首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite its biological importance, our knowledge of active site structure and relevance of critical amino acids in CYP2E1 catalytic processes remain limited. In this study, we identified CYP2E1 active site residues using photoaffinity labeling with 7-azido-4-methylcoumarin (AzMC) coupled with a CYP2E1 homology model. In the absence of light, AzMC was an effective competitor against substrate p-nitrophenol oxidation by CYP2E1. Photoactivation of AzMC led to a concentration-dependent loss in CYP2E1 activity and structural integrity resulting from the modification of both heme and protein. The photo-labeling reaction degraded heme and produced a possible heme adduct. Probe incorporation into the protein occurred at multiple sites within substrate recognition sequence 5 (SRS-5). Based on a CYP2E1 homology model, we hypothesize AzMC labels SRS-5 residues, Leu363, Val364, and Leu368, in the active site. In addition, we propose a series of phenylalanines, especially Phe106, mediate contacts with the coumarin.  相似文献   

2.
Kumar S 《Bioinformation》2011,7(4):207-210
Cytochrome P450s are superfamily of heme proteins which generally monooxygenate hydrophobic compounds. The human cytochrome P450 4F22 (CYP4F22) was categorized into "orphan" CYPs because of its unknown function. CYP4F22 is a potential drug target for cancer therapy. However, three-dimensional structure, the active site topology and substrate specificity of CYP4F22 remain unclear. In this study, a three-dimensional model of human P450 4F22 was constructed by comparative modeling using Modeller 9v5. The resulting model was refined by energy minimization subjected to the quality assessment from both geometric and energetic aspects and was found to be of reasonable quality. Docking approach was employed to dock arachidonic acid into the active site of CYP4F22 in order to probe the ligand-binding modes. As a result, several key residues were identified to be responsible for the binding of arachidonic acid with CYP4F22. These findings provide useful information for understanding the biological roles of CYP4F22 and structure-based drug design.  相似文献   

3.
Cytochrome P450 (CYP) 147F1 from Streptomyces peucetius is a new CYP subfamily of that has been identified as ω-fatty acid hydroxylase. We describe the identification of CYP147F1 as a fatty acid hydroxylase by screening for the substrate using a substrate binding assay. Screening of substrates resulted in the identification of fatty acid groups of compounds as potential hits for CYP147F1 substrates. Fatty acids from C10:0 to C18:0 all showed type I shift spectra indicating their potential as substrates. Among several fatty acids tested, lauric acid, myrsitic acid, and palmitic acid were used to characterize CYP147F1. CYP147F1 activity was reconstituted using putidaredoxin reductase and putidaredoxin from Pseudomonas putida as surrogate electron transfer partners. Kinetic parameters, including the dissociation constant, Km, NADH consumption assay, production formation rate, and coupling efficiency for CYP147F1 were also determined.  相似文献   

4.
Recent studies have indicated that CYP3A4 exhibits non-Michaelis-Menten kinetics for numerous substrates. Both homo- and heterotropic activation have been reported, and kinetic models have suggested multiple substrates within the active site. We provide some of the first physicochemical data supporting the hypothesis of allosteric substrate binding within the CYP3A4 active site. Midazolam (MDZ) is metabolized by CYP3A4 to two hydroxylated metabolites, 1'- and 4-hydroxymidazolam. Incubations using purified CYP3A4 and MDZ showed that both alpha-naphthoflavone (alpha-NF) and testosterone affect the ratio of formation rates of 1'- and 4-hydroxymidazolam. Similar to previous reports, alpha-NF was found to promote formation of 1'-hydroxymidazolam, while testosterone stimulated formation of 4-hydroxymidazolam. NMR was used to measure the closest approach of individual MDZ protons to the paramagnetic heme iron of CYP3A4 using paramagnetic T(1) relaxation measurements. Solutions of 0.2 microM CYP3A4 with 500 microM MDZ resulted in calculated distances between 7.4 and 8.3 A for all monitored MDZ protons. The distances were statistically equivalent for all protons except C3-H and were consistent with the rotation within the active site or sliding parallel to the heme plane. When 50 microM alpha-NF was added, proton-heme iron distances ranged from 7.3 to 10.0 A. Consistent with kinetics of activation, the 1' position was situated closest to the heme, while the fluorophenyl 5-H proton was the furthest. Proton-heme iron distances for MDZ with CYP3A4 and 50 microM testosterone ranged from 7.7 to 9.0 A, with the flourophenyl 5-H proton furthest from the heme iron and the C4-H closest to the heme, also consistent with kinetic observations. When titrated with CYP3A4 in the presence of MDZ, testosterone and alpha-NF resonances themselves exhibited significant broadening and enhanced relaxation rates, indicating that these effector molecules were also bound within the CYP3A4 active site near the paramagnetic heme iron. These results suggest that the effector exerts its cooperative effects on MDZ metabolism through simultaneous binding of MDZ and effector near the CYP3A4 heme.  相似文献   

5.
Banu H  Renuka N  Vasanthakumar G 《Biochimie》2011,93(6):1028-1036
Amongst sulfonylureas, gliclazide is one of the mostly prescribed drugs to diabetic patients and is metabolized extensively by P450 CYP2C9. Among 24-CYP2C9 alleles, the *2/*2 and *3/*3 genotypes showed significantly lower gliclazide clearances with reductions of 25 and 57%, respectively. However, the reason for the change in drug-metabolizing activity induced by these natural alleles is unknown. In the present study, we used molecular dynamics simulation and autodocking studies to provide models for gliclazide-bound complexes of CYP2C9*2, *3 and *2/*3 mutants, which give insight into CYP2C9-gliclazide interactions and explain the reduced enzymatic activity seen in these variants. Our data shows that the size of the substrate-access entry site is significantly reduced in mutants, which limits the access of gliclazide to heme and the active site. The distance from the substrate oxidation site and heme is >5 Å in *3 and *2/*3. Therefore, the addition of an active oxygen molecule by heme-Fe is hindered. The absence of F100, F114 and F476 in the interacting amino acid pocket in *3 reduces catalytic efficiency toward gliclazide. In *1, gliclazide is stabilized by the formation of two hydrogen bonds with R108 while it is absent in mutants. Further in *3 and *2/*3, the key heme-stabilizing residue, R97 stabilization is greatly reduced. Therefore, the decreased catalytic activity of these variants can be explained from the reduced access of the gliclazide to heme, and the interaction between heme and substrate is affected due to their instability in the active site.  相似文献   

6.
CYP2C19 is selective for the 4'-hydroxylation of S-mephenytoin while the highly similar CYP2C9 has little activity toward this substrate. To identify critical amino acids determining the specificity of human CYP2C19 for S-mephenytoin 4'-hydroxylation, we constructed chimeras by replacing portions of CYP2C9 containing various proposed substrate recognition sites (SRSs) with those of CYP2C19 and mutating individual residues by site-directed mutagenesis. Only a chimera containing regions encompassing SRSs 1--4 was active (30% of wild-type CYP2C19), indicating that multiple regions are necessary to confer specificity for S-mephenytoin. Mutagenesis studies identified six residues in three topological components of the proteins required to convert CYP2C9 to an S-mephenytoin 4'-hydroxylase (6% of the activity of wild-type CYP2C19). Of these, only the I99H difference located in SRS 1 between helices B and C reflects a change in a side chain that is predicted to be in the substrate-binding cavity formed above the heme prosthetic group. Two additional substitutions, S220P and P221T residing between helices F and G but not in close proximity to the substrate binding site together with five differences in the N-terminal portion of helix I conferred S-mephenytoin 4'-hydroxylation activity with a K(M) similar to that of CYP2C19 but a 3-fold lower K(cat). Three residues in helix I, S286N, V292A, and F295L, were essential for S-mephenytoin 4'-hydroxylation activity. On the basis of the structure of the closely related enzyme CYP2C5, these residues are unlikely to directly contact the substrate during catalysis but are positioned to influence the packing of substrate binding site residues and likely substrate access channels in the enzyme.  相似文献   

7.
Molecular modelling of human CYP1B1 based on homology with the mammalian P450, CYP2C5, of known three-dimensional structure is reported. The enzyme model has been used to investigate the likely mode of binding for selected CYP1B1 substrates, particularly with regard to the possible effects of allelic variants of CYP1B1 on metabolism. In general, it appears that the CYP1B1 model is consistent with known substrate selectivity for the enzyme, and the sites of metabolism can be rationalized in terms of specific contacts with key amino acid residues within the CYP1B1 heme locus. Furthermore, a mode of binding interaction for the inhibitor, alpha-naphthoflavone, is presented which accords with currently available information. The current paper shows that a combination of molecular modelling and experimental determinations on the substrate metabolism for CYP1B1 allelic variants can aid in the understanding of structure-function relationships within P450 enzymes.  相似文献   

8.
An extensive body of research on the structural properties of cytochrome P450 enzymes has established that these proteins possess a b-type heme prosthetic group which is noncovalently bound at the active site. Coordinate, electrostatic, and hydrogen bond interactions between the protein backbone and heme functional groups are readily overcome upon mild acid treatment of the enzyme, which releases free heme from the protein. In the present study, we have used a combination of HPLC, LC/ESI-MS, and SDS-PAGE techniques to demonstrate that members of the mammalian CYP4B, CYP4F, and CYP4A subfamilies bind their heme in an unusually tight manner. HPLC chromatography of CYP4B1 on a POROS R2 column under mild acidic conditions caused dissociation of less than one-third of the heme from the protein. Moreover, heme was not substantially removed from CYP4B1 under electrospray or electrophoresis conditions that readily release the prosthetic group from other non-CYP4 P450 isoforms. This was evidenced by an intact protein mass value of 59,217 +/- 3 amu for CYP4B1 (i.e., apoprotein plus heme) and extensive staining of this approximately 60 kDa protein with tetramethylbenzidine/H(2)O(2) following SDS-PAGE. In addition, treatment of CYP4B1, CYP4F3, and CYP4A5/7 with strong base generated a new, chromatographically distinct, polar heme species with a mass of 632.3 amu rather than 616.2 amu. This mass shift is indicative of the incorporation of an oxygen atom into the heme nucleus and is consistent with the presence of a novel covalent ester linkage between the protein backbone of the CYP4 family of mammalian P450s and their heme catalytic center.  相似文献   

9.
In this study we offer a mechanistic interpretation of the previously known but unexplained substrate inhibition observed for CYP2E1. At low substrate concentrations, p-nitrophenol (pNP) was rapidly turned over (47 min(-1)) with relatively low K(m) (24 microM); nevertheless, at concentrations of >100 microM, the rate of pNP oxidation gradually decreased as a second molecule bound to CYP2E1 through an effector site (K(ss) = 260 microm), which inhibited activity at the catalytic site. 4-Methylpyrazole (4MP) was a potent inhibitor for both sites through a mixed inhibition mechanism. The K(i) for the catalytic site was 2.0 microM. Although we were unable to discriminate whether an EIS or ESI complex formed, the respective inhibition constants were far lower than K(ss). Bicyclic indazole (IND) inhibited catalysis through a single CYP2E1 site (K(i) = 0.12 microM). Similarly, 4MP and IND yielded type II binding spectra that reflected the association of either two 4MP or one IND molecule(s) to CYP2E1, respectively. Based on computational docking studies with a homology model for CYP2E1, the two sites for monocyclic molecules, pNP and 4MP, exist within a narrow channel connecting the active site to the surface of the enzyme. Because of the presence of the heme iron, one site supports catalysis, whereas the other more distal effector site binds molecules that can influence the binding orientation and egress of molecules for the catalytic site. Although IND did not bind these sites simultaneously, the presence of IND at the catalytic site blocked binding at the effector site.  相似文献   

10.
Lanosterol 14α-demethylase (CYP51F1) from Candida albicans is known to be an essential enzyme in fungal sterol biosynthesis. Wild-type CYP51F1 and several of its mutants were heterologously expressed in Escherichia coli, purified, and characterized. It exhibited a typical reduced CO-difference spectrum with a maximum at 446 nm. Reconstitution of CYP51F1 with NADPH-P450 reductase gave a system that successfully converted lanosterol to its demethylated product. Titration of the purified enzyme with lanosterol produced a typical type I spectral change with Kd = 6.7 μM. The azole antifungal agents econazole, fluconazole, ketoconazole, and itraconazole bound tightly to CYP51F1 with Kd values between 0.06 and 0.42 μM. The CYP51F1 mutations F105L, D116E, Y132H, and R467K frequently identified in clinical isolates were examined to determine their effect on azole drug binding affinity. The azole Kd values of the purified F105L, D116E, and R467K mutants were little altered. A homology model of C. albicans CYP51F1 suggested that Tyr132 in the BC loop is located close to the heme in the active site, providing a rationale for the modified heme environment caused by the Y132H substitution. Taken together, functional expression and characterization of CYP51F1 provide a starting basis for the design of agents effective against C. albicans infections.  相似文献   

11.
A multifamily sequence alignment of the rabbit CYP4A members with the known structure of CYP102 indicates amino acid differences falling within the so-called substrate recognition site(s) (SRS). Chimeric proteins constructed between CYP4A4 and CYP4A7 indicate that laurate activity is affected by the residues within SRS1 and prostaglandin activity is influenced by SRS2-3. Site-directed mutant proteins of CYP4A7 found laurate and arachidonate activity markedly diminished in the R90W mutant (SRS1) and somewhat decreased in W93S. While PGE(1) activity was only slightly increased, the mutant proteins H206Y and S255F (SRS2-3), on the other hand, exhibited remarkable increases in laurate and arachidonate metabolism (3-fold) above wild-type substrate metabolism. Mutant proteins H206Y, S255F, and H206Y/S255F but not R90W/W93S, wild-type CYP4A4, or CYP4A7 metabolized arachidonic acid in the absence of cytochrome b(5). Stopped-flow kinetic experiments were performed in a CO-saturated environment performed to estimate interaction rates of the monooxygenase reaction components. The mutant protein H206Y, which exhibits 3-fold higher than wild-type substrate activity, interacts with CPR at a rate at least 10 times faster than that of wild-type CYP4A7. These experimental results provide insight regarding the residues responsible for modulation of substrate specificity, affinity, and kinetics, as well as possible localization within the enzyme structure based on comparisons with homologous, known cytochrome P450 structures.  相似文献   

12.
We report characterization and the crystal structure of the Mycobacterium tuberculosis cytochrome P450 CYP125, a P450 implicated in metabolism of host cholesterol and essential for establishing infection in mice. CYP125 is purified in a high spin form and undergoes both type I and II spectral shifts with various azole drugs. The 1.4-Å structure of ligand-free CYP125 reveals a “letterbox” active site cavity of dimensions appropriate for entry of a polycyclic sterol. A mixture of hexa-coordinate and penta-coordinate states could be discerned, with water binding as the 6th heme-ligand linked to conformation of the I-helix Val267 residue. Structures in complex with androstenedione and the antitubercular drug econazole reveal that binding of hydrophobic ligands occurs within the active site cavity. Due to the funnel shape of the active site near the heme, neither approaches the heme iron. A model of the cholesterol CYP125 complex shows that the alkyl side chain extends toward the heme iron, predicting hydroxylation of cholesterol C27. The alkyl chain is in close contact to Val267, suggesting a substrate binding-induced low- to high-spin transition coupled to reorientation of the latter residue. Reconstitution of CYP125 activity with a redox partner system revealed exclusively cholesterol 27-hydroxylation, consistent with structure and modeling. This activity may enable catabolism of host cholesterol or generation of immunomodulatory compounds that enable persistence in the host. This study reveals structural and catalytic properties of a potential M. tuberculosis drug target enzyme, and the likely mode by which the host-derived substrate is bound and hydroxylated.  相似文献   

13.
P450cam has long served as a prototype for the cytochrome P450 (CYP) gene family. But, little is known about how substrate enters its active site pocket, and how access is achieved in a way that minimizes exposure of the reactive heme. We hypothesize that P450cam may first bind substrate transiently near the mobile F-G helix that covers the active site pocket. Such a two-step binding process is kinetically required if P450cam rarely populates an open conformation-as suggested by previous literature and the inability to obtain a crystal structure of P450cam in an open conformation. Such a mechanism would minimize exposure of the heme by allowing P450cam to stay in a closed conformation as long as possible, since only brief flexing into an open conformation would be required to allow substrate entry. To test this model, we have attempted to dock a second camphor molecule into the crystal structure of camphor-bound P450cam. The docking identified only one potential entry site pocket, a well-defined cavity on the F-helix side of the F-G flap, 16 A from the heme iron. Location of this entry site pocket is consistent with our NMR T1 relaxation-based measurements of distances for a camphor that binds in fast exchange (active site camphor is known to bind in slow exchange). Presence of a second camphor binding site is also confirmed with [(1)H-(13)C] HSQC titrations of (13)CH3-threonine labeled P450cam. To confirm that camphor can bind outside of the active site pocket, (13)CH3-S-pyridine was bound to the heme iron to physically block the active site, and to serve as an NMR chemical shift probe. Titration of this P450cam-pyridine complex confirms that camphor can bind to a site outside the active site pocket, with an estimated Kd of 43 microM. The two-site binding model that is proposed based on these data is analogous to that recently proposed for CYP3A4, and is consistent with recent crystal structures of P450cam bound to tethered-substrates, which force a partially opened conformation.  相似文献   

14.
Enhanced understanding of structure-function relationships of human 21-hydroxylase, CYP21, is required to better understand the molecular causes of congenital adrenal hyperplasia. To this end, a structural model of human CYP21 was calculated based on the crystal structure of rabbit CYP2C5. All but two known allelic variants of missense type, a total of 60 disease-causing mutations and six normal variants, were analyzed using this model. A structural explanation for the corresponding phenotype was found for all but two mutants for which available clinical data are also discrepant with in vitro enzyme activity. Calculations of protein stability of modeled mutants were found to correlate inversely with the corresponding clinical severity. Putative structurally important residues were identified to be involved in heme and substrate binding, redox partner interaction, and enzyme catalysis using docking calculations and analysis of structurally determined homologous cytochrome P450s (CYPs). Functional and structural consequences of seven novel mutations, V139E, C147R, R233G, T295N, L308F, R366C, and M473I, detected in Scandinavian patients with suspected congenital adrenal hyperplasia of different severity, were predicted using molecular modeling. Structural features deduced from the models are in good correlation with clinical severity of CYP21 mutants, which shows the applicability of a modeling approach in assessment of new CYP21 mutations.  相似文献   

15.
X-ray crystal structures of CYP102A1 (P450BM-3) have shown that PHE87 rotates upon substrate binding and is in contact with the heme cofactor. Analysis of substrate binding data combined with DFT calculations suggest that the ring is rotated into an unfavorable interaction with the heme and this could drive active site rearrangement.  相似文献   

16.
We demonstrated earlier that the heme in cytochrome P450 enzymes of the CYP4A family is covalently attached to the protein through an I-helix glutamic acid residue [Hoch, U., and Ortiz de Montellano, P. R. (2001) J. Biol. Chem. 276, 11339-11346]. As the critical glutamic acid residue is conserved in many members of the CYP4F class of cytochrome P450 enzymes, we investigated covalent heme binding in this family of enzymes. Chromatographic analysis indicates that the heme is covalently bound in CYP4F1 and CYP4F4, which have the required glutamic acid residue, but not in CYP4F5 and CYP4F6, which do not. Catalytic turnover of CYP4F4 with NADPH-cytochrome P450 reductase shows that the heme is covalently bound through an autocatalytic process. Analysis of the prosthetic group in the CYP4F5 G330E mutant, into which the glutamic acid has been reintroduced, shows that the heme is partially covalently bound and partially converted to noncovalently bound 5-hydroxymethylheme. The modified heme presumably arises by trapping of a 5-methyl carbocation intermediate by a water molecule. CYP4F proteins thus autocatalytically bind their heme groups covalently in a process that requires a glutamic acid both to generate a reactive (cationic) form of the heme methyl and to trap it to give the ester bond.  相似文献   

17.
Cytochrome P450 2D6 (CYP2D6) is one of the most important drug-metabolizing enzymes in humans. Resonance Raman data, reported for the first time for CYP2D6, show that the CYP2D6 heme is found to be in a six-coordinated low-spin state in the absence of substrates, and it is perturbed to different extents by bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine (MDMA). Dextromethorphan and MDMA induce in CYP2D6 a significant amount of five-coordinated high-spin heme species and reduce the polarity of its heme-pocket, whereas bufuralol does not. Spectra of the F120A mutant CYP2D6 suggest that Phe120 is involved in substrate-binding of dextromethorphan and MDMA, being responsible for the spectral differences observed between these two compounds and bufuralol. These differences could be explained postulating a different substrate mobility for each compound in the CYP2D6 active site, consistently with the role previously suggested for Phe120 in binding dextromethorphan and MDMA.  相似文献   

18.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most difficult to biodegradate and the most toxic dioxin congener. Previously, we demonstrated in silico the ability of pig CYP1A1 to hydroxylate 2,7-dichlorodibenzo-p-dioxin (DiCDD), but not TCDD. To increase our knowledge concerning the low effectiveness of TCDD biodegradability, we analyzed in silico the binding selectivity and affinity between pig CYP1B1 and the two dioxins by means of molecular modeling. We also compared the effects of TCDD and DiCDD on CYP1B1 gene expression (qRT-PCR) and catalytic (EROD) activity in porcine granulosa cells. It was found that DiCDD and TCDD were stabilized within the pig CYP1B1 active site by hydrophobic interactions. The analysis of substrate channel availability revealed that both dioxins opened the exit channel S, allowing metabolites to leave the enzyme active site. Moreover, DiCDD and TCDD increased the CYP1B1 gene expression and catalytic activity in porcine granulosa cells. On the other hand, TCDD demonstrated higher than DiCDD calculated affinity to pig CYP1B1, hindering TCDD exit from the active site. The great distance between CYP1B1's heme and TCDD also might contribute to the lower hydroxylation effectiveness of TCDD compared to that of DiCDD. Moreover, the narrow active site of pig CYP1B1 may immobilize TCDD molecule, inhibiting its hydroxylation. The results of the access channel analysis and the distance from pig CYP1B1's heme to TCDD suggest that the metabolizing potential of pig CYP1B1 is higher than that of pig CYP1A1. However, this potential is probably not sufficiently high to considerably improve the slow TCDD biodegradation.  相似文献   

19.
Human cytochrome P450 (CYP) 2B6 activates the anticancer prodrug cyclophosphamide (CPA) by 4-hydroxylation. In contrast, the same enzyme catalyzes N-deethylation of a structural isomer, the prodrug ifosfamide (IFA), thus causing severe adverse drug effects. To model the molecular interactions leading to a switch in regioselectivity, the structure of CYP2B6 was modeled based on the structure of rabbit CYP2C5. We modeled the missing 22-residue loop in CYP2C5 between helices F and G (the F-G loop), which is not resolved in the X-ray structure, by molecular dynamics (MD) simulations using a simulated annealing protocol. The modeled conformation of the loop was validated by unconstrained MD simulations of the complete enzymes (CYP2C5 and CYP2B6) in water for 70 and 120 ps, respectively. The simulations were stable and led to a backbone r.m.s. deviation of 1.7 A between the two CYPs.The shape of the substrate binding site of CYP2B6 was further analyzed. It consists of three well-defined hydrophobic binding pockets adjacent to the catalytic heme. Size, shape and hydrophobicity of these pockets were compared to the shapes of the two structurally isomeric substrates. In their preferred orientation in the binding site, both substrates fill all three binding pockets without repulsive interactions. The distance to the heme iron is short enough for 4-hydroxylation and N-deethylation to occur for CPA and IFA, respectively. However, if the substrates are docked in the non-preferred orientation (such that 4-hydroxylation and N-deethylation would occur for IFA and CPA, respectively), one pocket is left empty, and clashes were observed between the substrates and the enzyme.  相似文献   

20.
Lafite P  André F  Zeldin DC  Dansette PM  Mansuy D 《Biochemistry》2007,46(36):10237-10247
The oxidation of six derivatives of terfenadone by recombinant human CYP2J2 (CYP = cytochrome P450) was studied by high-performance liquid chromatography coupled to mass spectrometry (MS) using tandem MS techniques and by 1H NMR spectroscopy. CYP2J2 exhibited a surprising regioselectivity in favor of the hydroxylation of the substrate terminal chain at the weakly reactive homobenzylic position. In contrast, hydroxylation of the same substrates by CYP3A4 mainly occurred on the most chemically reactive sites of the substrates (N-oxidation and benzylic hydroxylation). A 3D homology model of CYP2J2 was constructed using recently published structures of CYP2A6, CYP2B4, CYP2C8, CYP2C9, and CYP2D6 as templates. In contrast with other CYP2 structures, it revealed an active site cavity with a severely restricted access of substrates to the heme through a narrow hydrophobic channel. Dynamic docking of terfenadone derivatives in the CYP2J2 active site allowed one to interpret the unexpected regioselectivity of the hydroxylation of these substrates by CYP2J2, which is mainly based on this restricted access to the iron. The structural features that have been found to be important for recognition of substrates or inhibitors by CYP2J2 were also interpreted on the basis of CYP2J2-substrate interactions in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号