and structural stabilities. Unlike the green fluorescent protein monomers (eGFP) that were gradually inactivated in aqueous solution, gFPNP in the same aqueous solution retained the initial fluorescence activity and spherical nanoparticle structure even for 2 weeks at 4 °C. To ensure stable and long-term maintenance of gFPNPs, gFPNPs in aqueous solution were converted to the dried solid forms through lyophilization. It is notable that fluorescence activity and nanoparticle structure of gFPNPs that were lyophilized with both Tween 80 and sucrose were very stably maintained even for 10 weeks at various storage temperatures (−20 °C, 4 °C, 25 °C, and 37 °C). During the period of 10 weeks, the fluorescence of gFPNP was always more than 80% level of initial fluorescence at a wide range of temperature. Although this stability study was focused on gFPNPs, the developed optimal lyophilization conditions for gFPNPs can be applied in general to stable and long-term maintenance of many other PNP-derived biomaterials.  相似文献   

12.
Abstract

Objectives

This study was focused on the monitoring how the anti-inflammatory substance, N1-methylnicotinamide (MNA), could influence oxidation and glycooxidation stress markers in rats under conditions of streptozotocin (STZ)-induced diabetes mellitus.

Methods

Diabetes mellitus was induced in 60 male Wistar rats by intraperitoneal injection of STZ and after 7 days diabetic animals were allocated to five groups according to the dose of MNA administered for 7 weeks. The degree of DNA damage in lymphocytes, as well as advanced glycation endproducts (AGEs), protein carbonyls, lipid peroxides, and total antioxidant capacity (TEAC) in plasma were measured.

Results

Glycation damage to proteins (represented by AGEs level) was significantly increased in all diabetic groups compared to untreated non-diabetic animals. MNA did not affect TEAC of plasma in any group of diabetic rats. Supplementation of diabetic rats with MNA at the dose of 200 mg/kg resulted in decreased protein carbonyls (from 0.0818 ± 0.0091 to 0.0558 ± 0.0044 nmol/mg proteins; P < 0.05, n = 15) and DNA oxidation, reflected by the levels of 8-oxoG (0.6302 ± 0.085 vs. 0.9213 ± 0.108 8-oxoG/106 G; P < 0.05, n = 15), compared to untreated diabetic animals.

Discussion

Our results demonstrated that MNA at suitable concentrations could influence oxidative modifications of proteins and DNA.  相似文献   

13.
14.
Oxidative modifications in proteins can participate in the regulation of cellular functions and are frequently observed in numerous states of diseases. Albumin can undergo increased glycation during diabetes. An accumulation of oxidatively modified proteins in human mature adipocytes incubated with glycated albumin has previously been described. This study herein reports the identification of specifically carbonylated targets following separation of the cell proteins by 2D gels, Western blotting and mass spectrometry analyses. It identified eight oxidatively modified proteins, two of which (ACTB and Annexin A2) appeared as significantly more carbonylated in adipocytes treated with glycated albumin than with native albumin. Intracellular stress, evaluated in SW872 cell line, showed an impairment in the protective antioxidant action exerted by native BSA after the glycation of the protein. Decreased proteasome peptidase activities were found in glycated BSA-treated mature adipocytes. The data suggest an association of oxidative damage with the progression of diabetes disorders at the adipocytes level.  相似文献   

15.
Dimerumic acid (DMA) is contained in Monascus anka and Monascus pilosus fermented products. The purpose of this study was to evaluate the effect of DMA against salicylic acid (SA)- and tert-butylhydroperoxide (t-BHP)-induced oxidative stress and cytotoxicity in the liver, using rat liver microsomes and isolated rat hepatocytes. DMA was extracted from monascus-garlic-fermented extract using M. pilosus. In rat liver microsomes, 1 microM DMA decreased SA-induced lipid peroxidation but did not affect the production of the oxidative metabolite of SA via CYP. In isolated rat hepatocytes, 1 microM DMA decreased SA-induced lipid peroxidation and chemiluminescence (CL) generation and the intracellular glutathione-reduced form/oxidized form (GSH/GSSG) ratio in the presence of 1 microM DMA was higher than that without DMA; however, 100 microM DMA suppressed the leakage of lactate dehydrogenase (LDH). On the other hand, t-BHP-induced lipid peroxidation, CL generation, and LDH leakage were prevented by 100 microM DMA. Thus, DMA showed an antioxidative effect in hepatocytes and protected against hepatotoxicity by suppressing oxidative stress without affecting CYP enzymes.  相似文献   

16.
Oxidative stress is one of the main causes of myocardial injury, which is associated with cardiomyocyte death. Mitochondria play a key role in triggering the necrosis and apoptosis pathway of cardiomyocytes under oxidative stress. Although prohibitin (PHB) has been acknowledged as a mitochondrial chaperone, its functions in cardiomyocytes are poorly characterized. The present research was designed to investigate the cardioprotective role of PHB in mitochondria. Oxidative stress can increase the PHB content in mitochondria in a time-dependent manner. Overexpression of PHB in cultured cardiomyocytes by transfection of recombinant adenovirus vector containing PHB sense cDNA resulted in an increase of PHB in mitochondria. Compared with the non-transfection cardiomyocytes, PHB overexpression could protect the mitochondria from oxidative stress-induced injury. The mitochondria-mediated apoptosis pathway was consistently suppressed in PHB-overexpressed cardiomyocytes after hydrogen peroxide (H2O2) treatment, including a reduced change in mitochondrial membrane permeability transition and an inhibited release of cytochrome c from mitochondria to cytoplasma. As a result, the oxidative stress-induced cardiomyocyte apoptosis was suppressed. These data indicated that PHB protected the cardiomyocytes from oxidative stress-induced damage, and that increasing PHB content in mitochondria constituted a new therapeutic target for myocardium injury. XiaoHua Liu and Zhe Ren contributed equally to this work. ● Prohibitin is an evolutionarily conserved and ubiquitously expressed protein involved in mitochondrial structure, function, and inheritance whose function in cardiomyocyte is not known. In this study, we found oxidative stress could induce increased expression in cardiomyocytes and mitochondrial translocation of PHB, and PHB can protect against oxidative stress in cultured neonatal cardiomyocyte.  相似文献   

17.
Reduction of methionine sulfoxide (MetO) residues in proteins is catalyzed by methionine sulfoxide reductases A (MSRA) and B (MSRB), which act in a stereospecific manner. Catalytic properties of these enzymes were previously established mostly using low molecular weight MetO-containing compounds, whereas little is known about the catalysis of MetO reduction in proteins, the physiological substrates of MSRA and MSRB. In this work we exploited an NADPH-dependent thioredoxin system and determined the kinetic parameters of yeast MSRA and MSRB using three different MetO-containing proteins. Both enzymes showed Michaelis-Menten kinetics with the K(m) lower for protein than for small MetO-containing substrates. MSRA reduced both oxidized proteins and low molecular weight MetO-containing compounds with similar catalytic efficiencies, whereas MSRB was specialized for the reduction of MetO in proteins. Using oxidized glutathione S-transferase as a model substrate, we showed that both MSR types were more efficient in reducing MetO in unfolded than in folded proteins and that their activities increased with the unfolding state. Biochemical quantification and identification of MetO reduced in the substrates by mass spectrometry revealed that the increased activity was due to better access to oxidized MetO in unfolded proteins; it also showed that MSRA was intrinsically more active with unfolded proteins regardless of MetO availability. Moreover, MSRs most efficiently protected cells from oxidative stress that was accompanied by protein unfolding. Overall, this study indicates that MSRs serve a critical function in the folding process by repairing oxidatively damaged nascent polypeptides and unfolded proteins.  相似文献   

18.
Rhodotorula mucilaginosa RCL-11, a pigmented yeast isolated from a filter plant of a copper mine in the province of Tucumán, Argentina, supports high concentrations of the heavy metal Cu(II). Copper overload augmented carotenoid biosynthesis in this yeast, modifying at the same time the relative proportion of the pigments produced. Inhibition of the synthesis pathway with diphenylamine suggests an inverse relationship between carotenoid and copper biosorption by R. mucilaginosa RCL-11. The increased activity of superoxide dismutase and catalase measured under inhibition of carotenoid biosynthesis could explain these observations. Exposure to H2O2, a second oxidative stress agent, alone or in combination with Cu(II) also modified the carotenoid content, both qualitatively and quantitatively. The change in the relative proportion of the carotenoids torularhodin, torulene and beta-carotena, as well as the detection of gamma-carotene in the presence of H2O2 and Cu(II) allows to hypothesize that the carotenoids produced by R. mucilaginosa RCL-11 plays different roles in the oxidative stress response of this yeast.  相似文献   

19.
The aims of the study were to ascertain the potential role of oxidative stress in the onset of disease-related pathophysiological complications in young type 1 diabetes patients. Indicative parameters of lipoperoxidation, protein oxidation, and changes in antioxidant defense system status were measured in blood samples from 26 young diabetic patients with recently diagnosed (< 6 months) microangiopathy (+DC), 28 diabetic patients without complications (−DC), and 40 healthy age-matched controls (CR). Both diabetic groups presented similar fructosamine and glycated hemoglobin (HbA1c) values. Results showed erythrocyte glutathione peroxidase activity, glutathione content, and plasma β-carotene to be significantly lower in diabetic patients compared with control subjects, but with no significant differences between −DC and +DC groups. Antioxidant enzyme superoxide dismutase activity was significantly higher in the erythrocytes of diabetic patients independently of the presence of microvascular complications. However, the plasma -tocopherol/total lipids ratio was significantly diminished in +DC group compared with −DC (p = .008). Lipid peroxidation indices measured in plasma included malondialdehyde, lipid hydroperoxides, and lipoperoxides, which were significantly elevated in our diabetic patients regardless of the presence of complications. Evidence of oxidative damage to proteins was shown both through the quantification of plasma protein carbonyl levels, which were significantly higher in −DC (0.61 ± 0.09 mmol/mg prot), and higher still in the +DC patients (0.75 ± 0.09 mmol/mg prot) compared with those of controls (0.32 ± 0.03 mmol/mg prot; p < .01) and immunoblot analysis of protein-bound carbonyls. Additionally, a marked increase in protein oxidation was observed in +DC patients through assessment of advanced oxidation protein products (AOPP) considered to be an oxidized albumin index; AOPP values were significantly higher in +DC than in −DC patients (p < .01) and CR (p < .0001). These results point to oxidatively modified proteins as a differential factor possibly related to the pathogenesis of diabetic complications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号