首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
徐冰  张大勇 《生命科学》2014,(2):144-152
生物多样性产生和维持机制长期以来是生态学研究的核心问题。人们通过实验观察和理论推导揭示了很多群落生物多样性的共有模式及其背后的生态学过程,而相关的工作主要集中在动植物等大型生物中。微生物是地球上数量最多、分布最广,以及在生态系统过程中发挥极其重要作用的生物类群,但人们对其群落多样性的认识还非常有限。将介绍目前人们对能够独立自由生活的微生物多样性分布模式的探索,总结对其背后的生物学和生态学过程的研究现状,并探讨当前面临的挑战。  相似文献   

2.
BACKGROUND: The study of soil biota in the context of exotic plant invasions has led to an explosion in our understanding of the ecological roles of many different groups of microbes that function in roots or at the root-soil interface. Part of this progress has been the emergence of two biogeographic patterns involving invasive plants and soil microbes. First, in their non-native ranges invasive plants commonly interact differently with the same soil microbes than native plants. Second, in their native ranges, plants that are invasive elsewhere commonly interact functionally with soil microbes differently in their home ranges than they do in their non-native ranges. These studies pose a challenge to a long-held paradigm about microbial biogeography - the idea that microbes are not limited by dispersal and are thus free from the basic taxonomic, biogeographical and evolutionary framework that characterizes all other life on Earth. As an analogy, the global distribution of animals that function as carnivores does not negate the fascinating evolutionary biogeographic patterns of carnivores. Other challenges to this notion come from new measurements of genetic differences among microbes across geographic boundaries, which also suggest that meaningful biogeographic patterns exist for microorganisms. SCOPE AND CONCLUSIONS: We expand this discussion of whether or not 'everything is everywhere' by using the inherently biogeographic context of plant invasions by reviewing the literature on interactions among invasive plants and the microorganisms in the rhizosphere. We find that these interactions can be delineated at multiple scales: from individual plants to continents. Thus the microbes that regulate major aspects of plant biology do not appear to be exempt from the fundamental evolutionary processes of geographical isolation and natural selection. At the important scales of taxonomy, ecotype and ecosystem functions, the fundamental ecology of invaders and soil microbes indicates that everything might not be everywhere.  相似文献   

3.
Comparative studies of codistributed taxa test the degree to which historical processes have shaped contemporary population structure. Discordant patterns of lineage divergence among taxa indicate that species differ in their response to common historical processes. The complex geologic landscape of the Isthmus of Central America provides an ideal setting to test the effects of vicariance and other biogeographic factors on population history. We compared divergence patterns between two codistributed Neotropical frogs ( Dendropsophus ebraccatus and Agalychnis callidryas ) that exhibit colour pattern polymorphisms among populations, and found significant differences between them in phenotypic and genetic divergence among populations. Colour pattern in D. ebraccatus did not vary with genetic or geographic distance, while colour pattern co-varied with patterns of gene flow in A. callidryas . In addition, we detected significant species differences in the phylogenetic history of populations, gene flow among them, and the extent to which historical diversification and recent gene flow have been restricted by five biogeographic barriers in Costa Rica and Panama. We inferred that alternate microevolutionary processes explain the unique patterns of diversification in each taxon. Our study underscores how differences in selective regimes and species-typical ecological and life-history traits maintain spatial patterns of diversification.  相似文献   

4.
Microbial biogeography: putting microorganisms on the map   总被引:4,自引:0,他引:4  
We review the biogeography of microorganisms in light of the biogeography of macroorganisms. A large body of research supports the idea that free-living microbial taxa exhibit biogeographic patterns. Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity. However, recent studies also dispute the idea that 'everything is everywhere'. We also consider how the processes that generate and maintain biogeographic patterns in macroorganisms could operate in the microbial world.  相似文献   

5.
Although studies of biogeography in soil bacterial communities have attracted considerable attention, the generality of these patterns along with assembly processes and underlying drivers is poorly understood in the inner tissues of plants. Plant tissues provide unique ecological habitats for microorganisms, which play an essential role in plant performance. Here, we compared core bacterial communities among five soil–plant associated compartments of common bean across five sampling sites in China. Neutral and null modelling consistently suggested that stochastic processes dominated the core community assembly processes and escalated from the belowground compartments to the inner tissues of aerial plant parts. The multiple distance-decay relationships also varied and had flattened patterns in the stem endosphere, which were shaped by distinct environmental factors in each compartment. Coexistence patterns also varied in topological features, in addition with the sparsest networks in the stem endosphere resulted from the interaction with the stochastic processes. This study considerably expanded our understanding of various biogeographic patterns, assembly processes, and the underlying mechanisms of core bacterial communities between aerial and belowground compartments of common bean. That will provide a scientific basis for the reasonable regulation of core bacterial consortia to get better plant performance.  相似文献   

6.
Latitudinal patterns of diversity are one of the most striking large-scale biological phenomena and several hypotheses have been proposed to explain them. Using data from literature-surveys we investigated how phylogenetic patterns in microorganisms, plants, and, metazoans communities differ between the tropical and temperate regions and then explored possible ecological and evolutionary process that could shape such patterns. Using the Net Relatedness Index, we analyzed data from 1486 biological communities, collected in 32 articles that considered the phylogenetic structure of biological communities. We found a pattern of phylogenetic clustering in both regions for microorganisms, while for plants we found phylogenetic clustering in temperate regions and phylogenetic overdispersion in the tropics. We did not detect a clear pattern of clustering or overdispersion in tropical or temperate regions in metazoans. From these patterns we explore different ecological and evolutionary processes that have shaped these communities over space and time.  相似文献   

7.
Moderately halophilic and euryhaline bacteria are routinely found in cool to warm hydrothermal vent and nearby cold, deep-sea environments. To elucidate the diversity of these microorganisms - with the goal of determining which among them constitute ecotypes specifically associated with hydrothermal vent and subseafloor habitats - PCR primers were designed to detect natural populations of euryhaline Gammaproteobacteria belonging to the cosmopolitan genera Halomonas and Marinobacter. The distribution patterns of 16S rRNA gene sequence data revealed that Halomonas group 2A comprised a subseafloor population at Axial Seamount on the Juan de Fuca Ridge. Complementary biogeographic and physiological data suggested that other Halomonas clades include members that are cold adapted (Halomonas group 2B) or associated with massive sulfide deposits (Halomonas group 2C). Similarly, a monophyletic Marinobacter clade may represent Fe(2+) -oxidizing facultative chemoautotrophs based on the phylogenetic data presented here and previously reported phenotypic characterizations. The biogeographic distributions of Halomonas and Marinobacter isolates and clones reveal that these are cosmopolitan genera, commonly found in the deep sea and in hydrothermal vent settings. As such, they are good candidates for further laboratory investigations into the biogeochemical processes in these environments.  相似文献   

8.
Aim Understanding the patterns and processes underlying phenotype in a polytypic species provides key insights into microevolutionary mechanisms of diversification. The red‐eyed treefrog, Agalychnis callidryas, exhibits strong regional differentiation in colour pattern, corresponding to five admixed mitochondrial DNA clades. We evaluated spatial diversity patterns across multiple, putative barriers to examine the fine‐scale processes that mediate phenotypic divergence between some regions while maintaining homogeneity between others. Location We examined patterns of phenotypic diversification among 17 sites that span five putative biogeographic barriers in lower Central America (Costa Rica and Panama). Methods We tested the extent to which genetic distance (FST) derived from six multilocus nuclear genotypes covaried with measures of phenotypic distance (leg coloration) within and between biogeographic regions. We used linear regression analyses to determine the role of geographic and genetic factors in structuring spatial patterns of phenotypic diversity. Results The factors that best explained patterns of phenotypic diversity varied among biogeographic regions. We identified one geographic barrier that impeded gene exchange and resulted in concordant phenotypic divergence across the Continental Divide, isolating Caribbean and Pacific populations. Across Caribbean Costa Rican populations, one barrier structured phenotypic but not genetic diversity patterns, indicating a role for selection. In other regions, the putative barriers had no determining effect on either genetic or leg colour structure. Main conclusions The processes mediating the distribution and diversification of colour pattern in this polytypic, wide‐ranging treefrog varied among biogeographic regions. Spatially varying selection combined with the isolating effects of geographic factors probably resulted in the patchy distribution of colour diversity across Costa Rican and Panamanian populations.  相似文献   

9.
Differences in species richness at different elevations are widespread and important for conservation, but the causes of these patterns remain poorly understood. Here, we use a phylogenetic perspective to address the evolutionary and biogeographic processes that underlie elevational diversity patterns within a region. We focus on a diverse but well-studied fauna of tropical amphibians, the hylid frogs of Middle America. Middle American treefrogs show a "hump-shaped" pattern of species richness (common in many organisms and regions), with the highest regional diversity at intermediate elevations. We reconstructed phylogenetic relationships among 138 species by combining new and published sequence data from 10 genes and then used this phylogeny to infer evolutionary rates and patterns. The high species richness of intermediate elevations seems to result from two factors. First, a tendency for montane clades to have higher rates of diversification. Second, the early colonization of montane regions, leaving less time for speciation to build up species richness in lowland regions (including tropical rainforests) that have been colonized more recently. This "time-for-speciation" effect may explain many diversity patterns and has important implications for conservation. The results also imply that local-scale environmental factors alone may be insufficient to explain the high species richness of lowland tropical rainforests, and that diversification rates are lower in earth's most species-rich biome.  相似文献   

10.
Historical and ecological processes have deeply affected biogeographic patterns of animals. Studying morphological variability of species, using classical and spatial analyses, can elucidate these patterns and give insights on both processes. Morphological variability of the endemic Iberian viper Vipera seoanei is examined to identify morphological coherent groups, biogeographic patterns and the putative role of abiotic pressures in the geographic variation of morphological variation. Results from classic and spatial multivariate analyses over 27 morphometric traits for 468 specimens from the global range of the species were integrated. Classic analyses reported large morphological variability and confirmed the differentiation of two coherent groups, which are representatives of current subspecies. Spatial analyses reported a geographic gradient pattern from western Cantabrian Mountains to the rest of the study area. Areas of high morphological variability were found, and two spatial coherent groups with an integration zone were recognized. Significant spatial correlations and trends suggest that some traits could be under selection and may display adaptations to local environments. Although observed patterns can be attributed to Pleistocene climatic cycles, an adaptive diversification of the species is supported. The combination of classical and spatial multivariate analyses is a useful methodology to identify morphological patterns and infer underlying factors.  相似文献   

11.
Paleobiogeographic patterns within the Amphisbaenia were evaluated using the modified Brooks Parsimony Analysis (BPA) and recently published morphological and molecular phylogenies. Extant amphisbaenians are present in Africa, South America, North America, Europe, and the Middle East. The modified BPA was used to determine the relative effects of Pangean breakup, sea-level change, and climate change on evolutionary and distributional patterns within the Amphisbaenia. The modified BPA also tested the biogeographic effect of the Rhineuridae's phylogenetic position as either most basal in the morphologic phylogeny or most derived in the molecular phylogeny. The morphological and molecular analyses resulted in two different biogeographic hypotheses. The morphological analysis indicated three major biogeographic regions for the Amphisbaenia: 1) Africa, South America, and the Caribbean, 2) western Asia, and 3) North America. The molecular analysis indicated two major biogeographic regions: 1) Africa, western Asia, and North America, and 2) South America. The morphological biogeographic pattern corresponds with the known timing of the breakup of Pangea and the resulting paleogeographic reconstructions of the Mesozoic and Early Cenozoic. While the molecular pattern is similar to patterns recovered from dinosaurian biogeographic studies, the closer connection of Africa with North America rather than South America does not match well-constrained geologic evidence for the sequence of Pangean breakup. Both paleobiogeographic analyses, however, resulted in congruent patterns of speciation through vicariance and geodispersal. This suggests that in addition to the breakup of Pangea, such cyclical Earth history processes as sea-level and climate changes played an important role in the biogeographic patterns of the Amphisbaenia.  相似文献   

12.
The biogeography of mitochondrial and nuclear discordance in animals   总被引:1,自引:0,他引:1  
Toews DP  Brelsford A 《Molecular ecology》2012,21(16):3907-3930
Combining nuclear (nuDNA) and mitochondrial DNA (mtDNA) markers has improved the power of molecular data to test phylogenetic and phylogeographic hypotheses and has highlighted the limitations of studies using only mtDNA markers. In fact, in the past decade, many conflicting geographic patterns between mitochondrial and nuclear genetic markers have been identified (i.e. mito-nuclear discordance). Our goals in this synthesis are to: (i) review known cases of mito-nuclear discordance in animal systems, (ii) to summarize the biogeographic patterns in each instance and (iii) to identify common drivers of discordance in various groups. In total, we identified 126 cases in animal systems with strong evidence of discordance between the biogeographic patterns obtained from mitochondrial DNA and those observed in the nuclear genome. In most cases, these patterns are attributed to adaptive introgression of mtDNA, demographic disparities and sex-biased asymmetries, with some studies also implicating hybrid zone movement, human introductions and Wolbachia infection in insects. We also discuss situations where divergent mtDNA clades seem to have arisen in the absence of geographic isolation. For those cases where foreign mtDNA haplotypes are found deep within the range of a second taxon, data suggest that those mtDNA haplotypes are more likely to be at a high frequency and are commonly driven by sex-biased asymmetries and/or adaptive introgression. In addition, we discuss the problems with inferring the processes causing discordance from biogeographic patterns that are common in many studies. In many cases, authors presented more than one explanation for discordant patterns in a given system, which indicates that likely more data are required. Ideally, to resolve this issue, we see important future work shifting focus from documenting the prevalence of mito-nuclear discordance towards testing hypotheses regarding the drivers of discordance. Indeed, there is great potential for certain cases of mitochondrial introgression to become important natural systems within which to test the effect of different mitochondrial genotypes on whole-animal phenotypes.  相似文献   

13.
The deduction of biogeographic process from the study of its history is complicated by the fact that history is a singular thing. This singularity allows no estimation of the degree of determinism surrounding the realization of biogeographic processes, and consequently we know almost nothing about the generality of such deductions. Here we discuss a new approach, called 'experimental biogeography', that exploits computers to model faunal build-up repeatedly against a fixed vicariant background over ecological and evolutionary time scales. This new approach enables a biogeographer to be omniscient - to know both vicariant history and actual phylogeny. Moreover, history can be replayed repeatedly to accumulate a sample of multiple phylogenies and to estimate probability density functions for biogeographic variables. Roles of stochastic, historical and ecological processes in adaptive radiations can also be assessed. Experimental biogeography allows examination of the reliability of various methods of recovering historical patterns.  相似文献   

14.
Ecology, evolution, and historical events all contribute to biogeographic patterns, but studies that integrate them are scarce. Here we focus on how biotic exchanges of mammals during the Late Cenozoic have contributed to current geographic body size patterns. We explore differences in the environmental correlates and phylogenetic patterning of body size between groups of mammals participating and not participating in past biotic exchanges. Both the association of body size with environmental predictors and its phylogenetic signal were stronger for groups that immigrated into North or South America than for indigenous groups. This pattern, which held when extinct clades were included in the analyses, can be interpreted on the basis of the length of time that clades have had to diversify and occupy niche space. Moreover, we identify a role for historical events, such as Cenozoic migrations, in configuring contemporary mammal body size patterns and illustrate where these influences have been strongest for New World mammals.  相似文献   

15.
Little is known about the threat levels and impacts of habitat loss over the Cerrado Squamate fauna. The region is under severe habitat loss due to mechanized agriculture, accelerated by changes in the Brazilian National Forest Code. The Squamate fauna of the Cerrado is rich in endemics and is intrinsically associated with its surrounding microhabitats, which make up a mosaic of phitophysiognomies throughout the region. Herein we evaluate current conservation status of Squamate biogeographic patterns in the Brazilian Cerrado, the single savanna among global biodiversity hotspots. To do so, we first updated point locality data on 49 endemic Squamates pertaining to seven non-random clusters of species ranges in the Cerrado. Each cluster was assumed to be representative of different biogeographic regions, holding its own set of species, herein mapped according to their extent of occurrence (EOO). We then contrasted these data in four different scenarios, according to the presence or absence of habitat loss and the presence or absence of the current protected area (PA) cover. We searched for non-random patterns of habitat loss and PA coverage among these biogeographic regions throughout the Cerrado. Finally, with the species EOO as biodiversity layers, we used Zonation to discuss contemporary PA distribution, as well as to highlight current priority areas for conservation within the Cerrado. We ran Zonation under all four conservation scenarios mentioned above. We observed that habitat loss and PA coverage significantly differed between biogeographic regions. The southernmost biogeographic region is the least protected and the most impacted, with priority areas highly scattered in small, disjunct fragments. The northernmost biogeographic region (Tocantins-Serra Geral) is the most protected and least impacted, showing extensive priority areas in all Zonation scenarios. Therefore, current and past deforestation trends are severely threatening biogeographic patterns in the Cerrado. Moreover, PA distribution is spatially biased, and does not represent biogeographic divisions of the Cerrado. Consequently, we show that biogeographic patterns and processes are being erased at an accelerated pace, reinforcing the urgent need to create new reserves and to avoid the loss of the last remaining fragments of once continuous biogeographic regions. These actions are fundamental and urgent for conserving biogeographic and evolutionary information in this highly imperiled savanna hotspot.  相似文献   

16.
Climatic niche conservatism shapes patterns of diversity in many taxonomic groups, while ecological opportunity (EO) can trigger rapid speciation that is less constrained by the amount of time a lineage has occupied a given habitat. These two processes are well studied, but limited research has considered their joint and relative roles in shaping diversity patterns. We characterized climatic and biogeographic variables for 102 species of arvicoline rodents (Arvicolinae, Cricetidae), testing the effects of climatic niche conservatism and EO on arvicoline diversification as lineages transitioned between biogeographic regions. We found that the amount of time a lineage has occupied a precipitation niche is positively correlated with diversity along a precipitation gradient, suggesting climatic niche conservatism. In contrast, shift in diversification rate explained diversity patterns along a temperature gradient. Our results suggest that an indirect relationship exists between temperature and diversification that is associated with EO as arvicoline rodents colonized warm Palearctic environments. Climatic niche conservatism alone did not fully explain diversity patterns under density‐dependence, highlighting the additional importance of EO‐related processes in promoting the explosive radiation in arvicoline rodents and shaping diversity pattern among biogeographic regions and along climatic gradients.  相似文献   

17.
Disentangling the relative effects of local and regional processes on local species richness (LSR) is critical for understanding the mechanisms underlying large‐scale biodiversity patterns. In this study we used 1098 forest plots from 41 mountains across China, together with regional flora data, to examine the relative influence of local climate vs regional species richness (RSR) on LSR patterns. Both RSR and LSR for woody species and all species combined decreased with increasing latitude, while richness of herbaceous species exhibited a hump‐shaped pattern. The major climatic orrelates of species richness differed across spatial scales. At the regional scale, winter coldness was the best predictor of RSR patterns for both woody and herbaceous species. At the local scale, however, productivity‐related climatic indices were the best predictors of LSR patterns. Local climate and RSR together explained 48, 54 and 23% of the variation in LSR, for overall, woody and herbaceous species, respectively. Both local climate and RSR independently influenced LSR in addition to their joint effects, suggesting that LSR patterns were shaped by local and regional processes together. Local climate and RSR affected LSR of woody species mainly through their joint effects, while there were few shared effects of climate and RSR on the LSR of herbaceous species. Our findings suggest that while geographic RSR patterns are mainly determined by winter coldness, the ecological processes driven by productivity may be critical to the filtering of regional flora into local communities. We also demonstrate that biogeographic region is not a good surrogate for regional richness, at least for our dataset. Consequently, whether biogeographic region can effectively reflect regional effects needs further examination.  相似文献   

18.
19.
Growing attention in aquatic ecology is focusing on biogeographic patterns in microorganisms and whether these potential patterns can be explained within the framework of general ecology. The long-standing microbiologist''s credo ‘Everything is everywhere, but, the environment selects'' suggests that dispersal is not limiting for microbes, but that the environment is the primary determining factor in microbial community composition. Advances in molecular techniques have provided new evidence that biogeographic patterns exist in microbes and that dispersal limitation may actually have an important role, yet more recent study using extremely deep sequencing predicts that indeed everything is everywhere. Using a long-term field study of the ‘invasive'' marine haptophyte Prymnesium parvum, we characterize the environmental niche of P. parvum in a subtropical impoundment in the southern United States. Our analysis contributes to a growing body of evidence that indicates a primary role for environmental conditions, but not dispersal, in the lake-wide abundances and seasonal bloom patterns in this globally important microbe.  相似文献   

20.
Species diversity gradients seen today are, to a large degree, a product of history. Spatially nonrandom originations, extinctions, and changes in geographic distributions can create gradients in species and higher-taxon richness, but the relative roles of each of these processes remain poorly documented. Existing explanations of diversity gradients have tended to focus on either macroevolutionary or biogeographic processes; integrative models that include both are largely lacking. We used simple models that incorporate origination and extinction rates along with dispersal of taxa between regions to show that dispersal not only affects regional richness patterns but also has a strong influence on the average age of taxa present in a region. Failure to take into account the effects of dispersal can, in principle, lead to biased estimates of diversification rates and potentially wrong conclusions regarding processes driving latitudinal and other gradients in diversity. Thus, it is critical to include the effects of dispersal when formulating and testing hypotheses about the causes of large-scale gradients in diversity. Finally, the model results, in conjunction with the results of existing empirical studies, suggest that the nature of macroevolutionary and biogeographic processes may differ between terrestrial and marine diversity gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号