首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine the host status in Mexico of commercially cultivated and marketed avocado, Persea americana (Mill.), 'Hass' to Anastrepha ludens (Loew), Anastrepha obliqua (Macquart), Anastrepha serpentina (Wiedemann), and Anastrepha striata (Schiner) (Diptera: Tephritidae). Experiments in Michoacán, Mexico, were carried out in six orchards located at three altitudes above sea level during two times (August-October 2001 and April-June 2002). They included choice ('Hass' avocado plus natural host) and no-choice foraging behavior tests on trees under field cages; no-choice, forced infestation trials on caged, fruit-bearing branches in the field, and with individual fruit under laboratory conditions; infestation trials using 'Hass' avocados left unprotected over 1 and 7 d on the ground of orchards; studies to ascertain depth of oviposition and determine egg hatchability; and experiments to determine susceptibility by using time elapsed since removal of fruit from tree as the experimental variable. We trapped adult Anastrepha (n = 7,936) in all orchards and dissected fruit (n = 7,695) from orchards and packing houses (n = 1,620) in search of eggs or larvae. Most (96.7%) A. ludens, A. obliqua, A. striata, and A. serpentina adults were captured in low-elevation orchards. No eggs or larvae were detected in any of the fruit from foraging behavior studies or dissected fruit from orchards or packing houses. Of 5,200 mature, intact fruit on trees in the field forcibly exposed to no-choice female oviposition activity (five females/fruit), we only found four fruit infested by A. ludens but no adults emerged. 'Hass' avocados only became marginally susceptible to attack by A. ludens (but not A. obliqua, A. serpentina, and A. striata) 24 h after being removed from the tree. Fruit placed on the ground in orchards (n = 3,600) were occasionally infested by Neosilba batesi (Curran) (Diptera: Lonchaeidae), a decomposer, but not Anastrepha spp. Based on our results, commercially cultivated and marketed P. americana 'Hass' should not be considered a natural host of A. ludens, A. obliqua, A. striata, and A. serpentina in Mexico.  相似文献   

2.
Anastrepha fraterculus (Wiedemann) is recognized as a pest of citrus, apples, and blackberries in South America. In Mexico, it is mainly found in fruit of the family Myrtaceae and has never been reported infesting citrus. Here, we sought to determine whether females stemming from Mexican A. fraterculus populations (collected in the state of Veracruz) would lay eggs in 'Valencia' oranges and 'Ruby Red' grapefruit and, if so, whether larvae would hatch and develop. We worked under laboratory and seminatural conditions (i.e., gravid females released in fruit-bearing, bagged branches in a commercial citrus grove) and used Anastrepha ludens (Loew), a notorious pest of citrus, as a control species. Under laboratory conditions, A. ludens readily accepted both oranges and grapefruit as oviposition substrates, but A. fraterculus rarely oviposited in these fruit (but did so in guavas, a preferred host) and no larvae ever developed. Eggs were deposited in the toxic flavedo (A. fraterculus) and nontoxic albedo (A. ludens) regions. Field studies revealed that, as was the case in the laboratory, A. fraterculus rarely oviposited into oranges or grapefruit and that, when such was the case, either no larvae developed (oranges) or of the few (13) that developed and pupated (grapefruit), only two adults emerged that survived 1 and 3 d, respectively (5-17% of the time necessary to reach sexual maturity). In sharp contrast, grapefruit exposed to A. ludens yielded up to 937 pupae and adults survived for >6 mo. Therefore, the inability of Mexican A. fraterculus to successfully develop in citrus renders the status of Mexican A. fraterculus as a pest of citrus in Mexico as unsubstantiated.  相似文献   

3.
Anastrepha serpentina (Wiedemann) (Diptera: Tephritidae) is sporadically captured in the Rio Grande Valley of Texas. Although its preferred hosts are in the Sapotaceae family, several varieties of Citrus, including grapefruit and oranges are listed as alternate hosts. Although Mexican fruit fly, Anastrepha ludens (Loew), is known to be a major pest of Citrus, doubt exists as to the status of Citrus as a breeding host for A. serpentina. To evaluate the host status of commercial Citrus for A. serpentina we compared oviposition and development with that of A. ludens under laboratory conditions with 'Rio Red' grapefruit (Citrus paradisi MacFayden) and 'Valencia' oranges [Citrus sinensis (L.) Osbeck] in different stages of maturity. Both fly species oviposited in early season fruit in which the eggs and larvae died in the fruit albedo. Survival of either species to the adult stage occurred in later season grapefruit. In oranges, no A. serpentina larvae survived compared with 150 A. ludens surviving to adults. Survival on both Citrus species was much lower for A. serpentina, only approximately 5% of eggs eclosed into larvae in grapefruit compared with approximatley 50% for A. ludens. In oranges approximately 16% of A. serpentina eggs eclosed compared with approximately 76% for A. ludens. In grapefruit, only one fourth as many A. serpentina larvae survived to the adult stage compared with A. ludens. Additional experiments were performed in a greenhouse on small, caged trees of la coma (Sideroxylon celastrinum H.B.K.), a Texas species of Sapotaceae. The A. serpentina females readily oviposited into these berries and normal adults emerged. The present low incidence of the adults, coupled with the high mortality during development of the larvae, suggests that Texas citrus is unlikely to support a breeding population of A. serpentina.  相似文献   

4.
We documented fruit fly-host associations and infestation rates over 5 yr in the state of Bahia, Brazil, by systematically collecting native and introduced fruits in backyard and commercial orchards, experimental stations, and patches of native vegetation. Fruit were collected in multiple sites in the southern and southernmost regions of Bahia. A total of 942.22 kg from 27 fruit species in 15 plant families was collected throughout this study. Of these, 15 plant species from six families were infested by Anastrepha species. A total of 11,614 fruit flies was reared from the fruit (5,178 females and 6,436 males). No specimens of Ceratitis capitata (Wiedemann) were recovered. Eleven Anastrepha species were recovered from the collected fruit: Anastrepha antunesi Lima (0.04%), Anastrepha distincta Greene (0.1%), Anastrepha fraterculus (Wiedemann) (53.5%), Anastrepha leptozona Hendel (4.5%), Anastrepha manihoti Lima (0.1%), Anastrepha montei Lima (1.0%), Anastrepha obliqua (Macquart) (33.0%), Anastrepha pickeli Lima (2.0%), Anastrepha serpentina (Wiedemann) (1.0%), Anastrepha sororcula Zucchi (3.0%), and Anastrepha zenildae Zucchi (1.8%). We recovered 1,265 parasitoids (Hymenoptera: Braconidae) from Anastrepha pupae. Three species of braconids were found to parasitize larvae of nine Anastrepha species. The most common parasitoid species recovered was Doryctobracon areolatus (Szépligeti) (81.7%), followed by Utetes anastrephae (Viereck) (12.2%) and Asobara anastrephae (Muesebeck) (6.1%). We report A. fraterculus infesting Malay apple Syzygium malaccense (L.) Merr. & L. M. Perry and A. fraterculus, A. sororcula, and A. zenildae infesting araza Eugenia stipitata McVaugh for the first time in Brazil.  相似文献   

5.
Wild or commercially grown, native and exotic fruit were collected in 30 localities in the Tucumán province (NW Argentina) from January 1990 to December 1995 to determine their status as hosts of Anastrepha fraterculus (Wiedemann) and/or Ceratitis capitata (Wiedemann), the only two fruit fly species of economic and quarantine importance in Argentina. A total of 84,094 fruit (3,466.1 kg) representing 33 species (7 native and 26 exotic) in 15 plant families were sampled. We determined the following 17 host plant associations: Annona cherimola Miller (Annonaceae), Citrus paradisi Macfadyn (Rutaceae), Diospyros kaki L. (Ebenaceae), Eugenia uniflora L., Psidium guajava L., Myrcianthes pungens (Berg) Legrand (Myrtaceae), Ficus carica L. (Moraceae), Juglans australis Grisebach (Juglandaceae), Mangifera indica L. (Anacardiaceae), Eriobotrya japonica (Thunb.) Lindl., Prunus armeniaca L., P. domestica L., and P. persica (L.) Batsch (Rosaceae) were infested by both A. fraterculus and C. capitata. Citrus aurantium L., Citrus reticulata Blanco, Citrus sinensis (L.) Osbeck (Rutaceae), and Passiflora caerulea L. (Passifloraceae) were only infested by Ceratitis capitata. Out of a total of 99,627 adults that emerged from pupae, 69,180 (approximately 69.5%) were Anastrepha fraterculus, 30,138 (approximately 30.2%) were C. capitata, and 309 (approximately 0.3%) were an unidentified Anastrepha species. Anastrepha fraterculus predominated in native plant species while C. capitata did so in introduced species. Infestation rates (number of larvae/kg of fruit) varied sharply from year to year and between host plant species (overall there was a significant negative correlation between fruit size and infestation level). We provide information on fruiting phenology of all the reported hosts and discuss our findings in light of their practical (e.g., management of A. fraterculus and C. capitata in citrus groves) implications.  相似文献   

6.
The most common hosts for the West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae) are fruit in the family Anacardiaceae (mango [Mangifera L.] and mombin [Spondias L.] species). However, similar to many of the tropical fruit flies of major economic importance, this species attacks several other families of crop fruit, including Annonaceae (cherimoya, Annona cherimola Mill.), Myrtaceae (guava, Psidium L.), Oxalidaceae (carambola, Averrhoa carambola L.), Passifloraceae (granadilla, Passiflora quadrangularis Mill.), and Sapotaceae [mamey sapote, Pouteria sapota (Jacq.) H. E. Moore & Steam]. In the family Rutaceae the economically important genus Citrus has been reported and until recently considered a host for this fruit fly. In this study, we reviewed the taxonomy of A. obliqua, tested specific chemicals that may inhibit oviposition, compared egg-to-adult survival of A. obliqua on preferred hosts and on grapefruit (Citrus X paradisi Macfad.), and measured fruit tissue-specific developmental rates of A. obliqua and the known citrus breeding Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), from egg to pupae. Our literature review shows much confusion concerning the taxonomy of this and related Anastrepha species, including synonymies and confusion with other species. The deterrent effect of the highest concentration of flavonoids for oviposition, although significant, was not absolute. Experiments carried out under laboratory conditions showed 15-40 times greater survival of A. ludens (whose preferred hosts include Rutaceae) on grapefruit compared with A. obliqua for both tree attached and harvested fruit. Experiments of survival of developing stages over time showed that the two species oviposit into different tissues in the fruit, and mortality is much higher for the West Indian fruit fly in the flavedo and albedo of the fruit compared with the Mexican fruit fly.  相似文献   

7.
The current study describes toxic effects of the Bacillus thuringiensis beta-exotoxin toward 3rd instars of 3 fruit fly species: Anastrepha ludens (Loew), A. obliqua (Macquart), and A. serpentina (Wiedemann). The beta-exotoxin was highly toxic to all 3 species tested, with LC50 values calculated as 0.641, 0.512, and 0.408 microgram/cm2 of filter paper used to expose the larvae, for A. ludens, A. obliqua, and A. serpentina, respectively. Exposure to beta-exotoxin was associated with an increase in the incidence of deformed pupae. The adult survivors from beta-exotoxin treatments showed no negative effects in terms of their longevity, fecundity, or egg eclosion (fertility). We conclude that the beta-exotoxin may have potential as a control agent for fruit fly pests.  相似文献   

8.
Mangoes infested with third instar larvae were irradiated using Co-60 gamma rays and a dose interval of 2-250 Gy to assess the irradiation dose required to prevent adult emergence of the Mexican fruit fly (Anastrepha ludens), the West Indies fruit fly (A. obliqua), the sapote fruit fly (A. serpentina), and the Mediterranean fruit fly (Ceratitis capitata). Doses of 76.9, 87.3, 91.4 and 112.7 Gy, were estimated to inhibit 99.9968% (probit 9) of adult emergence forA. obliqua, A. serpentina, A. ludens, and C. capitata, respectively. Using mangoes infested with a total of 100,000 larvae of each species, the results obtained in the laboratory were confirmed using a dose of 100 Gy for the Anastrepha species and 150 Gy for C. capitata. No adult emergence was observed for any of the four species compared with approximately 80% emergence in the controls. A dose of 150 Gy is recommended as a generic quarantine treatment against potential infestation of these species in exported mangoes. A minor decrease in the ascorbic acid content was the only adverse effects observed in irradiated mangoes.  相似文献   

9.
The association among Anastrepha species, braconid parasitoids and host fruits in southern Bahia is recorded. Doryctobracon areolatus (Szépligeti) was associated with A. serpentina (Wied.) in Pouteria caimito, A. bahiensis Lima in Helicostylis tomentosa, A. sororcula Zucchi in Eugenia uniflora, and A. obliqua (Macquart) in Spondias purpurea. Anatrepha obliqua was unique in fruits of Averrhoa carambola, but associated with D. areolatus, Asobara anastrephae (Muesebeck) and Utetes anastrephae (Viereck). In Achras sapota, A. serpentina was associated with A. anastrephae and D. areolatus, while in Psidium guajava, A. fraterculus (Wied.) and A. sororcula were associated with D. areolatus and U. anastrephae.  相似文献   

10.
The purpose of this study was to investigate native species of parasitoids of frugivorous larvae and their associations with host plants in commercial guava orchards and in typical native dry forests of a caatinga-cerrado ecotone in the State of Minas Gerais, Brazil. Nine species of parasitoids were associated with larvae of Anastrepha (Tephritidae) and Neosilba (Lonchaeidae) in fruit of Psidium guajava L. (Myrtaceae), Ziziphus joazeiro Mart. (Rhamnaceae), Spondias tuberosa Arruda (Anacardiaceae), Spondias dulcis Forst. (Anacardiaceae), Syzygium cumini (L.) Skeels (Myrtaceae), and Randia armata (Sw.) DC. (Rubiaceae). Doryctobracon areolatus was the most abundant species, obtained from puparia of Anastrepha zenildae, An. sororcula, An. fraterculus, An. obliqua, and An. turpiniae. This is the first report of Asobara obliqua in Brazil and of As. anastrephae and Tropideucoila weldi in dry forests of Minas Gerais State. The number of species of parasitoids was higher in areas with greater diversity of cultivated species and lower pesticide use. The forest fragments adjacent to the orchards served as shelter for parasitoids of frugivorous larvae.  相似文献   

11.
The objective of this study was to determine the relationship between residual time of GF-120 (spinosad) treatment and mortality in three species of Anastrepha Schiner. Concentrations of 96, 72, 48, and 24 ppm were aged on mango leaves under field conditions for 0, 3, 7, 10, 14, 17, and 21 d after application. We found that Anastrepha ludens, A. obliqua, and A. serpentina were highly sensitive to spinosad. The effects of spinosad were not reduced over the 4 d after the initial application, even at a concentration of 24 ppm. Mortality at 14 d after the application of 72 and 96 ppm of spinosad was similar in each of the three fruit fly species. In addition, we found that 24 ppm of spinosad was consumed the most by each species even though no direct relationship between the rate of consumption per female and the dose of the product was observed, in this test, higher consumption of active ingredient was observed at a concentration of 72 ppm, for A. ludens, 48 ppm for A. obliqua, and 96 ppm for A. serpentina. Our results suggest that a spinosad concentration of 72 ppm may effectively control these pests for at least 10 d under field conditions.  相似文献   

12.
Fruit flies (Diptera: Tephritidae) are devastating agricultural pests worldwide but studies on their long-term population dynamics are sparse. Our aim was to determine the mechanisms driving long-term population dynamics as a prerequisite for ecologically based areawide pest management. The population density of three pestiferous Anastrepha species [Anastrepha ludens (Loew), Anastrepha obliqua (Macquart), and Anastrepha serpentina (Wiedemann)] was determined in grapefruit (Citrus x paradisi Macfad.), mango (Mangifera indica L.), and sapodilla [Manilkara zapota (L.) P. Royen] orchards in central Veracruz, México, on a weekly basis over an 11-yr period. Fly populations exhibited relatively stable dynamics over time. Population dynamics were mainly driven by a direct density-dependent effect and a seasonal feedback process. We discovered direct and delayed influences that were correlated with both local (rainfall and air temperature) and global climatic variation (El Ni?o Southern Oscillation [ENSO] and North Atlantic Oscillation [NAO]), and detected differences among species and location of orchards with respect to the magnitude and nature (linear or nonlinear) of the observed effects, suggesting that highly mobile pest outbreaks become uncertain in response to significant climatic events at both global and local levels. That both NAO and ENSO affected Anastrepha population dynamics, coupled with the high mobility of Anastrepha adults and the discovery that when measured as rate of population change, local population fluctuations exhibited stable dynamics over time, suggests potential management scenarios for the species studied lie beyond the local scale and should be approached from an areawide perspective. Localized efforts, from individual growers will probably prove ineffective, and nonsustainable.  相似文献   

13.
Twenty fruit species representing 12 families were collected from various regions in western Puerto Rico and monitored for the emergence of Anastrepha spp. pupae. We collected 14,154 tephritid pupae from 16 fruit species representing 10 families. The relative infestations of these fruits (pupae per kilogram of fruit) were recorded. Recorded host ranges were not in complete agreement with those reported in the literature. This host-use pattern should give pause to regulators of fruit importation and exportation that base their decisions on literature from regions other than those of immediate interest to them. We recovered the braconid parasitoid Utetes anastrephae (Viereck) from tephritid pupae collected from Mangifera indica L., Spondias mombin L., Psidium guajava L., Chrysobalanus icacos L., Terminalia catappa L., and Garcinia intermedia (Pittier) Hammel. We collected one specimen of the parasitoid Doryctobracon aerolatus (Szepligeti) from the west coast (A?asco), which had not been previously reported in Puerto Rico. We present a preliminary phenology of what are probably the primary fruit hosts of the Anastrepha spp. of Puerto Rico. We also present the first report of Garcinia intermedia (Pittier) Hammel and Coffea arabica L. as reproductive hosts of A. suspensa.  相似文献   

14.
Treating Mexican grapefruit with gibberellic acid (GA3) before color break, significantly delayed peel color change and increased peel puncture resistance, but it did not reduce grapefruit susceptibility to Mexican fruit fly, Anastrepha ludens (Loew) attack under natural conditions. Despite GA3 treatments, larval infestation levels increased with higher fruit fly populations, which also increased as the season progressed. Late in the season, infestation levels were even higher in GA3-treated fruit compared with untreated fruit, possibly because treated fruit were in better condition at that stage. Egg clutch size was significantly greater in very unripe, hard, GA3-treated fruit at the beginning of the harvest season and in December, compared with control fruit. Under laboratory conditions, egg injection into different regions of the fruit suggested that A. ludens eggs are intoxicated by peel oil content in the flavedo region. However, A. ludens' long aculeus allows females to oviposit eggs deeper into the peel (i.e., albedo), avoiding toxic essential oils in the flavedo. This makes A. ludens a particularly difficult species to control compared with other citrus-infesting species such as Anastrepha suspensa (Loew), Anastrepha fraterculus (Wiedemann), and Ceratitis capitata (Wiedemann) (fly species with significantly shorter aculei), which can be effectively managed with GA3 sprays. We discuss our findings in light of their practical implications and with respect to the oviposition behavior of various fruit flies attacking citrus.  相似文献   

15.
The infesting species and their infestation indices of fruit flies were determined for eleven guava genotypes (Psidium guajava L.). From March to April 2000, ten mature fruits of each genotype were harvested at weekly intervals from insecticide unsprayed trees located in the municipality of Monte Alegre do Sul, SP, Brazil. Fruits were brought to the laboratory, weighed and placed in individual plastic cups containing sand at the bottom to obtain the tephritid pupae. About 95% of guavas produced fruit fly puparia. Of the 682 Anastrepha females recovered, four species were identified: A. fraterculus (Wied.) (86.5%), A. obliqua (Macquart) (10.8%), A. bistrigata Bezzi (1.8%) and A. sororcula Zucchi (0.9%). Three species of parasitoids Braconidae (Opiinae) were recovered: Doryctobracon areolatus (Szépligeti), Doryctobracon brasiliensis (Szépligeti) and Utetes anastrephae (Viereck). The genotypes differ in level of infestation depend on the collecting time. The genotypes 'L2P4 Vermelha', 'Ruby Suppreme' and 'Webber Suppreme' showed the lowest susceptibility to tephritids in terms of puparia per fruit. The variability of infestation among the guava genotypes and the reasons for increasing fruit fly infestations along the time were discussed.  相似文献   

16.
Three species of Anastrepha are usually found independently in 9 fruits from different regions of Costa Rica. A striata was found in 5, and A. serpentina and A. obliqua in each of 3 different fruits. During the harvest season, these larvae frequently produce intestinal pseudomyiasis, especially in children.  相似文献   

17.
Oocyte counts, used as a measure of egg load, were compared among three different age groups (15, 30 and 45 days) of two polyphagous species of tephritid fruit flies, Anastrepha ludens and Anastrepha obliqua, which were exposed to varying conditions of diet (sucrose vs sucrose and protein), availability of oviposition substrate (present vs absent), adult female density (1, 2 and 4 females/cage), and semiochemical context (presence vs absence of male pheromones and fruit volatiles). In both species, oocyte counts were higher in older females and for females fed sucrose and protein than for females fed sucrose only. The presence of artificial oviposition substrates influenced oocyte counts in A. obliqua, but not in A. ludens. Female density influenced oocyte counts in both species. Females maintained in groups had higher egg loads than isolated females. Finally, preliminary evidence suggests that semiochemical context influenced oocyte counts. Counts were highest for females in a room containing both fruit volatiles and male pheromone, lowest for females in a room containing neither volatiles nor pheromone, and intermediate for females in rooms containing either volatiles or pheromone but not both. Our results suggest that egg load is influenced by environmental factors in different ways in these two species. Egg load in A. obliqua, a species whose host fruits are highly ephemeral, is responsive to access to the host resource. By contrast, in A. ludens, a species infesting less ephemeral fruit, female density and age played a more important role than host stimuli. The role of ovarian maturation and oviposition in mediating these effects, as well as implications for mass rearing and pest management, are discussed.  相似文献   

18.
The behavioral and electrophysiological responses of nonirradiated male and female Anastrepha ludens (Loew) (Diptera: Tephritidae), to white sapote, Casimiroa edulis Oerst. (Rutaceae), volatiles were investigated. Females flew upwind and landed more often on fruit than on artificial fruit in wind tunnel bioassays. Males flew upwind (but not landed) more frequently on fruit than on artificial fruit. Porapak Q volatile extracts of white sapote also elicited upwind flight and landing on artificial fruit for both sexes. Gas chromatography-electroantennographic detection analysis of white sapote extracts revealed that antennae of both sexes responded to eight compounds. Two peaks were unidentified because they did not separate from the solvent. Subsequent peaks were identified by gas chromatography-mass spectrometry as styrene, myrcene, 1,2,4-trimethylbenzene, 1,8-cineole, and linalool in a proportion of 50: 21: 0.5: 27: 1.5, respectively. Eight peaks were tentatively identified as beta-trans-ocimene. The number of A. ludens captured in multilure traps baited with the synthetic white sapote blend was higher than the flies captured by the multilure unbaited traps (control) in field cages. However, the number of flies captured by traps baited with the white sapote blend was not different from that of flies captured by traps baited with hydrolyzed protein. Using standard chemical ecology techniques, we found potential attractants from wild sapote fruit for monitoring and management of A. ludens population.  相似文献   

19.
This study was carried out in the Counties of Montenegro and Pareci Novo located in the region of the Vale do Rio Cai, Rio Grande do Sul, Southern Brazil, aiming to determine the fruit fly species of Tephritidae and Lonchaeidae that occur in organic orchards of sweet orange [Citrus sinensis (L.) Osb.] cultivar Céu, and Murcott tangor (Citrus reticulata Blanco x C. sinensis), during the fruit ripening stages in 2003 and 2004. Eight McPhail traps baited with integral grape juice diluted to 25% were installed in four orchards, two in each citrus species. The traps were checked weekly, when the baits were changed, the flies separated and preserved in 70% ethyl alcohol. Fruits were also sampled from the orchards, placed in containers with damp soil and closed with a mesh. The tephritid flies represented 86.2% of all captured flies in the four orchards during both years. Five Tephritidae species were captured from traps: Anastrepha fraterculus (Wiedemann), Anastrepha grandis (Macquart), Anastrepha pseudoparallela (Loew), Anastrepha dissimilis Stone and Ceratitis capitata (Wiedemann). The captured species of Lonchaeidae were: Neosilba zadolicha McAlpine & Steyskal, Neosilba n.sp.3, Neosilba sp. and Lonchaea sp. Anastrepha fraterculus was found in 99% of the fruit samples, both in 'Céu' orange and 'Murcott' tangor, and Neosilba n.sp.3 were only obtained from 'Murcott' tangor fruits.  相似文献   

20.
Species identification of the genus Anastrepha Schiner is based mostly on the shape of the aculeus apex. In some species groups, such as fraterculus, species are separated by subtle differences in the aculeus apex, namely Anastrepha fraterculus (Wied.), A. obliqua (Macquart), A. sororcula Zucchi, A. zenildae Zucchi and A. turpiniae Stone. In order to help the identification, the aculei of these five species from 25 localities of 17 Brazilian states were measured. The aculeus and apex lengths of these species vary along geographical distribution and even from specimens reared from same host. For this reason and due to superimposition, these Anastrepha species cannot be separated based on the two measures exclusively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号