首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in either of the two human Niemann-Pick type C (NPC) genes, NPC1 and NPC2, cause a fatal neurodegenerative disease associated with abnormal cholesterol accumulation in cells. npc1a, the Drosophila NPC1 ortholog, regulates sterol homeostasis and is essential for molting hormone (20-hydroxyecdysone; 20E) biosynthesis. While only one npc2 gene is present in yeast, worm, mouse and human genomes, a family of eight npc2 genes (npc2a-h) exists in Drosophila. Among the encoded proteins, Npc2a has the broadest expression pattern and is most similar in sequence to vertebrate Npc2. Mutation of npc2a results in abnormal sterol distribution in many cells, as in Drosophila npc1a or mammalian NPC mutant cells. In contrast to the ecdysteroid-deficient, larval-lethal phenotype of npc1a mutants, npc2a mutants are viable and fertile with relatively normal ecdysteroid level. Mutants in npc2b, another npc2 gene, are also viable and fertile, with no significant sterol distribution abnormality. However, npc2a; npc2b double mutants are not viable but can be rescued by feeding the mutants with 20E or cholesterol, the basic precursor of 20E. We conclude that npc2a functions redundantly with npc2b in regulating sterol homeostasis and ecdysteroid biosynthesis, probably by controlling the availability of sterol substrate. Moreover, npc2a; npc2b double mutants undergo apoptotic neurodegeneration, thus constituting a new fly model of human neurodegenerative disease.  相似文献   

2.
Cloning and characterization of a shrimp ML superfamily protein   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
Stimulation with LPS induces tyrosine phosphorylation of numerous proteins involved in the TLR signaling pathway. In this study, we demonstrated that myeloid differentiation factor-2 (MD-2) is also tyrosine phosphorylated following LPS stimulation. LPS-induced tyrosine phosphorylation of MD-2 is specific; it is blocked by the tyrosine kinase inhibitor, herbimycin A, as well as by an inhibitor of endocytosis, cytochalasin D, suggesting that MD-2 phosphorylation occurs during trafficking of MD-2 and not on the cell surface. Furthermore, we identified two possible phospho-accepting tyrosine residues at positions 22 and 131. Mutant proteins in which these tyrosines were changed to phenylalanine had reduced phosphorylation and significantly diminished ability to activate NF-κB in response to LPS. In addition, MD-2 coprecipitated and colocalized with Lyn kinase, most likely in the endoplasmic reticulum. A Lyn-binding peptide inhibitor abolished MD-2 tyrosine phosphorylation, suggesting that Lyn is a likely candidate to be the kinase required for MD-2 tyrosine phosphorylation. Our study demonstrated that tyrosine phosphorylation of MD-2 is important for signaling following exposure to LPS and underscores the importance of this event in mediating an efficient and prompt immune response.  相似文献   

5.
The structural features of some proteins of the innate immune system involved in mediating responses to microbial pathogens are highly conserved throughout evolution. Examples include members of the Drosophila Toll (dToll) and the mammalian Toll-like receptor (TLR) protein families. Activation of Drosophila Toll is believed to occur via an endogenous peptide rather than through direct binding of microbial products to the Toll protein. In mammals there is a growing consensus that lipopolysaccharide (LPS) initiates its biological activities through a heteromeric receptor complex containing CD14, TLR4, and at least one other protein, MD-2. LPS binds directly to CD14 but whether LPS then binds to TLR4 and/or MD-2 is not known. We have used transient transfection to express human TLRs, MD-2, or CD14 alone or in different combinations in HEK 293 cells. Interactions between LPS and these proteins were studied using a chemically modified, radioiodinated LPS containing a covalently linked, UV light-activated cross-linking group ((125)I-ASD-Re595 LPS). Here we show that LPS is cross-linked specifically to TLR4 and MD-2 only when co-expressed with CD14. These data support the contention that LPS is in close proximity to the three known proteins of its membrane receptor complex. Thus, LPS binds directly to each of the members of the tripartite LPS receptor complex.  相似文献   

6.
The lumenal surface of the colonic epithelium is continually exposed to Gram-negative commensal bacteria and LPS. Recognition of LPS by Toll-like receptor (TLR)-4 results in proinflammatory gene expression in diverse cell types. Normally, however, commensal bacteria and their components do not elicit an inflammatory response from intestinal epithelial cells (IEC). The aim of this study is to understand the molecular mechanisms by which IEC limit chronic activation in the presence of LPS. Three IEC lines (Caco-2, T84, HT-29) were tested for their ability to activate an NF-kappaB reporter gene in response to purified, protein-free LPS. No IEC line responded to LPS, whereas human dermal microvessel endothelial cells (HMEC) did respond to LPS. IEC responded vigorously to IL-1beta in this assay, demonstrating that the IL-1 receptor signaling pathway shared by TLRs was intact. To determine the reason for LPS hyporesponsiveness in IEC, we examined the expression of TLR4 and MD-2, a critical coreceptor for TLR4 signaling. IEC expressed low levels of TLR4 compared with HMEC and none expressed MD-2. To determine whether the low level of TLR4 expression or absent MD-2 was responsible for the LPS signaling defect in IEC, the TLR4 or MD-2 gene was transiently expressed in IEC lines. Transient transfection of either gene individually was not sufficient to restore LPS signaling, but cotransfection of TLR4 and MD-2 in IEC led to synergistic activation of NF-kappaB and IL-8 reporter genes in response to LPS. We conclude that IEC limit dysregulated LPS signaling by down-regulating expression of MD-2 and TLR4. The remainder of the intracellular LPS signaling pathway is functionally intact.  相似文献   

7.
NPC1L1 (Niemann-Pick C1-like 1), the pharmacological target of the cholesterol-uptake inhibitor ezetimibe, is a transporter localized on the brush border of enterocytes. Although this protein plays a key role in intestinal uptake of sterols, multiple molecular events that underlie intestinal cholesterol absorption have not been fully characterized. Two proteins that might be involved in this process are NPC1 and NPC2 (Niemann-Pick disease type C proteins 1 and 2), which function in the endosomal/lysosomal cholesterol egress pathway and whose deficiency results in NPC (Niemann-Pick type C) disease. The involvement of these proteins in intestinal cholesterol absorption was examined in mutant mice lacking either NPC1 or NPC2. Our data indicate that deficiencies in either protein do not have an effect on cholesterol uptake or absorption. This contrasts with recent results obtained for the fruitfly Drosophila melanogaster, which indicate that a deficiency of NPC1 (dNPC1a being its Drosophila homologue) leads to activation of an NPC1L1 (Drosophila homologue dNPC1b)-independent cholesterol uptake pathway, underscoring fundamental differences in mammalian and non-mammalian cholesterol metabolism.  相似文献   

8.
Lipopolysaccharide (LPS) from the outer cell wall of Gram-negative bacteria is a potent stimulator of the mammalian innate immune system. The Toll-like receptor 4 (TLR4) pathway triggers the inflammatory responses induced by LPS in a process that requires the interaction of LPS-bound myeloid differentiation-2 (MD-2) with TLR4. Here we propose two possible mechanisms for LPS recognition and signalling that take into account both the structural information available for TLR4 and MD-2, and the determinants of endotoxicity, namely, the acylation and phosphorylation patterns of LPS. In our first model, LPS induces the association of two TLR4-MD-2 heterodimers by binding to two different molecules of MD-2 through the acyl chains of lipid A. In our second model, the binding of LPS to a single TLR4-MD-2 complex facilitates the recruitment of a second TLR4-MD-2 heterodimer. These models contrast with the activation of Drosophila Toll, where the receptor is crosslinked by a dimeric protein ligand.  相似文献   

9.
Lipid A (a hexaacylated 1,4' bisphosphate) is a potent immune stimulant for TLR4/MD-2. Upon lipid A ligation, the TLR4/MD-2 complex dimerizes and initiates signal transduction. Historically, studies also suggested the existence of TLR4/MD-2-independent LPS signaling. In this article, we define the role of TLR4 and MD-2 in LPS signaling by using genome-wide expression profiling in TLR4- and MD-2-deficient macrophages after stimulation with peptidoglycan-free LPS and synthetic Escherichia coli lipid A. Of the 1396 genes significantly induced or repressed by any one of the treatments in the wild-type macrophages, none was present in the TLR4- or MD-2-deficient macrophages, confirming that the TLR4/MD-2 complex is the only receptor for endotoxin and that both are required for responses to LPS. Using a molecular genetics approach, we investigated the mechanism of TLR4/MD-2 activation by combining the known crystal structure of TLR4/MD-2 with computer modeling. According to our murine TLR4/MD-2-activation model, the two phosphates on lipid A were predicted to interact extensively with the two positively charged patches on mouse TLR4. When either positive patch was abolished by mutagenesis into Ala, the responses to LPS and lipid A were nearly abrogated. However, the MyD88-dependent and -independent pathways were impaired to the same extent, indicating that the adjuvant activity of monophosphorylated lipid A most likely arises from its decreased potential to induce an active receptor complex and not more downstream signaling events. Hence, we concluded that ionic interactions between lipid A and TLR4 are essential for optimal LPS receptor activation.  相似文献   

10.
Lipopolysaccharide (LPS) induces inflammatory activation through TLR4 (toll-like receptor-4)/MD-2 (myeloid differentiation-2)/CD14 (cluster of differentiation-14) complex. Although optimal LPS signaling is required to activate our innate immune systems against gram-negative bacterium, excessive amount of LPS signaling develops a detrimental inflammatory response in gram-negative bacterial infections. Downregulation of surface TLR4 expression is one of the critical mechanisms that can restrict LPS signaling. Here, we found that membrane-anchored CD14 is required for LPS-induced downregulation of TLR4 and MD-2 in CHO cells. Moreover, pretreatment of the cells with sterol-binding agent filipin reduced LPS-induced TLR4 downregulation, suggesting the involvement of caveolae-mediated endocytosis pathway. Involvement of caveolae in LPS-induced TLR4 endocytosis was further confirmed by immunoprecipitation. Thus, our data indicate that caveolae-dependent endocytosis pathway is involved in LPS-induced TLR4 downregulation and that this is dependent on membrane-anchored CD14 expression.  相似文献   

11.
12.
The zinc finger associated domain (ZAD), present in almost 100 distinct proteins, characterizes the largest subgroup of C2H2 zinc finger proteins in Drosophila melanogaster and was initially found to be encoded by arthropod genomes only. Here, we report that the ZAD was also present in the last common ancestor of arthropods and vertebrates, and that vertebrate genomes contain a single conserved gene that codes for a ZAD-like peptide. Comparison of the ZAD proteomes of several arthropod species revealed an extensive and species-specific expansion of ZAD-coding genes in higher holometabolous insects, and shows that only few ZAD-coding genes with essential functions in Drosophila melanogaster are conserved. Furthermore, at least 50% of the ZAD-coding genes of Drosophila melanogaster are expressed in the female germline, suggesting a function in oocyte development and/or a requirement during early embryogenesis. Since the majority of the essential ZAD coding genes of Drosophila melanogaster were not conserved during arthropod or at least during insect evolution, we propose that the LSE of ZAD-coding genes shown here may provide the raw material for the evolution of new functions that allow organisms to pursue novel evolutionary paths.  相似文献   

13.
Members of the toll-like receptor family are crucial in recognition of microbial pathogens as part of innate immune response. MD-2, an accessory protein to TLR4, present on the extracellular side of the membrane is needed to initiate the signal transduction. We have identified a 15 amino acid region of human MD-2 that contains several features of other lipopolysaccharide (LPS) binding proteins and peptides. In vitro LPS neutralization by this peptide was observed and confirmed by 2D transferred NOESY NMR experiments. NMR experiments have also shown binding of the MD-2 peptide to lipoteichoic acid (LTA) but not to peptidoglycan. Furthermore this peptide inhibited growth of gram-negative and to a lower extent of some gram-positive bacteria. Our results indicate that this region of MD-2 might be responsible for binding of LPS and confirms the role of MD-2 as an accessory protein in LPS signaling bestowing the Toll receptors their specificity.  相似文献   

14.
20E-hydroxyecdysone (20E) plays important roles in larval molting and metamorphosis in insects and is also involved in the insect innate immune response. Insect metamorphosis is a highly successful strategy for environmental adaptation and is the most vulnerable stage during which the insect is susceptible to various pathogens. 20E regulates a series of antimicrobial peptides (AMPs) through the immunodeficiency (IMD) pathway activation in Drosophila; nevertheless, whether other immune pathways are involved in 20E-regulated insect immunity is unknown. Our previous studies showed that BmMD-2A is a member of the MD-2-related lipid recognition (ML) family of proteins that are involved in the Bombyx mori innate immunity Toll signaling pathway. In this study, we further demonstrate that BmMD-2A is also positively regulated by 20E, and the BmMD-2A neutralization experiment suggested that 20E activates some downstream immune effect factors, the AMP genes against Escherichia coli and Staphylococcus aureus, through the regulation of BmMD-2A in larval metamorphosis, implying that B. mori may use the Toll-ML signaling pathway to maintain innate immune balance in the larval-pupal metamorphosis stage, which is a different innate immunity pathway regulated by 20E compared to the IMD pathway in Drosophila.  相似文献   

15.
The receptor complex resulting from association of MD-2 and the ectodomain of Toll-like receptor 4 (TLR4) mediates lipopolysaccharide (LPS) signal transduction across the cell membrane. We prepared a tertiary structure model of MD-2, based on the known structures of homologous lipid-binding proteins. Analysis of circular dichroic spectra of purified bacterially expressed MD-2 indicates high content of beta-type secondary structure, in agreement with the structural model. Bacterially expressed MD-2 was able to confer LPS responsiveness to cells expressing TLR4 despite lacking glycosylation. We identified several clusters of basic residues on the surface of MD-2. Mutation of each of two clusters encompassing the residues Lys(89)-Arg(90)-Lys(91) and Lys(125)-Lys(125) significantly decreased the signal transduction of the respective MD-2 mutants either upon co-expression with TLR4 or upon addition as soluble protein into the supernatant of cells overexpressing TLR4. These basic clusters lie at the edge of the beta-sheet sandwich, which in cholesterol-binding protein connected to Niemann-Pick disease C2 (NPC2), dust mite allergen Der p2, and ganglioside GM2-activator protein form a hydrophobic pocket. In contrast, mutation of another basic cluster composed of Arg(69)-Lys(72), which according to the model lies further apart from the hydrophobic pocket only weakly decreased MD-2 activity. Furthermore, addition of the peptide, comprising the surface loop between Cys(95) and Cys(105), predicted by model, particularly in oxidized form, decreased LPS-induced production of tumor necrosis factor alpha and interleukin-8 upon application to monocytic cells and fibroblasts, respectively, supporting its involvement in LPS signaling. Our structural model of MD-2 is corroborated by biochemical analysis and contributes to the unraveling of molecular interactions in LPS recognition.  相似文献   

16.
17.
18.
Niemann–Pick C (NPC) disease is a lethal neurodegenerative disorder affecting cellular sterol trafficking. Besides neurodegeneration, NPC patients also exhibit other pleiotropic conditions, indicating that NPC protein is required for other physiological processes. Previous studies indicated that a sterol shortage that in turn leads to a shortage of steroid hormones (for example, ecdysone in Drosophila) is likely to be the cause of NPC disease pathology. We have shown that mutations in Drosophila npc1, one of the two NPC disease-related genes, leads to larval lethal and male infertility. Here, we reported that npc1 mutants are defective in spermatogenesis and in particular in the membrane-remodeling individualization process. Interestingly, we found that ecdysone, the steroid hormone responsible for the larval lethal phenotype in npc1 mutants, is not required for individualization. However, supplying 7-dehydrocholesterol can partially rescue the male infertility of npc1 mutants, suggesting that a sterol shortage is responsible for the spermatogenesis defects. In addition, the individualization defects of npc1 mutants were enhanced at high temperature, suggesting that the sterol shortage may lead to temperature-sensitive defects in the membrane-remodeling process. Together, our study reveals a sterol-dependent, ecdysone-independent mechanism of NPC1 function in Drosophila spermatogenesis.  相似文献   

19.
20.
Intestinal epithelial cells (IEC) have adapted to the presence of commensal bacteria through a state of tolerance that involves a limited response to lipopolysaccharide (LPS). Low or absent expression of two LPS receptor molecules, the myeloid differentiation (MD)-2 receptor, and toll-like receptor (TLR)4 was suggested to underlie LPS tolerance in IEC. In the present study we performed transfections of TLR4 and MD-2 alone or combined in different IEC lines derived from intestinal cancer (Caco-2, HT-29, and SW837). We found that LPS responsiveness increased more than 100-fold when IEC were transfected with MD-2 alone, but not TLR4. The release of interleukin (IL)-8, but also the expression of cyclooxygenase (Cox-)2 and the related secretion of prostaglandin (PG)E2 were coordinately stimulated by LPS in IEC transfected with MD-2 alone. Supernatants collected from MD-2-transfected IEC supported LPS activation of naïve HT-29, providing additional support to the concept that MD-2 alone endows IEC with LPS responsiveness. LPS responsiveness detected at concentrations as low as 110 pg/ml, and maximal values obtained by 10 ng/ml were clearly beyond those evoked by classical stimuli as IL-1β. In polarized cells, apical LPS stimulation was markedly more efficient than basolateral. Our data contradict previous opinion that both TLR4 and MD-2 limit IEC response to LPS, and emphasize the prominent role of MD-2 in intestinal immune responses to Gram-negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号