共查询到20条相似文献,搜索用时 0 毫秒
1.
Dong-In Kim Rustem Ilyasov Ural Yunusbaev Sung-Hwa Lee Hyung Wook Kwon 《Journal of Asia》2021,24(1):429-435
Mosquito-borne infectious diseases cause mortality and global infectious disease burden worldwide. There are several electronic mosquito repellents (EMRs) based on ultrasound have been developed and commercialized to reduce human-mosquito contacts. However, the efficacy of EMRs against mosquitoes is still unclear. In this study, we present experimental evidence that ultrasound of different frequency and sound pressure differentially affects the host-seeking behavior of Aedes aegypti females. Behavioral tests were accompanied by molecular experiments to check whether mosquitoes respond to ultrasound and are there any changes in specific mRNA expression. Experiments in bioassays revealed that the ultrasound of 100 kHz frequency and 90–110 dB pressure significantly disrupted CO?-oriented olfactory behaviors and blocked indoor invasion. Furthermore, a long time (>24 h) exposure to 100 kHz frequency/90 dB pressure of ultrasound decreased attractive behaviors to human skin. At the molecular level, there was no change in expression of odorant receptor co-receptor (AaOrco) in ultrasound treated animals, while one of the CO2 receptor genes, AaGr3, and putative hearing-related gene, AAEL009258, were down-regulated and up-regulated, respectively. Our study indicates that high frequency (100 kHz) and pressure (90–110 dB) of the ultrasound has repellent effects to olfactory–driven behaviors of mosquitoes. 相似文献
2.
Sunaiyana Sathantriphop Sabrina A. White Nicole L. Achee Unchalee Sanguanpong Theeraphap Chareonviriyaphap 《Journal of vector ecology》2014,39(2):328-339
The behavioral responses of colony populations of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus to four essential oils (citronella, hairy basil, catnip, and vetiver), two standard repellents (DEET and picaridin), and two synthetic pyrethroids (deltamethrin and permethrin) were conducted in the laboratory using an excito‐repellency test system. Results revealed that Cx. quinquefasciatus and An. minimus exhibited much stronger behavioral responses to all test compounds (65–98% escape for contact, 21.4–94.4% escape for non‐contact) compared to Ae. aegypti (3.7–72.2% escape (contact), 0–31.7% (non‐contact)) and Ae. albopictus (3.5–94.4% escape (contact), 11.2–63.7% (non‐contact)). In brief, essential oil from vetiver elicited the greatest irritant responses in Cx. quinquefasciatus (96.6%) and An. minimus (96.5%) compared to the other compounds tested. The synthetic pyrethroids caused a stronger contact irritant response (65–97.8% escape) than non‐contact repellents (0–50.8% escape for non‐contact) across all four mosquito species. Picaridin had the least effect on all mosquito species. Findings from the current study continue to support the screening of essential oils from various plant sources for protective properties against field mosquitoes. 相似文献
3.
de Omena MC Navarro DM de Paula JE Luna JS Ferreira de Lima MR Sant'Ana AE 《Bioresource technology》2007,98(13):2549-2556
Larvicidal activities against Aedes aegypti have been determined in the ethanolic extracts obtained from 51 Brazilian medicinal plants. Eleven of the 84 extracts studied showed significant (LC50 < 100 microg mL(-1)) activities against larvae, with extracts from Annona crassiflora (root bark, LC50 = 0.71 microg mL(-1); root wood, LC50 = 8.94 microg mL(-1)) and Annona glabra (seed, LC50 = 0.06 microg mL(-1)) showing the highest activities. The results obtained should be of value in the search for new natural larvicidal compounds. 相似文献
4.
5.
Methyl N,N-dimethyl anthranilate (MDA), ethyl anthranilate (EA) and butyl anthranilate (BA) were previously shown to repel Aedes aegypti mosquitoes from landing on human skin. However, the effect of these compounds on the orientation of flying mosquitoes in a choice situation and their effect on mosquito oviposition are not yet known. Here, we used a modified Y-tube olfactometer to test the effect of these compounds on the orientation of Aedes aegypti flying towards skin odor (human fingers), and we tested their effect on Aedes aegypti oviposition choice in a cage assay. In both behavioral situations we compared the effect to the well-documented repellent N,N-diethyl-meta-toluamide (DEET). MDA, EA, and DEET inhibited Aedes aegypti from flying towards skin odor while BA had no such effect. Conversely, MDA had no effect on oviposition while EA, BA, and DEET deterred oviposition, with the strongest effect observed for BA. Thus, we confirm that EA and DEET are generally repellent, while MDA is repellent only in a host-seeking context, and BA is deterrent only in an oviposition context. These compounds appear of potential use in mosquito control programs. 相似文献
6.
7.
8.
9.
《Saudi Journal of Biological Sciences》2023,30(6):103651
The efficacy of three formulations (i.e., natural lavender crude, essential oil, and gel) extracted from Lavender angustifolia was tested against vectors of the epidemic dengue virus, Aedesaegypti, to evaluate their larvicidal activity effect. The ethanolic extract of the lavender crude was prepared using a rotary evaporator, while the other extracts, such as essential oil and gel, were obtained from iHerb, a supplier of medicinal herbs in the US. The mortality rate of larvae was evaluated 24 h after exposure. Larvicidal activity of the lavender crude was 91% mortality at 150 ppm, 94% for essential oil at a concentration of 3000 ppm, and 97% for lavender gel at a 1000 ppm. Natural lavender crude was one of the most promising extracts tested against Ae.aegypti larvae, with lethal concentrations at LC50 and LC90 of 76.4 and 174.5 ppm post-treatment. The essential oil had the least effect on mosquito larvae, with LC50 and LC90 reaching 1814.8 and 3381.9 ppm, respectively. The lavender gel was moderately effective against Ae. aegypti larvae, with LC50 and LC90 values reaching 416.3 and 987.7 ppm after exposure. The occurrence of morphological abnormalities in the larvae treated with the three compounds, in turn, resulted in an incomplete life cycle. Therefore, our results indicated that natural lavender crude displayed the highest larvicidal activity against larvae, followed by gel and essential oil. Thus, this study concluded that lavender crude is an effective, eco-friendly compound that can be used as an alternative to chemical products to control vector-borne epidemic diseases. 相似文献
10.
Jesús A. Aguilar-Durán Cuauhtémoc Villarreal-Treviño Nadia A. Fernández-Santos Gabriel L. Hamer Mario A. Rodríguez-Pérez 《Entomological Research》2023,53(4):158-166
The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana are highly virulent control tools for insect pests and have been under evaluation for the control of globally important mosquito vectors such as Aedes aegypti. Here, we identified and isolated other virulent entomopathogenic fungi against Ae. aegypti. We collected 7 species of mosquitoes by human landing catch in 5 municipalities in Central and Northern Mexico and isolated 28 species of fungi. We harvested fungal conidia from six and assessed virulence against Ae. aegypti females. We observed variation in virulence of fungi in Ae. aegypti with the most virulent being Aspergillus tamarii, with a LT50 of 6.4 (±0.65) days and the least virulent was Trichoderma euskadiense with a LT50 of 16.3 (±1.5) days. Additional assays evaluated the impact of the fungi on Ae. aegypti fecundity and fertility and A. tamarii had the highest for both, resulting in 60% and 37% decrease, respectively. These results provide support for the potential utility of A. tamarii as an entomopathogenic control tool for the dengue vector, Ae. aegypti, pending further evaluations of environmental and nontarget safety. 相似文献
11.
12.
Boonyuan W Kongmee M Bangs MJ Prabaripai A Chareonviriyaphap T 《Journal of vector ecology》2011,36(2):361-372
Escape responses of mated and unmated nulliparous Aedes aegypti mosquitoes were compared using three different concentrations of deltamethrin in the presence or absence of a live animal host using an excito-repellency (ER) test system. Both insecticide contact (excitation) and non-contact (repellency) test configurations were compared. For contact trials, mated mosquitoes showed similar escape movements among the three concentrations when host stimuli were absent. Significant differences in responses were seen between the lower concentrations of (LC(50) and LC(75) ) deltamethrin with and without hosts present (P<0.05). Presence or absence of host stimuli produced no significant differences in escape response for unmated females when exposed to the highest concentration (LC(90) ) of deltamethrin. Our findings indicate that as deltamethrin concentrations decrease to sublethal levels, mating status and host cues play a more significant role in escape behavior. Therefore, insemination can influence the outcome of feeding success and flight movement of nulliparous female Ae. aegypti in contact with deltamethrin and in the presence of live host stimuli. The ER assay system serves as a useful tool for observing excitation and repellency responses of Ae. aegypti to insecticides in the presence or absence of other environmental and biological cues that can affect mosquito behavior. 相似文献
13.
Aedes aegypti L. is the major vector of dengue fever, an endemic disease in Brazil. In an effort to find effective and affordable ways to control this mosquito, the larvicidal activities of essential oils from nine plants widely found in the Northeast of Brazil were analyzed by measurement of their LC50. The essential oils were extracted by steam distillation and their chemical composition determined by GL-chromatography coupled to mass spectroscopy. The essential oils from Cymbopogon citratus and Lippia sidoides, reported in the literature to have larvicidal properties against A. aegypti, were used for activity comparison. The results show that Ocimum americanum and Ocimum gratissimum have LC50 of 67 ppm and 60 ppm respectively, compared to 63 ppm for L. sidoides and 69 ppm for C. citratus. These results suggest a potential utilization of the essential oil of these two Ocimum species for the control of A. aegypti. 相似文献
14.
Patrícia C. Bezerra-Silva Kamilla A. Dutra Geanne K. N. Santos Rayane C. S. Silva Jorge Iulek Paulo Milet-Pinheiro Daniela M. A. F. Navarro 《PloS one》2016,11(2)
Dengue fever has spread worldwide and affects millions of people every year in tropical and subtropical regions of Africa, Asia, Europe and America. Since there is no effective vaccine against the dengue virus, prevention of disease transmission depends entirely on regulating the vector (Aedes aegypti) or interrupting human-vector contact. The aim of this study was to assess the oviposition deterrent activity of essential oils of three cultivars of torch ginger (Etlingera elatior, Zingiberaceae) against the dengue mosquito. Analysis of the oils by gas chromatography (GC)—mass spectrometry revealed the presence of 43 constituents, of which α-pinene, dodecanal and n-dodecanol were the major components in all cultivars. Solutions containing 100 ppm of the oils exhibited oviposition deterrent activities against gravid Ae. aegypti females. GC analysis with electroantennographic detection indicated that the oil constituents n-decanol, 2-undecanone, undecanal, dodecanal, trans-caryophyllene, (E)-β-farnesene, α-humulene, n-dodecanol, isodaucene and dodecanoic acid were able to trigger antennal depolarization in Ae. aegypti females. Bioassays confirmed that solutions containing 50 ppm of n-dodecanol or dodecanal exhibited oviposition deterrent activities, while a solution containing the alcohol and aldehyde in admixture at concentrations representative of the oil presented an activity similar to that of the 100 ppm oil solution. Docking and molecular dynamics simulations verified that the interaction energies of the long-chain oil components and Ae. aegypti odorant binding protein 1 were quite favorable, indicating that the protein is a possible oviposition deterrent receptor in the antenna of Ae. aegypti. 相似文献
15.
Cook JI Majeed S Ignell R Pickett JA Birkett MA Logan JG 《Bulletin of entomological research》2011,101(5):541-550
1-Octen-3-ol is a kairomone for many haematophagous insects including mosquitoes. Numerous studies have examined the effects of racemic 1-octen-3-ol; however, few studies have investigated the role of individual enantiomers in relation to mosquito attraction. In the present study, we investigated the behavioural and electrophysiological responses of two mosquito species, Aedes aegypti and Culex quinquefasciatus, to individual enantiomers and mixtures of 1-octen-3-ol, employing a laboratory Y-tube olfactometer and single sensillum recordings. The olfactory receptor neurons of both Ae. aegypti and Cx. quinquefasciatus had a significantly higher response to the (R)-1-octen-3-ol enantiomer compared to the (S)-1-octen-3-ol enantiomer at 10-9 g μl-1 to 10-6 g μl-1. Behaviourally, Ae. aegypti was more responsive to the (R)-1-octen-3-ol enantiomer, showing an increase in flight activity and relative attraction compared to Cx. quinquefasciatus. The (R)-1-octen-3-ol enantiomer caused an increase in activation for Cx. quinquefasciatus. However, the most notable effect was from an (R:S)-1-octen-3-ol mixture (84:16) that caused significantly more mosquitoes to sustain their flight and reach the capture chambers (demonstrated by a reduced non-sustained flight activity), suggesting that it may have a behaviourally excitatory effect. For Cx. quinquefasciatus, a reduced relative attraction response was also observed for all treatments containing the (R)-1-octen-3-ol enantiomer, either on its own or as part of a mixture, but not with the (S)-1-octen-3-ol enantiomer. This is the first time enantiomeric selectivity has been shown for Ae. aegypti using electrophysiology in vivo. The implications of these results for exploitation in mosquito traps are discussed. 相似文献
16.
Essential oils enhance the toxicity of permethrin against Aedes aegypti and Anopheles gambiae 下载免费PDF全文
Insecticide resistance and growing public concern over the safety and environmental impacts of some conventional insecticides have resulted in the need to discover alternative control tools. Naturally occurring botanically‐based compounds are of increased interest to aid in the management of mosquitoes. Susceptible strains of Aedes aegypti (Linnaeus) (Diptera: Culicidae) and Anopheles gambiae (Meigen) (Diptera: Culicidae) were treated with permethrin, a common type‐I synthetic pyrethroid, using a discriminate dose that resulted in less than 50% mortality. Piperonyl butoxide (PBO) and 35 essential oils were co‐delivered with permethrin at two doses (2 and 10 µg) to determine if they could enhance the 1‐h knockdown and the 24‐h mortality of permethrin. Several of the tested essential oils enhanced the efficacy of permethrin equally and more effectively than piperonyl butoxide PBO, which is the commercial standard to synergize chemical insecticide like pyrethroids. PBO had a strikingly negative effect on the 1‐h knockdown of permethrin against Ae. aegypti, which was not observed in An. gambiae. Botanical essential oils have the capability of increasing the efficacy of permethrin allowing for a natural alternative to classic chemical synergists, like PBO. 相似文献
17.
Seeking an alternative approach for producing a larvicidal product from Balanites aegyptiaca plants, callus was produced from in vitro cultures of root explants and its larvicidal activity against Aedes aegypti mosquito larvae was evaluated. Concentrations of 0, 50, 100, 500, 1000, and 1500 ppm of saponins from the root-derived callus of B. aegyptiaca were used to determine larvicidal effects and consequent effect on adult emergence. A dose-dependent effect was observed. In a chronic mortality assessment (after 7 days of exposure), concentrations of 500 ppm or greater killed 100% of the test larvae population. Fifty parts per million showed no difference in larval mortality compared to the control (0 ppm); however, this concentration allowed one-fourth of the adult emergence of the control treatment. These results suggest that saponins from in vitro cultures of the root explant of B. aegyptiaca can be used as a larvicidal agent against A. aegypti larvae. 相似文献
18.
19.
20.
《Saudi Journal of Biological Sciences》2023,30(2):103552
Essential oils are very popular among organic growers because they are ecologically safe, do not have mammalian toxicity, and cannot be resistant to a variety of contaminants. Four essential oils, Lemon, Lavender, Peppermint, and Neem, were tested for larvicide efficacy against the dengue fever vector Aedes aegypti larvae under laboratory conditions using dipping bioassay techniques. Among the essential oils tested, lemon, peppermint, and lavender oils showed high larvicidal activity against larvae of Ae. aegypti. Lemon oil showed the highest effects (LC50 10.676 ppm), while Peppermint, Lavender and Neem oil showed the lowest effects (LC50 21.380, 29.818 and 38.058 ppm, respectively). As a result, the mixture of lemon oil (LC50) with Peppermint oil (LC25) showed the highest co-toxicity factor, whereas the mixture of Lemon oil (LC50) with Diesel oil (LC25) showed the lowest co-toxicity factor. Based on the results of this study, it appears that essential oils may be useful as larvicides against Ae. aegypti larvae. In search of new natural larvicides, these compounds may provide an alternative to Synthetic insecticides as these are environmentally safe insecticides. 相似文献