首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of the cyclic AMP-protein kinase A (PKA) signalling pathway on renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase. Male Wistar rats were anaesthetized and catheter was inserted through the femoral artery into the abdominal aorta proximally to the renal arteries for infusion of the investigated substances. Na(+),K(+)-ATPase activity was measured in the presence of Sch 28080 to block ouabain-sensitive H(+),K(+)-ATPase and improve specificity of the assay. Dibutyryl-cyclic AMP (db-cAMP) administered at a dose of 10(-7) mol/kg per min and 10(-6) mol/kg per min increased Na(+),K(+)-ATPase activity in the renal cortex by 34% and 42%, respectively, and decreased it in the renal medulla by 30% and 44%, respectively. db-cAMP infused at 10(-6) mol/kg per min increased the activity of cortical ouabain-sensitive H(+),K(+)-ATPase by 33%, and medullary ouabain-sensitive H(+),K(+)-ATPase by 30%. All the effects of db-cAMP were abolished by a specific inhibitor of protein kinase A, KT 5720. The stimulatory effect on ouabain-sensitive H(+),K(+)-ATPase and on cortical Na(+),K(+)-ATPase was also abolished by brefeldin A which inhibits the insertion of proteins into the plasma membranes, whereas the inhibitory effect on medullary Na(+),K(+)-ATPase was partially attenuated by 17-octadecynoic acid, an inhibitor of cytochrome p450-dependent arachidonate metabolism. We conclude that the cAMP-PKA pathway stimulates Na(+),K(+)-ATPase in the renal cortex as well as ouabain-sensitive H(+),K(+)-ATPase in the cortex and medulla by a mechanism requiring insertion of proteins into the plasma membrane. In contrast, medullary Na(+),K(+)-ATPase is inhibited by cAMP through a mechanism involving cytochrome p450-dependent arachidonate metabolites.  相似文献   

2.
Extracellular signal-regulated protein kinases (ERKs) are important in many cellular functions. We and others have previously reported that prolonged exposure of gastric parietal cells to epidermal growth factor (EGF) enhanced gastric acid secretion stimulated by secretagogues via ERKs. In this study, we examined whether ERKs regulated H(+),K(+)-ATPase alpha-subunit gene expression using a gastric cancer cell line, AGS. EGF induced ERK activity time- and dose-dependently with a maximal effect observed at 10 min and 10 nM, respectively. The MEK inhibitors, U0126 and PD-98059, dose-dependently inhibited the ERK activity stimulated by EGF. To test H(+),K(+)-ATPase alpha-subunit gene expression, we transfected AGS cells with a plasmid containing a canine H(+),K(+)-ATPase alpha-subunit gene promoter fused to a luciferase reporter gene. EGF induced luciferase activity in transfected cells; this effect was inhibited by the MEK inhibitors, suggesting that EGF-induced gene expression involved the ERK pathway. When AGS cells were transfected with the reporter plasmids in conjunction with an expression vector encoding constitutively active MEK1, luciferase activity was strongly enhanced; this effect was attenuated by the MEK inhibitors or by an additional cotransfection of dominant negative MEK1. Taken together, our results led us to conclude that the ERK pathway may mediate H(+),K(+)-ATPase alpha-subunit gene expression, contributing to gastric acid secretion in parietal cells.  相似文献   

3.
H(+),K(+)-ATPase is a key enzyme in the process of gastric acid secretion, and proton pump inhibitors (PPIs) have been accepted as one of the most effective treatments for peptic ulcer and gastroesophageal reflux disease. To discover a novel class of PPIs, the authors screened a low-molecular-weight compound library and identified two prospective acid blockers that were pyrrole derivatives. Both compounds inhibited H(+),K(+)-ATPase in a reversible and potassium-competitive manner. These compounds led to the development of TAK-438 (1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine monofumarate), which is currently undergoing clinical trials as a novel potassium-competitive acid blocker for the treatment of acid-related diseases.  相似文献   

4.
The effects of dietary (n-6)/(n-3) polyunsaturated fatty acid balance on fatty acid composition, ouabain inhibition, and Na(+) dependence of Na(+), K(+)-ATPase isoenzymes of whole brain membranes were studied in 60-day-old rats fed over two generations a diet either devoid of alpha-linolenic acid [18:3(n-3)] (sunflower oil diet) or rich in 18:3(n-3) (soybean oil diet). In the brain membranes, the sunflower oil diet led to a dramatic decrease in docosahexaenoic acid [22:6(n-3)] membrane content. The activities of Na(+), K(+)-ATPase isoenzymes were discriminated on the basis of their differential affinities for ouabain and their sensitivity to sodium concentration. The ouabain titration curve of Na(+), K(+)-ATPase activity displayed three inhibitory processes with markedly different affinity [i.e., low (alpha1), high (alpha2), and very high (alpha3)] for brain membranes of rats fed the sunflower oil diet, whereas the brain membranes of rats fed the soybean oil diet exhibited only two inhibitory processes, low (alpha1) and high (alpha2' = alpha2 + alpha3). Regardless of the diet, on the basis of the Na(+) dependence of Na(+), K(+)-ATPase activity, three isoenzymes were found: alpha1 form displaying an affinity 1.5- to 2-fold higher that of than alpha2 and 3-fold higher that of alpha3. In rats fed the sunflower oil diet, alpha2 isoenzyme exhibited higher affinity for sodium (Ka = 8.8 mmol/L) than that of rats fed the soybean oil diet (Ka = 11.7 mmol/L). These results suggest that the membrane lipid environment modulates the functional properties of Na(+), K(+)-ATPase isoenzymes of high ouabain affinity (alpha2).  相似文献   

5.
Na(+),K(+)-ATPase is inhibited by cardiac glycosides such as ouabain, and palytoxin, which do not inhibit gastric H(+),K(+)-ATPase. Gastric H(+),K(+)-ATPase is inhibited by SCH28080, which has no effect on Na(+),K(+)-ATPase. The goal of the current study was to identify amino acid sequences of the gastric proton-potassium pump that are involved in recognition of the pump-specific inhibitor SCH 28080. A chimeric polypeptide consisting of the rat sodium pump alpha3 subunit with the peptide Gln(905)-Val(930) of the gastric proton pump alpha subunit substituted in place of the original Asn(886)-Ala(911) sequence was expressed together with the gastric beta subunit in the yeast Saccharomyces cerevisiae. Yeast cells that express this subunit combination are sensitive to palytoxin, which interacts specifically with the sodium pump, and lose intracellular K(+) ions. The palytoxin-induced K(+) efflux is inhibited by the sodium pump-specific inhibitor ouabain and also by the gastric proton pump-specific inhibitor SCH 28080. The IC(50) for SCH 28080 inhibition of palytoxin-induced K(+) efflux is 14.3 +/- 2.4 microm, which is similar to the K(i) for SCH 28080 inhibition of ATP hydrolysis by the gastric H(+),K(+)-ATPase. In contrast, palytoxin-induced K(+) efflux from cells expressing either the native alpha3 and beta1 subunits of the sodium pump or the alpha3 subunit of the sodium pump together with the beta subunit of the gastric proton pump is inhibited by ouabain but not by SCH 28080. The acquisition of SCH 28080 sensitivity by the chimera indicates that the Gln(905)-Val(930) peptide of the gastric proton pump is likely to be involved in the interactions of the gastric proton-potassium pump with SCH 28080.  相似文献   

6.
By means of a functional expression system and site-directed mutagenesis, we analyzed the role of the putative K(+)-binding site, Glu-345, located in the fourth transmembrane segment of the gastric H(+),K(+)-ATPase alpha-subunit. In the present study, we used several mutants, with alanine, isoleucine, leucine, glutamine, valine, lysine, and aspartic acid instead of Glu-345, and analyzed the H(+),K(+)-ATPase partial reactions of the mutants to determine the precise role of this residue. All the mutants except E345Q exhibited no H(+),K(+)-ATPase activity. The E345Q mutant showed 3-times higher affinity for ATP. This mutation shifted the optimum pH toward a more alkaline one. The E345A, E345I, E345L, E345V as well as E345Q mutants were phosphorylated with ATP as in the case of the wild-type H(+),K(+)-ATPase, whereas the E345K mutant was not phosphorylated. The E345Q mutant was dephosphorylated in the presence of K(+), but its affinity for K(+) was significantly lower than that of the wild type. The E345A, E345I, E345L, and E345V mutants did not exhibit sensitivity to K(+) in the dephosphorylation step below 3 mM K(+). Therefore, Glu-345 is important for the conformational change induced by K(+), especially in the dephosphorylation step in which K(+) reacts with the enzyme from the luminal side with high affinity and accelerates the release of inorganic phosphate. The glutamic acid in the fourth transmembrane segment is conserved, and was found to be involved in the cation-induced conformational change in H(+),K(+)-ATPase as well as Na(+),K(+)-ATPase and Ca(2+)-ATPase, however, the precise roles of the side chain in the function were different.  相似文献   

7.
Gastric H(+),K(+)-ATPase consists of alpha-subunit with 10 transmembrane domains and beta-subunit with a single transmembrane domain. We constructed cDNAs encoding chimeric beta-subunits between the gastric H(+),K(+)-ATPase and Na(+),K(+)-ATPase beta-subunits and co-transfected them with the H(+),K(+)-ATPase alpha-subunit cDNA in HEK-293 cells. A chimeric beta-subunit that consists of the cytoplasmic plus transmembrane domains of Na(+),K(+)-ATPase beta-subunit and the ectodomain of H(+),K(+)-ATPase beta-subunit assembled with the H(+),K(+)-ATPase alpha-subunit and expressed the K(+)-ATPase activity. Therefore, the whole cytoplasmic and transmembrane domains of H(+),K(+)-ATPase beta-subunit were replaced by those of Na(+),K(+)-ATPase beta-subunit without losing the enzyme activity. However, most parts of the ectodomain of H(+),K(+)-ATPase beta-subunit were not replaced by the corresponding domains of Na(+), K(+)-ATPase beta-subunit. Interestingly, the extracellular segment between Cys(152) and Cys(178), which contains the second disulfide bond, was exchangeable between H(+),K(+)-ATPase and Na(+), K(+)-ATPase, preserving the K(+)-ATPase activity intact. Furthermore, the K(+)-ATPase activity was preserved when the N-terminal first 4 amino acids ((67)DPYT(70)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the corresponding amino acids ((63)SDFE(66)) of Na(+),K(+)-ATPase beta-subunit. The ATPase activity was abolished, however, when 4 amino acids ((76)QLKS(79)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the counterpart ((72)RVAP(75)) of Na(+),K(+)-ATPase beta-subunit, indicating that this region is the most N-terminal one that discriminates the H(+),K(+)-ATPase beta-subunit from that of Na(+), K(+)-ATPase.  相似文献   

8.
In nonstimulated rabbit gastric glands, acetylsalicylic acid (10-500 microM) and indomethacin (3-300 microM) did not significantly modify the basal rate of acid secretion, whereas diclofenac and piroxicam (10-1,000 microM each) caused a marked and dose-dependent inhibitory effect (EC(50) = 138 and 280 microM, respectively). In gastric glands stimulated by histamine (100 microM), diclofenac also reduced the rate of acid formation in a dose-dependent manner. In contrast, acetylsalicylic acid, indomethacin, and piroxicam exerted a biphasic effect; thus low concentrations (3-100 microM) of these three agents significantly increased the rate of histamine-stimulated acid secretion (10-20% over the corresponding control value) by a cAMP-independent mechanism, whereas higher concentrations reduced the rate of acid formation. With respect to underlying biochemical mechanisms that could mediate inhibitory effects of NSAIDs on gastric acid formation, it was observed that both diclofenac and piroxicam, but not acetylsalicylic acid or indomethacin, decreased the glandular content of ATP, inhibited hydrolytic activity of gastric gland microsomal H(+)-K(+)-ATPase, and reduced the rate of H(+)-K(+)-ATPase-dependent proton transport across microsomal membranes in a dose-dependent manner. Furthermore, diclofenac and piroxicam also significantly increased passive permeability of microsomal membranes to protons. In conclusion, our work shows that diclofenac and piroxicam cause a significant reduction in the rate of basal and histamine-stimulated acid formation in isolated rabbit gastric glands at concentrations that can be attained in the gastric lumen of patients treated with these drugs. Mechanisms involved in these inhibitory effects appear to be multifocal and include different steps of stimulus-secretion coupling.  相似文献   

9.
The H+,K+-ATPase has been postulated to be the enzyme responsible for H+ secretion by the parietal cell. Omeprazole has been shown to be an inhibitor of acid secretion in vivo, but also in in vitro test models for acid secretion, including partly purified H+,K+-ATPase, the inhibitory action of omeprazole has been demonstrated (Wallmark, B., Jaresten, B. M., Larsson, H., Ryberg, B., Br?ndstr?m, A., and Fellenius, E. (1983) Am. J. Physiol. 245, G64-G71). It was thus possible to use this compound to demonstrate a correlation between H+,K+-ATPase activity in rat oxyntic mucosa and in vivo H+ secretion. Two results were found. (a) Increasing oral doses of omeprazole progressively inhibited acid secretion, H+,K+-ATPase activity, and phosphoenzyme formation of a microsomal fraction isolated from the inhibited rat mucosa. Furthermore, a Mg2+-stimulated ATPase activity, associated with the H+,K+-ATPase membrane fraction, was not affected by the omeprazole treatment. (b) Recovery of H+,K+-ATPase activity following complete omeprazole inhibition was correlated with the appearance of acid secretion. The results indicate a strict relationship between the activity of the gastric H+,K+-ATPase in the microsomal fraction and gastric acid secretion.  相似文献   

10.
It is generally assumed that negatively charged residues present in the alpha-subunit of gastric H(+),K(+)-ATPase are involved in K(+) binding and transport. Despite the fact that there is no difference between various species regarding these negatively charged residues, it was observed that the apparent K(+) affinity of the pig enzyme was much lower than that of the rat H(+),K(+)-ATPase. By determining the K(+)-stimulated dephosphorylation reaction of the phosphorylated intermediate K(0.5) values for K(+) of 0.12+/-0.01 and 1.73+/-0.03 mM were obtained (ratio 14.4) for the rat and the pig enzyme, respectively. To investigate the reason for the observed difference in K(+) sensitivity, both enzymes originating from the gastric mucosa were either reconstituted in a similar lipid environment or expressed in Sf9 cells. After reconstitution in K(+)-permeable phosphatidylcholine/cholesterol liposomes K(0.5) values for K(+) of 0.16+/-0.01 and 0.35+/-0.05 mM for the rat and pig enzyme respectively were measured (ratio 2.2). After expression in Sf9 cells the pig gastric H(+),K(+)-ATPase still showed a 4.1 times lower K(+) sensitivity than that of the rat enzyme. This means that the difference in K(+) sensitivity of the rat and pig gastric H(+), K(+)-ATPase is not only due to a different lipid composition but also to the structure of either the alpha- or beta-subunit. Expression of hybrid enzymes in Sf9 cells showed that the difference in K(+) sensitivity between the rat and pig gastric H(+),K(+)-ATPase is primarily due to differences in the beta-subunit.  相似文献   

11.
Folic acid plays an important role in neuroplasticity and acts as a neuroprotective agent, as observed in experimental brain ischemia studies. The aim of this study was to investigate the effects of folic acid on locomotor activity, aversive memory and Na(+),K(+)-ATPase activity in the frontal cortex and striatum in animals subjected to neonatal hypoxia-ischemia (HI). Wistar rats of both sexes at postnatal day 7 underwent HI procedure and were treated with intraperitoneal injections of folic acid (0.011 μmol/g body weight) once a day, until the 30th postnatal day. Starting on the day after, behavioral assessment was run in the open field and in the inhibitory avoidance task. Animals were sacrificed by decapitation 24 h after testing and striatum and frontal cortex were dissected out for Na(+),K(+)-ATPase activity analysis. Results show anxiogenic effect in the open field and an impairment of aversive memory in the inhibitory avoidance test in HI rats; folic acid treatment prevented both behavioral effects. A decreased Na(+),K(+)-ATPase activity in striatum, both ipsilateral and contralateral to ischemia, was identified after HI; a total recovery was observed in animals treated with folic acid. A partial recovery of Na(+),K(+)-ATPase activity was yet seen in frontal cortex of HI animals receiving folic acid supplementation. Presented results support that folic acid treatment prevents memory deficit and anxiety-like behavior, as well as prevents Na(+),K(+)-ATPase inhibition in the striatum and frontal cortex caused by neonatal hypoxia-ischemia.  相似文献   

12.
The aim of this study was to investigate whether endogenous superoxide anion is involved in the regulation of renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase activities. The study was performed in male Wistar rats. Compounds modulating superoxide anion concentration were infused under general anaesthesia into the abdominal aorta proximally to the renal arteries. The activity of ATPases was assayed in isolated microsomal fraction. We found that infusion of a superoxide anion-generating mixture, xanthine oxidase (1 mU/min per kg) + hypoxanthine (0.2 mumol/min per kg), increased the medullary Na(+),K(+)-ATPase activity by 49.5% but had no effect on cortical Na(+),K(+)-ATPase and either cortical or medullary ouabain-sensitive H(+),K(+)-ATPase. This effect was reproduced by elevating endogenous superoxide anion with a superoxide dismutase inhibitor, diethylthiocarbamate. In contrast, a superoxide dismutase mimetic, TEMPOL, decreased the medullary Na(+),K(+)-ATPase activity. The inhibitory effect of TEMPOL was abolished by inhibitors of nitric oxide synthase (L-NAME), soluble guanylate cyclase (ODQ) and protein kinase G (KT5823). The stimulatory effect of diethylthiocarbamate was not observed in animals pretreated with a synthetic cGMP analogue, 8-bromo-cGMP. An inhibitor of NAD(P)H oxidase, apocynin (1 mumol/min per kg), decreased the Na(+),K(+)-ATPase activity in the renal medulla and its effect was prevented by L-NAME, ODQ or KT5823. In contrast, a xanthine oxidase inhibitor, oxypurinol, administered at the same dose was without effect. These data suggest that NAD(P)H oxidase-derived superoxide anion increases Na(+),K(+)-ATPase activity in the renal medulla by reducing the availability of NO. Excessive intrarenal generation of superoxide anion may upregulate medullary Na(+),K(+)-ATPase leading to sodium retention and blood pressure elevation.  相似文献   

13.
The mechanisms for the formation of the osmotic gradient driving water movements in the gastric gland and its modulation via the extracellular Ca(2+)-sensing receptor (CaR) were investigated. Real time measurements of net water flux in the lumen of single gastric glands of the intact amphibian stomach were performed using ion-selective double-barreled microelectrodes. Water movement was measured by recording changes in the concentration of impermeant TEA(+) ions ([TEA(+)](gl)) with TEA(+)-sensitive microelectrodes inserted in the lumen of individual gastric glands. Glandular K(+) (K(+)(gl)) and H(+) (pH(gl)) were also measured by using K(+)- and H(+)-sensitive microelectrodes, respectively. Stimulation with histamine significantly decreased [TEA](gl), indicating net water flow toward the gland lumen. This response was inhibited by the H(+)/K(+)-ATPase inhibitor, SCH 28080. Histamine also elicited a significant and reversible increase in [K(+)](gl) that was blocked by chromanol 293B, a blocker of KCQN1 K(+) channels. Histamine failed to induce net water flow in the presence of chromanol 293B. In the "resting state," stimulation of CaR with diverse agonists resulted in significant increase in [TEA](gl). CaR activation also significantly reduced histamine-induced water secretion and apical K(+) transport. Our data validate the strong link between histamine-stimulated acid secretion and water transport. We also show that cAMP-dependent [K(+)](gl) elevation prior to the onset of acid secretion generates the osmotic gradient initially driving water into the gastric glands and that CaR activation inhibits this process, probably through reduction of intracellular cAMP levels.  相似文献   

14.
Halenaquinol inhibited the partial reactions of ATP hydrolysis by rat brain cortex Na(+),K(+)-ATPase, such as [3H]ATP binding to the enzyme, Na(+)-dependent front-door phosphorylation from [gamma-(33)P]ATP, and also Na(+)- and K(+)-dependent E(1)<-->E(2) conformational transitions of the enzyme. Halenaquinol abolished the positive cooperativity between the Na(+)- and K(+)-binding sites on the enzyme. ATP and sulfhydryl-containing reagents (cysteine and dithiothreitol) protected the Na(+),K(+)-ATPase against inhibition. Halenaquinol can react with additional vital groups in the enzyme after blockage of certain sulfhydryl groups with 5,5'-dithio-bis-nitrobenzoic acid. Halenaquinol inhibited [3H]ouabain binding to Na(+),K(+)-ATPase under phosphorylating and non-phosphorylating conditions. Binding of fluorescein 5'-isothiocyanate to Na(+),K(+)-ATPase and intensity of fluorescence of enzyme tryptophanyl residues were decreased by halenaquinol. We suggest that interaction of halenaquinol with the essential sulfhydryls in/or near the ATP-binding site of Na(+),K(+)-ATPase resulted in a change of protein conformation and subsequent alteration of overall and partial enzymatic reactions.  相似文献   

15.
Insulin stimulates Na(+),K(+)-ATPase activity and induces translocation of Na(+),K(+)-ATPase molecules to the plasma membrane in skeletal muscle. We determined the molecular mechanism by which insulin regulates Na(+),K(+)-ATPase in differentiated primary human skeletal muscle cells (HSMCs). Insulin action on Na(+),K(+)-ATPase was dependent on ERK1/2 in HSMCs. Sequence analysis of Na(+),K(+)-ATPase alpha-subunits revealed several potential ERK phosphorylation sites. Insulin increased ouabain-sensitive (86)Rb(+) uptake and [(3)H]ouabain binding in intact cells. Insulin also increased phosphorylation and plasma membrane content of the Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunits. Insulin-stimulated Na(+),K(+)-ATPase activation, phosphorylation, and translocation of alpha-subunits to the plasma membrane were abolished by 20 microm PD98059, which is an inhibitor of MEK1/2, an upstream kinase of ERK1/2. Furthermore, inhibitors of phosphatidylinositol 3-kinase (100 nm wortmannin) and protein kinase C (10 microm GF109203X) had similar effects. Notably, insulin-stimulated ERK1/2 phosphorylation was abolished by wortmannin and GF109203X in HSMCs. Insulin also stimulated phosphorylation of alpha(1)- and alpha(2)-subunits on Thr-Pro amino acid motifs, which form specific ERK substrates. Furthermore, recombinant ERK1 and -2 kinases were able to phosphorylate alpha-subunit of purified human Na(+),K(+)-ATPase in vitro. In conclusion, insulin stimulates Na(+),K(+)-ATPase activity and translocation to plasma membrane in HSMCs via phosphorylation of the alpha-subunits by ERK1/2 mitogen-activated protein kinase.  相似文献   

16.
Epidermal growth factor (EGF) stimulates gastric acid secretion and H(+)/K(+)-ATPase alpha-subunit gene expression. Because EGF activates the serine-threonine protein kinase Akt, we explored the role of Akt in gastric acid secretion. Akt phosphorylation and activation were measured by kinase assays and by Western blots with an anti-phospho-Akt antibody, using lysates of purified (>95%) canine gastric parietal cells in primary culture. EGF induced Akt phosphorylation and activation, whereas carbachol had no effect. LY294002, an inhibitor of phosphoinositide 3-kinase, completely blocked EGF induction of Akt phosphorylation, whereas the MEK1 inhibitor PD98059 and the protein kinase C inhibitor GF109203X had no effect. We examined the role of Akt in H(+)/K(+)-ATPase gene expression by Northern blotting using a canine H(+)/K(+)-ATPase alpha-subunit cDNA probe. The parietal cells were transduced with a multiplicity of infection of 100 of the adenoviral vector Ad.Myr-Akt, which overexpresses a constitutively active Akt gene, or with the control vector Ad.CMV-beta-gal, which expresses beta-galactosidase. Ad.Myr-Akt induced H(+)/K(+)-ATPase alpha-subunit gene expression 3-fold, whereas it failed to stimulate the gene cyclooxygenase-2, which was potently induced by carbachol in the same parietal cells. Ad.Myr-Akt induced aminopyrine uptake 4-fold, and it potentiated the stimulatory action of carbachol 3-fold. In contrast, Ad.Myr-Akt failed to induce changes in either parietal cell actin content, measured by Western blots with an anti-actin antibody or in the organization of the actin cellular cytoskeleton, visualized by fluorescein phalloidin staining and confocal microscopy. Transduction of the parietal cells with a multiplicity of infection of 100 of the adenoviral vector Ad.dom.neg.Akt, which overexpresses an inhibitor of Akt, blocked the stimulatory effect of EGF on both aminopyrine uptake and H(+)/K(+)-ATPase production, measured by Western blots with an anti-H(+)/K(+)-ATPase alpha-subunit antibody. Thus, EGF induces a cascade of events in the parietal cells that results in the activation of Akt. The functional role of Akt appears to be stimulation of gastric acid secretion through induction of H(+)/K(+)-ATPase expression.  相似文献   

17.
A hydrophobic amine, SCH 28080, 2-methyl-8-(phenylmethoxy)imidazo(1,2a)pyridine-3-acetonitrile, previously shown to inhibit gastric acid secretion in vivo and in vitro, was also shown to inhibit basal and stimulated aminopyrine accumulation in isolated gastric glands when histamine, high K+ concentrations, or dibutyryl cAMP were used as secretagogues. Stimulated, but not basal, oxygen consumption was also inhibited. Neutralization of the acid space of the parietal cell by high concentrations of the weak base, imidazole, reduced the potency of the drug, suggesting that SCH 28080 was active when protonated. Studies on the isolated H+,K+-ATPase showed that the compound inhibited the enzyme competitively with K+, whether ATP or p-nitrophenyl phosphate were used as substrates. In contrast, the inhibition was mixed with respect to p-nitrophenyl phosphate and uncompetitive with respect to ATP. The drug reduced the steady state level of the phosphoenzyme but not the observed rate constant for phosphoenzyme formation in the absence of K+ nor the quantity of phosphoenzyme reacting with K+. The drug quenched the fluorescence of fluorescein isothiocyanate-modified enzyme and also inhibited the ATP-independent K+ exchange reaction of the H+,K+-ATPase. Its action on gastric acid secretion can be explained by inhibition of the H+,K+-ATPase by reversible complexation of the enzyme. This class of compound, therefore, acts as a reversible inhibitor of gastric acid secretion.  相似文献   

18.
In this study we reveal regions of Na(+),K(+)-ATPase and H(+),K(+)-ATPase that are involved in cation selectivity. A chimeric enzyme in which transmembrane hairpin M5-M6 of H(+),K(+)-ATPase was replaced by that of Na(+),K(+)-ATPase was phosphorylated in the absence of Na(+) and showed no K(+)-dependent reactions. Next, the part originating from Na(+),K(+)-ATPase was gradually increased in the N-terminal direction. We demonstrate that chimera HN16, containing the transmembrane segments one to six and intermediate loops of Na(+),K(+)-ATPase, harbors the amino acids responsible for Na(+) specificity. Compared with Na(+),K(+)-ATPase, this chimera displayed a similar apparent Na(+) affinity, a lower apparent K(+) affinity, a higher apparent ATP affinity, and a lower apparent vanadate affinity in the ATPase reaction. This indicates that the E(2)K form of this chimera is less stable than that of Na(+),K(+)-ATPase, suggesting that it, like H(+),K(+)-ATPase, de-occludes K(+) ions very rapidly. Comparison of the structures of these chimeras with those of the parent enzymes suggests that the C-terminal 187 amino acids and the beta-subunit are involved in K(+) occlusion. Accordingly, chimera HN16 is not only a chimeric enzyme in structure, but also in function. On one hand it possesses the Na(+)-stimulated ATPase reaction of Na(+),K(+)-ATPase, while on the other hand it has the K(+) occlusion properties of H(+),K(+)-ATPase.  相似文献   

19.
The gastric proton pump, H(+),K(+)-ATPase, consists of the catalytic alpha-subunit and the non-catalytic beta-subunit. Correct assembly between the alpha- and beta-subunits is essential for the functional expression of H(+),K(+)-ATPase. The beta-subunit contains nine conserved cysteine residues; two are in the cytoplasmic domain, one in the transmembrane domain, and six in the ectodomain. The six cysteine residues in the ectodomain form three disulfide bonds. In this study, we replaced each of the cysteine residues of the beta-subunit with serine individually and in several combinations. The mutant beta-subunits were co-expressed with the alpha-subunit in human embryonic kidney 293 cells, and the role of each cysteine residue or disulfide bond in the alpha/beta assembly, stability, and cell surface delivery of the alpha- and beta-subunits and H(+),K(+)-ATPase activity was studied. Mutant beta-subunits with a replacement of the cytoplasmic and transmembrane cysteines preserved H(+),K(+)-ATPase activity. All the mutant beta-subunits with replacement(s) of the extracellular cysteines did not assemble with the alpha-subunit, resulting in loss of H(+),K(+)-ATPase activity. These mutants did not permit delivery of the alpha-subunit to the cell surface. Therefore, each of these disulfide bonds of the beta-subunit is essential for assembly with the alpha-subunit and expression of H(+),K(+)-ATPase activity as well as for cell surface delivery of the alpha-subunit.  相似文献   

20.
The chemical reactions of omeprazole, leading to inhibition of gastric acid secretion, were investigated. In acid buffer solutions, omeprazole was found to be labile, whereas at physiological pH it was stable (t1/2 greater than 17 h at pH 7.4). The stability of omeprazole was also studied in isolated, acid producing, gastric glands under conditions where acid formation was either stimulated or inhibited. The rate of transformation of omeprazole was high (t1/2 approximately 3 min) under stimulation. Inhibition of acid formation in the gland greatly retarded the decomposition of omeprazole (t1/2 approximately 73 min). The time-course for inhibition of acid formation by omeprazole was parallel to that for decomposition. The major product formed from omeprazole was the reduced form, H 168/22. The inhibitory action of omeprazole was shown to depend on acid-induced transformation, since no inhibition was obtained when omeprazole was incubated under neutral conditions, both in the isolated gastric mucosal- and the (H+ + K+)-ATPase preparations. Despite the fact that H 168/22 was the major product formed in the glandular preparation, it was found to be virtually inactive in both the glandular- and (H+ + K+)-ATPase preparations. Therefore, a model is proposed in which the inhibition of acid formation by omeprazole is mediated by a compound formed during the reduction of omeprazole to H 168/22 within the acid compartments of the parietal cell. Furthermore, mercaptanes, such as beta-mercaptoethanol, were found to prevent as well as reverse inhibition by omeprazole in both the glandular- and (H+ + K+)-ATPase preparations. This indicates that -SH groups are most likely involved in the chemical reactions leading to inhibition of acid secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号