首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A mathematical model of glycolysis in bloodstream form Trypanosoma brucei was developed previously on the basis of all available enzyme kinetic data (Bakker, B. M., Michels, P. A. M., Opperdoes, F. R., and Westerhoff, H. V. (1997) J. Biol. Chem. 272, 3207-3215). The model predicted correctly the fluxes and cellular metabolite concentrations as measured in non-growing trypanosomes and the major contribution to the flux control exerted by the plasma membrane glucose transporter. Surprisingly, a large overcapacity was predicted for hexokinase (HXK), phosphofructokinase (PFK), and pyruvate kinase (PYK). Here, we present our further analysis of the control of glycolytic flux in bloodstream form T. brucei. First, the model was optimized and extended with recent information about the kinetics of enzymes and their activities as measured in lysates of in vitro cultured growing trypanosomes. Second, the concentrations of five glycolytic enzymes (HXK, PFK, phosphoglycerate mutase, enolase, and PYK) in trypanosomes were changed by RNA interference. The effects of the knockdown of these enzymes on the growth, activities, and levels of various enzymes and glycolytic flux were studied and compared with model predictions. Data thus obtained support the conclusion from the in silico analysis that HXK, PFK, and PYK are in excess, albeit less than predicted. Interestingly, depletion of PFK and enolase had an effect on the activity (but not, or to a lesser extent, expression) of some other glycolytic enzymes. Enzymes located both in the glycosomes (the peroxisome-like organelles harboring the first seven enzymes of the glycolytic pathway of trypanosomes) and in the cytosol were affected. These data suggest the existence of novel regulatory mechanisms operating in trypanosome glycolysis.  相似文献   

2.
Unlike other eukaryotic cells, trypanosomes possess a compartmentalized glycolytic pathway. The conversion of glucose into 3-phosphoglycerate takes place in specialized peroxisomes, called glycosomes. Further conversion of this intermediate into pyruvate occurs in the cytosol. Due to this compartmentation, many regulatory mechanisms operating in other cell types cannot work in trypanosomes. This is reflected by the insensitivity of the glycosomal enzymes to compounds that act as activity regulators in other cell types. Several speculations have been raised about the function of compartmentation of glycolysis in trypanosomes. We calculate that even in a noncompartmentalized trypanosome the flux through glycolysis should not be limited by diffusion. Therefore, the sequestration of glycolytic enzymes in an organelle may not serve to overcome a diffusion limitation. We also search the available data for a possible relation between compartmentation and the distribution of control of the glycolytic flux among the glycolytic enzymes. Under physiological conditions, the rate of glycolytic ATP production in the bloodstream form of the parasite is possibly controlled by the oxygen tension, but not by the glucose concentration. Within the framework of Metabolic Control Analysis, we discuss evidence that glucose transport, although it does not qualify as the sole rate-limiting step, does have a high flux control coefficient. This, however, does not distinguish trypanosomes from other eukaryotic cell types without glycosomes.  相似文献   

3.
1. Anaerobic glycolysis in intact bloodstream Trypanosoma brucei brucei was studied. 2. Fructose, glucose and mammose were aerobically catabolized at rates of 3.4, 3.0 and 2.5 and anaerobically at rates of 0.38, 2.75 and 2.35 mumol hexose/hr/10(8) trypanosomes respectively. 3. Glycerol 3-phosphate and ADP accumulated approximately to the same level from anaerobic catabolism of the three hexoses. However, fructose catabolism stopped within 15-20 min but addition of glucose to these already immobilized trypanosomes temporarily caused a rapid characteristic drop in glycerol 3-phosphate level at a rate of 40 nmol/min/10(8) trypanosomes and correspondingly glucose 6-phosphate, glycerol and pyruvate levels were raised. 4. These observations are not consistent with the proposed requirements for the reverse glycerol kinase in anaerobic net ATP production. Instead, we propose a glycerol 3-phosphate:glucose transphosphorylase that catalyses the formation of glycerol and glucose 6-phosphate.  相似文献   

4.
The understanding of control of metabolic processes requires quantitative studies of the importance of the different enzymatic steps for the magnitude of metabolic fluxes and metabolite concentrations. An important element in such studies is the modulation of enzyme activities in small steps above and below the wild-type level. We review a genetic approach that is well suited for both Metabolic Optimization and Metabolic Control Analysis and studies on the importance of a number of glycolytic enzymes for metabolic fluxes in Lactococcus lactis. The glycolytic enzymes phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK) and lactate dehydrogenase (LDH) are shown to have no significant control on the glycolytic flux in exponentially growing cells of L. lactis MG1363. Introduction of an uncoupled ATPase activity results in uncoupling of glycolysis from biomass production. With MG1363 growing in defined medium supplemented with glucose, the ATP demanding processes do not have a significant control on the glycolytic flux; it appears that glycolysis is running at maximal rate. It is likely that the flux control is distributed over many enzymes in L. lactis, but it cannot yet be excluded that one of the remaining glycolytic steps is a rate-limiting step for the glycolytic flux.  相似文献   

5.
1. The production of pyruvate, glycerol and glycerol-3-phosphate by intact and digitonin-permeabilized Trypanosoma brucei brucei has been studied with glucose or the glycolytic intermediates as substrates. 2. Under aerobic conditions hexosephosphates gave maximal glycolysis in the presence of 40-60 micrograms digitonin/10(8) trypanosomes while the triosephosphates gave it at 20-30 micrograms digitonin/10(8) trypanosomes. 3. In the presence of salicylhydroxamic acid, and the glycolytic intermediates, permeabilized trypanosomes produced equimolar amounts of pyruvate and glycerol-3-phosphate and no glycerol. Under the same conditions, glucose catabolism produced glycerol in addition to pyruvated and glycerol-3-phosphate. 4. In the presence of salicylhydroxamic acid and ATP or ADP intact trypanosomes produced equimolar amounts of pyruvate and (glycerol plus glycerol-3-phosphate) with glucose as substrate. 5. A carrier for ATP and ADP at the glycosomal membrane is implicated. 6. It is apparent that glycerol formation is regulated by the ATP/ADP ratio and that it needs intact glycosomal membrane and the presence of glucose.  相似文献   

6.
Aerobic and anaerobic central metabolism of Saccharomyces cerevisiae cells was explored in batch cultures on a minimal medium containing glucose as the sole carbon source, using biosynthetic fractional (13)C labeling of proteinogenic amino acids. This allowed, firstly, unravelling of the network of active central pathways in cytosol and mitochondria, secondly, determination of flux ratios characterizing glycolysis, pentose phosphate cycle, tricarboxylic acid cycle and C1-metabolism, and thirdly, assessment of intercompartmental transport fluxes of pyruvate, acetyl-CoA, oxaloacetate and glycine. The data also revealed that alanine aminotransferase is located in the mitochondria, and that amino acids are synthesized according to documented pathways. In both the aerobic and the anaerobic regime: (a) the mitochondrial glycine cleavage pathway is active, and efflux of glycine into the cytosol is observed; (b) the pentose phosphate pathways serve for biosynthesis only, i.e. phosphoenolpyruvate is entirely generated via glycolysis; (c) the majority of the cytosolic oxaloacetate is synthesized via anaplerotic carboxylation of pyruvate; (d) the malic enzyme plays a key role for mitochondrial pyruvate metabolism; (e) the transfer of oxaloacetate from the cytosol to the mitochondria is largely unidirectional, and the activity of the malate-aspartate shuttle and the succinate-fumarate carrier is low; (e) a large fraction of the mitochondrial pyruvate is imported from the cytosol; and (f) the glyoxylate cycle is inactive. In the aerobic regime, 75% of mitochondrial oxaloacetate arises from anaplerotic carboxylation of pyruvate, while in the anaerobic regime, the tricarboxylic acid cycle is operating in a branched fashion to fulfill biosynthetic demands only. The present study shows that fractional (13)C labeling of amino acids represents a powerful approach to study compartmented eukaryotic systems.  相似文献   

7.
Proliferation and differentiation of neural stem cells (NSCs) have a crucial role to ensure neurogenesis and gliogenesis in the mammalian brain throughout life. As there is growing evidence for the significance of metabolism in regulating cell fate, knowledge on the metabolic programs in NSCs and how they evolve during differentiation into somatic cells may provide novel therapeutic approaches to address brain diseases. In this work, we applied a quantitative analysis to assess how the central carbon metabolism evolves upon differentiation of NSCs into astrocytes. Murine embryonic stem cell (mESC)-derived NSCs and astrocytes were incubated with labelled [1-13C]glucose and the label incorporation into intracellular metabolites was followed by GC-MS. The obtained 13C labelling patterns, together with uptake/secretion rates determined from supernatant analysis, were integrated into an isotopic non-stationary metabolic flux analysis (13C-MFA) model to estimate intracellular flux maps. Significant metabolic differences between NSCs and astrocytes were identified, with a general downregulation of central carbon metabolism during astrocytic differentiation. While glucose uptake was 1.7-fold higher in NSCs (on a per cell basis), a high lactate-secreting phenotype was common to both cell types. Furthermore, NSCs consumed glutamine from the medium; the highly active reductive carboxylation of alpha-ketoglutarate indicates that this was converted to citrate and used for biosynthetic purposes. In astrocytes, pyruvate entered the TCA cycle mostly through pyruvate carboxylase (81%). This pathway supported glutamine and citrate secretion, recapitulating well described metabolic features of these cells in vivo. Overall, this fluxomics study allowed us to quantify the metabolic rewiring accompanying astrocytic lineage specification from NSCs.  相似文献   

8.
13C-nuclear magnetic resonance (NMR) spectroscopy was used to test our hypothesis that insulin-like growth factor I (IGF-I) stimulates glucose flux into both nonoxidative and oxidative pathways in vascular smooth muscle cells (VSMC). Rat VSMC were exposed to uniformly labeled [13C]glucose ([U-13C]glucose; 5.5 mM) and [3-13C]pyruvate (1 mM) in the presence and absence of IGF-I (100 ng/ml). IGF-I increased glucose flux through glycolysis and the tricarboxylic acid (TCA) cycle as well as total anaplerotic flux into the TCA cycle. Previous work in our laboratory identified an increase in GLUT1 content and glucose metabolism in neointimal VSMC that was sufficient to promote proliferation and inhibit apoptosis. To test whether IGF-I could potentiate the GLUT1-induced increased flux in the neointima, we utilized VSMC harboring constitutive overexpression of GLUT1. Indeed, IGF-I markedly potentiated the GLUT1-induced increase in glucose flux through glycolysis and the TCA cycle. Taken together, these findings demonstrate that upregulation of glucose transport through either IGF-I or increased GLUT1 content stimulates glucose flux through both nonoxidative and oxidative pathways in VSMC.  相似文献   

9.
Pyruvate is a key product of glycolysis that regulates the energy metabolism of cells. In Trypanosoma brucei, the causative agent of sleeping sickness, the fate of pyruvate varies dramatically during the parasite life cycle. In bloodstream forms, pyruvate is mainly excreted, whereas in tsetse fly forms, pyruvate is metabolized in mitochondria yielding additional ATP molecules. The character of the molecular machinery that mediates pyruvate transport across mitochondrial membrane was elusive until the recent discovery of mitochondrial pyruvate carrier (MPC) in yeast and mammals. Here, we characterized pyruvate import into mitochondrion of T. brucei. We identified mpc1 and mpc2 homologs in the T. brucei genome with attributes of MPC protein family and we demonstrated that both proteins are present in the mitochondrial membrane of the parasite. Investigations of mpc1 or mpc2 gene knock‐out cells proved that T. brucei MPC1/2 proteins facilitate mitochondrial pyruvate transport. Interestingly, MPC is expressed not only in procyclic trypanosomes with fully activated mitochondria but also in bloodstream trypanosomes in which most of pyruvate is excreted. Moreover, MPC appears to be essential for bloodstream forms, supporting the recently emerging picture that the functions of mitochondria in bloodstream forms are more diverse than it was originally thought.  相似文献   

10.
Perchloric acid extracts of rabbit renal proximal convoluted tubular cells (PCT) incubated with [2-13C]glycerol and [1,3-13C]glycerol were investigated by 13C-NMR spectroscopy. These 13C-NMR spectra enabled us to determine cell metabolic pathways of glycerol in PCT cells. The main percentage of 13C-label, arising from 13C-enriched glycerol, was found in glucose, lactate, glutamine and glutamate. So far it can be concluded that glycerol is a suitable substrate for PCT cells and is involved in gluconeogenesis and glycolysis as well in the Krebs cycle intermediates. Label exchange and label enrichment in 13C-labelled glucose, arising from [2-13C]glycerol and [1,3-13C]glycerol, is explained by label scrambling through the pentose shunt and a label exchange in the triose phosphate pool. From relative enrichments it is estimated that the ratio of the pyruvate kinase flux to the gluconeogenetic flux is 0.97:1 and that the ratio of pyruvate carboxylase activity relative to pyruvate dehydrogenase activity is 2.0:1. Our results show that 13C-NMR spectroscopy, using 13C-labelled substrates, is a powerful tool for the examination of renal metabolism.  相似文献   

11.
A novel method for metabolic flux studies of central metabolism which is based on respirometric (13)C flux analysis, i.e., parallel (13)C tracer studies with online CO(2) labeling measurements is applied to flux quantification of a lysine-producing mutant of Corynebacterium glutamicum. For this purpose, 3 respirometric (13)C labeling experiments with [1-(13)C(1)], [6-(13)C(1)] and [1,6-(13)C(2)] glucose were carried out in parallel. All fluxes comprising the reactions of glycolysis, of TCA cycle, of C3- and C4-metabolite interconversion and of lysine biosynthesis as well as the net reactions in the pentose phosphate pathway could be quantified solely using experimental data obtained from CO(2) labeling and extracellular rate measurements. At key branch points, 68+/-5% of glucose 6-phosphate were observed to be metabolized into pentose phosphate pathway and 48+/-1% of pyruvate into TCA cycle via pyruvate dehydrogenase. The results showed a good agreement with the previous studies using (13)C tracer cultivation and GC/MS analysis of proteinogenic amino acids. Also, respiratory quotient calculated from flux estimates using redox balance showed a high accordance with the value determined directly from the measured specific rates of O(2) consumption and CO(2) production. The results strongly support that the respirometric (13)C metabolic flux analysis is suited as an alternative to the conventional methods to study functional and regulatory activities of cells. The developed method is applicable to study growing or non-growing cells, primary and secondary metabolism and immobilized cells. Due to the non-accumulating nature of CO(2) labeling and instantaneous nature of the resulting fluxes, the method can also be used for dynamic profiling of metabolic activities. Therefore, it is complementary to conventional methods for metabolic flux analysis.  相似文献   

12.
ABSTRACT: BACKGROUND: In Escherichia coli phosphoenolpyruvate (PEP) is a key central metabolism intermediate that participates in glucose transport, as precursor in several biosynthetic pathways and it is involved in allosteric regulation of glycolytic enzymes. In this work we generated W3110 derivative strains that lack the main PEP consumers PEP:sugar phosphotransferase system (PTS-) and pyruvate kinase isozymes PykA and PykF (PTS- pykA- and PTS- pykF -). To characterize the effects of these modifications on cell physiology, carbon flux distribution and aromatics production capacity were determined. RESULTS: When compared to reference strain W3110, strain VH33 (PTS-) displayed lower specific rates for growth, glucose consumption and acetate production as well as a higher biomass yield from glucose. These phenotypic effects were even more pronounced by the additional inactivation of PykA or PykF. Carbon flux analysis revealed that PTS inactivation causes a redirection of metabolic flux towards biomass formation. A cycle involving PEP carboxylase (Ppc) and PEP carboxykinase (Pck) was detected in all strains. In strains W3110, VH33 (PTS-) and VH35 (PTS-, pykF-), the net flux in this cycle was inversely correlated with the specific rate of glucose consumption and inactivation of Pck in these strains caused a reduction in growth rate. In the PTS- background, inactivation of PykA caused a reduction in Ppc and Pck cycling as well as a reduction in flux to TCA, whereas inactivation of PykF caused an increase in anaplerotic flux from PEP to OAA and an increased flux to TCA. The wild-type and mutant strains were modified to overproduce L-phenylalanine. In resting cells experiments, compared to reference strain, a 10, 4 and 7-fold higher aromatics yields from glucose were observed as consequence of PTS, PTS PykA and PTS PykF inactivation. CONCLUSIONS: Metabolic flux analysis performed on strains lacking the main activities generating pyruvate from PEP revealed the high degree of flexibility to perturbations of the central metabolic network in E. coli. The observed responses to reduced glucose uptake and PEP to pyruvate rate of conversion caused by PTS, PykA and PykF inactivation included flux rerouting in several central metabolism nodes towards anabolic biosynthetic reactions, thus compensating for carbon limitation in these mutant strains. The detected cycle involving Ppc and Pck was found to be required for maintaining the specific growth and glucose consumption rates in all studied strains. Strains VH33 (PTS-), VH34 (PTS- pykA-) and VH35 (PTS- pykF-) have useful properties for biotechnological processes, such as increased PEP availability and high biomass yields from glucose, making them useful for the production of aromatic compounds or recombinant proteins.  相似文献   

13.
Glucose and glutamine metabolism in several cultured mammalian cell lines (BHK, CHO, and hybridoma cell lines) were investigated by correlating specific utilization and formation rates with specific maximum activities of regulatory enzymes involved in glycolysis and glutaminolysis. Results were compared with data from two insect cell lines and primary liver cells. Flux distribution was measured in a representative mammalian (BHK) and an insect (Spodoptera frugiperda) cell line using radioactive substrates. A high degree of similarity in many aspects of glucose and glutamine metabolism was observed among the cultured mammalian cell lines examined. Specific glucose utilization rates were always close to specific hexokinase activities, indicating that formation of glucose-6-phosphate from glucose (catalyzed by hexokinase) is the rate limiting step of glycolysis. No activity of the key enzymes connecting glycolysis with the tricarboxylic acid cycle, such as pyruvate dehydrogenase, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase, could be detected. Flux distribution in BHK cells showed glycolytic rates very similar to lactate formation rates. No glucose- or pyruvate-derived carbon entered the tricarboxylic acid cycle, indicating that glucose is mainly metabolized via glycolysis and lactate formation. About 8% of utilized glucose was metabolized via the pentose phosphate shunt, while 20 to 30% of utilized glucose followed pathways other than glycolysis, the tricarboxylic acid cycle, or the pentose phosphate shunt. About 18% of utilized glutamine was oxidized, consistent with the notion that glutamine is the major energy source for mammalian cell lines. Mammalian cells cultured in serum-free low-protein medium showed higher utilization rates, flux rates, and enzyme activities than the same cells cultured in serum-supplemented medium. Insect cells oxidized glucose and pyruvate in addition to glutamine. Furthermore, insect cells produced little or no lactate and were able to channel glycolytic intermediates into the tricarboxylic acid cycle. Metabolic profiles of the type presented here for a variety of cell lines may eventually enable one to interfere with the metabolic patterns of cells relevant to biotechnology, with the hope of improving growth rate and/or productivity. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Metabolic profiling is defined as the simultaneous assessment of substrate fluxes within and among the different pathways of metabolite synthesis and energy production under various physiological conditions. The use of stable-isotope tracers and the analysis of the distribution of labeled carbons in various intermediates, by both mass spectrometry and NMR spectroscopy, allow the role of several metabolic processes in cell growth and death to be defined. In the present paper we describe the metabolic profiling of Jurkat cells by isotopomer analysis using (13)C-NMR spectroscopy and [1,2-(13)C(2)]glucose as the stable-isotope tracer. The isotopomer analysis of the lactate, alanine, glutamate, proline, serine, glycine, malate and ribose-5-phosphate moiety of nucleotides has allowed original integrated information regarding the pentose phosphate pathway, TCA cycle, and amino acid metabolism in proliferating human leukemia T cells to be obtained. In particular, the contribution of the glucose-6-phosphate dehydrogenase and transketolase activities to phosphoribosyl-pyrophosphate synthesis was evaluated directly by the determination of isotopomers of the [1'-(13)C], [4',5'-(13)C(2)]ribosyl moiety of nucleotides. Furthermore, the relative contribution of the glycolysis and pentose cycle to lactate production was estimated via analysis of lactate isotopomers. Interestingly, pyruvate carboxylase and pyruvate dehydrogenase flux ratios measured by glutamate isotopomers and the production of isotopomers of several metabolites showed that the metabolic processes described could not take place simultaneously in the same macrocompartments (cells). Results revealed a heterogeneous metabolism in an asynchronous cell population that may be interpreted on the basis of different metabolic phenotypes of subpopulations in relation to different cell cycle phases.  相似文献   

15.
What controls glycolysis in bloodstream form Trypanosoma brucei?   总被引:2,自引:0,他引:2  
On the basis of the experimentally determined kinetic properties of the trypanosomal enzymes, the question is addressed of which step limits the glycolytic flux in bloodstream form Trypanosoma brucei. There appeared to be no single answer; in the physiological range, control shifted between the glucose transporter on the one hand and aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and glycerol-3-phosphate dehydrogenase (GDH) on the other hand. The other kinases, which are often thought to control glycolysis, exerted little control; so did the utilization of ATP. We identified potential targets for anti-trypanosomal drugs by calculating which steps need the least inhibition to achieve a certain inhibition of the glycolytic flux in these parasites. The glucose transporter appeared to be the most promising target, followed by ALD, GDH, GAPDH, and PGK. By contrast, in erythrocytes more than 95% deficiencies of PGK, GAPDH, or ALD did not cause any clinical symptoms (Schuster, R. and Holzhütter, H.-G. (1995) Eur. J. Biochem. 229, 403-418). Therefore, the selectivity of drugs inhibiting these enzymes may be much higher than expected from their molecular effects alone. Quite unexpectedly, trypanosomes seem to possess a substantial overcapacity of hexokinase, phosphofructokinase, and pyruvate kinase, making these "irreversible" enzymes mediocre drug targets.  相似文献   

16.

Background

The bloodstream forms of Trypanosoma brucei, the causative agent of sleeping sickness, rely solely on glycolysis for ATP production. It is generally accepted that pyruvate is the major end-product excreted from glucose metabolism by the proliferative long-slender bloodstream forms of the parasite, with virtually no production of succinate and acetate, the main end-products excreted from glycolysis by all the other trypanosomatid adaptative forms, including the procyclic insect form of T. brucei.

Methodology/Principal Findings

A comparative NMR analysis showed that the bloodstream long-slender and procyclic trypanosomes excreted equivalent amounts of acetate and succinate from glucose metabolism. Key enzymes of acetate production from glucose-derived pyruvate and threonine are expressed in the mitochondrion of the long-slender forms, which produces 1.4-times more acetate from glucose than from threonine in the presence of an equal amount of both carbon sources. By using a combination of reverse genetics and NMR analyses, we showed that mitochondrial production of acetate is essential for the long-slender forms, since blocking of acetate biosynthesis from both carbon sources induces cell death. This was confirmed in the absence of threonine by the lethal phenotype of RNAi-mediated depletion of the pyruvate dehydrogenase, which is involved in glucose-derived acetate production. In addition, we showed that de novo fatty acid biosynthesis from acetate is essential for this parasite, as demonstrated by a lethal phenotype and metabolic analyses of RNAi-mediated depletion of acetyl-CoA synthetase, catalyzing the first cytosolic step of this pathway.

Conclusions/Significance

Acetate produced in the mitochondrion from glucose and threonine is synthetically essential for the long-slender mammalian forms of T. brucei to feed the essential fatty acid biosynthesis through the “acetate shuttle” that was recently described in the procyclic insect form of the parasite. Consequently, key enzymatic steps of this pathway, particularly acetyl-CoA synthetase, constitute new attractive drug targets against trypanosomiasis.  相似文献   

17.
13C-constrained flux balancing analysis based on gas chromatography-mass spectrometry data is presented here as a simple and robust method for the estimation of intracellular carbon fluxes. In this approach, the underdetermined system of metabolite balances deduced from stoichiometric relations and measured extracellular rates is complemented with 13C constraints from metabolic flux ratio analysis. Fluxes in central carbon metabolism of exponentially growing Escherichia coli were estimated by 13C-constrained flux balancing from three different 13C-labeled glucose experiments. The best resolution of the network was achieved using 13C constraints derived from [U-13C]glucose and [1-13C]glucose experiments. The corresponding flux estimate was in excellent agreement with a solution that was independently obtained with a comprehensive isotopomer model. This new methodology was also demonstrated to faithfully capture the intracellular flux distribution in E. coli shake flasks and 1-ml deep-well microtiter plates. Due to its simplicity, speed, and robustness, 13C-constrained metabolic flux balancing is promising for routine and high-throughput analysis on a miniaturized scale.  相似文献   

18.
Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused (13)C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo.  相似文献   

19.
In Streptococcus pneumoniae oxygen availability is a major determinant for competence development in exponentially growing cultures. NADH oxidase activity is required for optimal competence in cultures grown aerobically. The implication of oxidative metabolism and more specifically of Nox on central metabolism has been examined. Glycolytic flux throughout exponential growth revealed homolactic fermentation with a lactate production/glucose utilization ratio close to 2, whatever the aerobiosis level of the culture. Loss-of-function mutations in nox, which encodes NADH oxidase, did not change this trait. Consistently, mRNA levels of glyceraldehyde-3-phosphate dehydrogenase, L-lactate dehydrogenase, pyruvate oxidase, and NADH oxidase remained comparable to wild-type levels, as did the specific activities of key enzymes which control central metabolism. Competence regulation by oxygen involving the NADH oxidase activity is not due to significant modification of carbon flux through glycolysis. Failure to obtain loss-of-function mutation in L-ldh, which encodes the L-lactate dehydrogenase, indicates its essential role in pneumococci whatever their growth status.  相似文献   

20.
The mechanisms leading to weight loss in patients with chronic obstructive pulmonary disease (COPD) are poorly understood but may involve alterations in macronutrient metabolism. Changes in muscle oxidative capacity and lactate production during exercise suggest glucose metabolism may be altered in COPD subjects. The objective of this study was to determine differences in the rates of glucose production and clearance, the rate of glycolysis (pyruvate production), and oxidative and nonoxidative pyruvate disposal in subjects with severe COPD compared with healthy controls. The in vivo rates of glucose production and clearance were measured in 14 stable outpatients with severe COPD (seven with low and seven with preserved body mass indexes) and 7 healthy controls using an intravenous infusion of [(2)H(2)]glucose. Additionally, pyruvate production and oxidative and non-oxidative pyruvate disposal were measured using intravenous infusions of [(13)C]bicarbonate and [(13)C]pyruvate. Endogenous glucose flux and glucose clearance were significantly faster in the combined COPD subjects (P = 0.002 and P < 0.001, respectively). This difference remained significant when COPD subjects were separated by body mass index. Pyruvate flux and oxidation were significantly higher in the combined COPD subjects than controls (P = 0.02 for both), but there was no difference in nonoxidative pyruvate disposal or plasma lactate concentrations between the two groups. In subjects with severe COPD, there are alterations in glucose metabolism leading to increased glucose production and faster glucose metabolism by glycolysis and oxidation compared with controls. However, no difference in glucose conversion to lactate via pyruvate reduction is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号