首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polysialyltransferases (polySTs) play critical roles in diverse biological processes, including neural development, tumorigenesis, and bacterial pathogenesis. Although the bacterial enzymes are presumed to have evolved to provide molecular mimics of the host-specific polysialic acid, no analytical technique is currently available to facilitate a direct comparison of the bacterial and vertebrate enzymes. Here we describe a new fluorescent acceptor, a 1,2-diamino-4,5-methylenedioxybenzene (DMB)-labeled trimer of α2,8-linked sialic acid (DMB-DP3), which primes both pro- and eukaryotic polySTs. High-performance liquid chromatography separation and fluorescence detection (HPLC-FD) of reaction products enabled the sensitive and quantitative detection of polyST activity, even using cell lysates as enzyme source, and revealed product profiles characteristic of each enzyme. Single product resolution afforded by this assay system revealed mechanistic insights into a kinetic lag phase exhibited by the polyST from Neisseria meningitidis serogroup B during chain elongation. DMB-DP3 is the first fluorescent acceptor shown to prime the mammalian polySTs. Moreover, product profiles obtained for the two murine polySTs provided direct biochemical evidence for enzymatic properties that had, until now, only been inferred from the analysis of biological samples. With DMB-DP3, we introduce a universal acceptor that provides an easy, fast, and reliable system for the comprehensive mechanistic and comparative analysis of polySTs.  相似文献   

2.
Polysialic acid, a homopolymer of alpha2,8-linked sialic acid expressed on the neural cell adhesion molecule (NCAM), is thought to play critical roles in neural development. Two highly homologous polysialyltransferases, ST8Sia II and ST8Sia IV, which belong to the sialyltransferase gene family, synthesize polysialic acid on NCAM. By contrast, ST8Sia III, which is moderately homologous to ST8Sia II and ST8Sia IV, adds oligosialic acid to itself but very inefficiently to NCAM. Here, we report domains of polysialyltransferases required for NCAM recognition and polysialylation by generating chimeric enzymes between ST8Sia IV and ST8Sia III or ST8Sia II. We first determined the catalytic domain of ST8Sia IV by deletion mutants. To identify domains responsible for NCAM polysialylation, different segments of the ST8Sia IV catalytic domain, identified by the deletion experiments, were replaced with corresponding segments of ST8Sia II and ST8Sia III. We found that larger polysialic acid was formed on the enzymes themselves (autopolysialylation) when chimeric enzymes contained the carboxyl-terminal region of ST8Sia IV. However, chimeric enzymes that contain only the carboxyl-terminal segment of ST8Sia IV and the amino-terminal segment of ST8Sia III showed very weak activity toward NCAM, even though they had strong activity in polysialylating themselves. In fact, chimeric enzymes containing the amino-terminal portion of ST8Sia IV fused to downstream sequences of ST8Sia III inhibited NCAM polysialylation in vitro, although they did not polysialylate NCAM. These results suggest that in polysialyltransferases the NCAM recognition domain is distinct from the polysialylation domain and that some chimeric enzymes may act as a dominant negative enzyme for NCAM polysialylation.  相似文献   

3.
Poly-alpha-2,8-sialic acid (polysialic acid) is a post-translational modification of the neural cell adhesion molecule (NCAM) and an important regulator of neuronal cell-cell interactions. The synthesis of polysialic acid depends on the two polysialyltransferases ST8SiaII and ST8SiaIV. Understanding the catalytic mechanisms of the polysialyltransferases is critical toward the aim of influencing physiological and pathophysiological functions mediated by polysialic acid. We recently demonstrated that polysialyltransferases are bifunctional enzymes exhibiting auto- and NCAM polysialylation activity. Autopolysialylation occurs on N-glycans of the enzymes, and glycosylation variants lacking sialic acid and galactose were found to be inactive for both auto- and NCAM polysialylation. In the present study, we have analyzed the number and functional importance of N-linked oligosaccharides present on polysialyltransferases. We demonstrate that autopolysialylation depends on specific N-glycans attached to Asn(74) in ST8SiaIV and Asn(89) and Asn(219) in ST8SiaII. Deletion of polysialic acid acceptor sites by site-directed mutagenesis rendered the polysialyltransferases inactive in vitro and in vivo. The inactivity of autopolysialylation-negative polysialyltransferases in vivo was not caused by the absence or default targeting of the enzymes. The data presented in this study clearly show that active polysialyltransferases are competent to perform autopolysialylation and provide strong evidence for a tight functional link between the two catalytic functions.  相似文献   

4.
The presence of alpha2,8-linked polysialic acid on the neural cell adhesion molecule (NCAM) is known to modulate cell interactions during development and oncogenesis. Two enzymes, the alpha2,8-polysialyltransferases ST8Sia IV()/PST and ST8Sia II()/STX are responsible for the polysialylation of NCAM. We previously reported that both ST8Sia IV/PST and ST8Sia II/STX enzymes are themselves modified by alpha2,8-linked polysialic acid chains, a process called autopolysialylation. In the case of ST8Sia IV/PST, autopolysialylation is not required for enzymatic activity. However, whether the autopolysialylation of ST8Sia II/STX is required for its ability to polysialylate NCAM is unknown. To understand how autopolysialylation impacts ST8Sia II/STX enzymatic activity, we employed a mutagenesis approach. We found that ST8Sia II/STX is modified by six Asn-linked oligosaccharides and that polysialic acid is distributed among the oligosaccharides modifying Asn 89, 219, and 234. Coexpression of a nonautopolysialylated ST8Sia II/STX mutant with NCAM demonstrated that autopolysialylation is not required for ST8Sia II/STX polysialyltransferase activity. In addition, catalytically active, nonautopolysialylated ST8Sia II/STX does not polysialylate any endogenous COS-1 cell proteins, highlighting the protein specificity of polysialylation. Furthermore, immunoblot analysis of NCAM polysialylation by autopolysialylated and nonautopolysialylated ST8Sia II/STX suggests that the NCAM is polysialylated to a higher degree by autopolysialylated ST8Sia II/STX. Therefore, we conclude that autopolysialylation of ST8Sia II/STX, like that of ST8Sia IV/PST, is not required for, but does enhance, NCAM polysialylation.  相似文献   

5.
Polysialyltransferase-1 (PST; ST8Sia IV) is one of the alpha2, 8-polysialyltransferases responsible for the polysialylation of the neural cell adhesion molecule (NCAM). The presence of polysialic acid on NCAM has been shown to modulate cell-cell and cell-matrix interactions. We previously reported that the PST enzyme itself is modified by alpha2,8-linked polysialic acid chains in vivo. To understand the role of autopolysialylation in PST enzymatic activity, we employed a mutagenesis approach. We found that PST is modified by five Asn-linked oligosaccharides and that the vast majority of the polysialic acid is found on the oligosaccharide modifying Asn-74. In addition, the presence of the oligosaccharide on Asn-119 appeared to be required for folding of PST into an active enzyme. Co-expression of the PST Asn mutants with NCAM demonstrated that autopolysialylation is not required for PST polysialyltransferase activity. Notably, catalytically active, non-autopolysialylated PST does not polysialylate any endogenous COS-1 cell proteins, highlighting the protein specificity of polysialylation. Immunoblot analyses of NCAM polysialylation by polysialylated and non-autopolysialylated PST suggests that the NCAM is polysialylated to a higher degree by autopolysialylated PST. We conclude that autopolysialylation of PST is not required for, but does enhance, NCAM polysialylation.  相似文献   

6.
Polysialylated neural cell adhesion molecule (NCAM) is thought to play a critical role in neural development. Polysialylation of NCAM was shown to be achieved by two alpha2,8-polysialyltransferases, ST8Sia IV (PST) and ST8Sia II (STX), which are moderately related to another alpha2,8-sialyltransferase, ST8Sia III. Here we describe that all three alpha2,8-sialyltransferases can utilize oligosaccharides as acceptors but differ in the efficiency of adding polysialic acid on NCAM. First, we found that ST8Sia III can form polysialic acid on the enzyme itself (autopolysialylation) but not on NCAM. These discoveries prompted us to determine if ST8Sia IV and ST8Sia II share the property of ST8Sia III in utilizing low molecular weight oligosaccharides as acceptors. By using a newly established method, we found that ST8Sia IV, ST8Sia II, and ST8Sia III all add oligosialic and polysialic acid on various sialylated N-acetyllactosaminyl oligosaccharides, including NCAM N-glycans, fetuin N-glycans, synthetic sialylated N-acetyllactosamines, and on alpha(2)-HS-glycoprotein. Our results also showed that monosialyl and disialyl N-acetyllactosamines can serve equally as an acceptor, suggesting that no initial addition of alpha2,8-sialic acid is necessary for the action of polysialyltransferases. Polysialylation of NCAM by ST8Sia IV and ST8Sia II is much more efficient than polysialylation of N-glycans isolated from NCAM. Moreover, ST8Sia IV and ST8Sia II catalyze polysialylation of NCAM much more efficiently than ST8Sia III. These results suggest that no specific acceptor recognition is involved in polysialylation of low molecular weight sialylated oligosaccharides, whereas the enzymes exhibit pronounced acceptor specificities if glycoproteins are used as acceptors.  相似文献   

7.
The neural cell adhesion molecule (NCAM) is the major substrate for the polysialyltransferases (polySTs), ST8SiaII/STX and ST8SiaIV/PST. The polysialylation of NCAM N-glycans decreases cell adhesion and alters signaling. Previous work demonstrated that the first fibronectin type III repeat (FN1) of NCAM is required for polyST recognition and the polysialylation of the N-glycans on the adjacent Ig5 domain. In this work, we highlight the importance of an FN1 acidic patch in polyST recognition and also reveal that the polySTs are required to interact with sequences in the Ig5 domain for polysialylation to occur. We find that features of the Ig5 domain of the olfactory cell adhesion molecule (OCAM) are responsible for its lack of polysialylation. Specifically, two basic OCAM Ig5 residues (Lys and Arg) found near asparagines equivalent to those carrying the polysialylated N-glycans in NCAM substantially decrease or eliminate polysialylation when used to replace the smaller and more neutral residues (Ser and Asn) in analogous positions in NCAM Ig5. This decrease in polysialylation does not reflect altered glycosylation but instead is correlated with a decrease in polyST-NCAM binding. In addition, inserting non-conserved OCAM sequences into NCAM Ig5, including an “extra” N-glycosylation site, decreases or completely blocks NCAM polysialylation. Taken together, these results indicate that the polySTs not only recognize an acidic patch in the FN1 domain of NCAM but also must contact sequences in the Ig5 domain for polysialylation of Ig5 N-glycans to occur.  相似文献   

8.
The glycan polysialic acid is well-known as a unique posttranslational modification of the neural cell adhesion molecule NCAM. Despite remarkable acceptor specificity, however, a few other proteins can be targets of polysialylation. Here, we recapitulate the biosynthesis of polysialic acid by the two polysialyltransferases ST8SIA2 and ST8SIA4 and highlight the increasing evidence that variation in the human ST8SIA2 gene is linked to schizophrenia and possibly other neuropsychiatric disorders. Moreover, we summarize the knowledge on the role of NCAM polysialylation in brain development gained by the analysis of NCAM- and polysialyltransferase-deficient mouse models. The last part of this review is focused on recent advances in identifying SynCAM 1 and neuropilin-2 as novel acceptors of polysialic acid in NG2 cells of the perinatal brain and in dendritic cells of the immune system, respectively.  相似文献   

9.
10.
Polysialic acid represents a unique posttranslational modification of the neural cell adhesion molecule (NCAM). It is built as a homopolymer of up to 150 molecules of alpha 2-8-linked sialic acids on N-glycans of the fifth immunoglobulin-like domain of NCAM. Besides its role in cell migration and axonal growth during development, polysialic acids are closely related to tumor malignancy as they are linked to the malignant potential of several tumors, such as undifferentiated neuroblastoma. Polysialic acid expression is significantly more frequent in high-grade tumors than in low-grade tumors. It is synthesized in the Golgi apparatus by the activity of two closely related enzymes, the polysialyltransferases ST8SiaII and ST8SiaIV. Interestingly, polysialylation of tumors is not equally synthesized by both polysialyltransferases. It has been shown that especially the ST8SiaII gene is not expressed in some normal tissue, but is strongly expressed in tumor tissue. Here we summarize some knowledge on the role of polysialic acid in cell migration and tumor progression and present novel evidence that interfering with polysialylation using unnatural sialic acid precursors decreases the migration of neuroblastoma cells.  相似文献   

11.
A limited number of mammalian proteins are modified by polysialic acid, with the neural cell adhesion molecule (NCAM) being the most abundant of these. We hypothesize that polysialylation is a protein-specific glycosylation event and that an initial protein-protein interaction between polysialyltransferases and glycoprotein substrates mediates this specificity. To evaluate the regions of NCAM required for recognition and polysialylation by PST/ST8Sia IV and STX/ST8Sia II, a series of domain deletion proteins were generated, co-expressed with each enzyme, and their polysialylation analyzed. A protein consisting of the fifth immunoglobulin-like domain (Ig5), which contains the reported sites of polysialylation, and the first fibronectin type III repeat (FN1) was polysialylated by both enzymes, whereas a protein consisting of Ig5 alone was not polysialylated by either enzyme. This demonstrates that the Ig5 domain of NCAM and FN1 are sufficient for polysialylation, and suggests that the FN1 may constitute an enzyme recognition and docking site. Two other NCAM mutants, NCAM-6 (Ig1-5) and NCAM-7 (FN1-FN2), were weakly polysialylated by PST/ST8Sia IV, suggesting that a weaker enzyme recognition site may exist within the Ig domains, and that glycans in the FN region are polysialylated. Further analysis indicated that O-linked oligosaccharides in NCAM-7, and O-linked and N-linked glycans in full-length NCAM, are polysialylated when these proteins are co-expressed with the polysialyltransferases in COS-1 cells. Our data support a model in which the polysialyltransferases bind to the FN1 of NCAM to polymerize polysialic acid chains on appropriately presented glycans in adjacent regions.  相似文献   

12.
Recent studies have demonstrated the involvement of two polysialyltransferases in neural cell adhesion molecule (N-CAM) polysialylation. The availability of cDNAs encoding these enzymes facilitated studies on polysialylation of N-CAM. However, there is a dearth of detailed structural information on the degree of polymerization (DP), DP ranges, and the influence of embryogenesis on the DP. It is also unclear how many polysialic acid (polySia) chains are attached to a single core N-glycan. In this paper we applied new, efficient, and sensitive high pressure liquid chromatography methods to qualitatively and quantitatively analyze the polySia structures expressed on embryonic and adult chicken brain N-CAM. Our studies resulted in the following new findings. 1) The DP of the polySia chains was invariably 40-50 throughout developmental stages from embryonic day 5 to 21 after fertilization. In contrast, glycopeptides containing polySia with shorter DPs, ranging from 15 to 35, were isolated from adult brain. 2) Chemical evidence showed glycan chains abundant in Neu5Acalpha2,8Neu5Ac were expressed during all developmental stages including adult. 3) Levels of both di- and polySia were found to show distinctive changes during embryonic development.  相似文献   

13.
14.
Sialic acid (Sia) is expressed as terminal sugar in many glycoconjugates and plays an important role during development and regeneration. Addition of homopolymers of Sia (polysialic acid; polySia/PSA) is a unique and highly regulated post-translational modification of the neural cell adhesion molecule (NCAM). The presence of polySia affects NCAM-dependent cell adhesion and plays an important role during brain development, neural regeneration, and plastic processes including learning and memory. PolySia-NCAM is expressed on several neuroendocrine tumors of high malignancy and correlates with poor prognosis. Two closely related enzymes, the polysialyltransferases ST8SiaII and ST8SiaIV, catalyze the biosynthesis of polySia. This review summarizes recent knowledge on Sia biosynthesis and the correlation between Sia biosynthesis and polysialylation of NCAM and report on approaches to modify the degree of polySia on NCAM in vitro and in vivo. First, we describe the inhibition of polysialylation of NCAM in ST8SiaII-expressing cells using synthetic Sia precursors. Second, we demonstrate that the key enzyme of the Sia biosynthesis (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase) regulates and limits the synthesis of polySia by controlling the cellular Sia concentration.  相似文献   

15.
In this study we have examined how unnatural sialic acids can alter polysialic acid expression and influence the adhesive properties of the neural cell adhesion molecule (NCAM). Unnatural sialic acids are generated by metabolic conversion of synthetic N-acyl mannosamines and are typically incorporated into cell-surface glycoconjugates. However, N-butanoylmannosamine and N-pentanoylmannosamine are effective inhibitors of polysialic acid (PSA) synthesis in stably transfected HeLa cells expressing NCAM and the polysialyltransferase STX. These cells were used as substrates to examine the effect of inhibiting PSA synthesis on the development of neurons derived from the chick dorsal root ganglion. N-butanoylmannosamine blocked polysialylation of NCAM and significantly reduced neurite outgrowth comparable with enzymatic removal of PSA by endoneuraminidases. As a result, neurite outgrowth was similar to that observed for non-polysialylated NCAM. In contrast, previous studies have shown that N-propanoyl sialic acid (SiaProp), generated from N-propanoylmannosamine, is readily accepted by polysialyltransferases and permits the extension of poly(SiaProp) on NCAM. Despite being immunologically distinct, poly(SiaProp) can promote neurite outgrowth similarly to natural polysialic acid. Thus, subtle structural differences in PSA resulting from the incorporation of SiaProp residues do not alter the antiadhesive properties of polysialylated NCAM.  相似文献   

16.
Polysialic acid is an anti-adhesive protein modification that promotes cell migration and the plasticity of cell interactions. Because so few proteins carry polysialic acid, we hypothesized that polysialylation is a protein-specific event and that a specific polysialyltransferase-substrate interaction is the basis of this specificity. The major substrate for the polysialyltransferases is the neural cell adhesion molecule, NCAM. Previous work demonstrates that the first fibronectin type III repeat of NCAM (FN1) was necessary for the polysialylation of the N-glycans on the adjacent immunoglobulin domain (Ig5) (Close, B. E., Mendiratta, S. S., Geiger, K. M., Broom, L. J., Ho, L. L., and Colley, K. J. (2003) J. Biol. Chem. 278, 30796-30805). This suggested that FN1 may be a recognition site for the polysialyltransferases. In this study, we showed that the second fibronectin type III repeat (FN2) of NCAM cannot replace FN1. Arg substitution of three unique acidic amino acids on the surface of FN1 eliminated polysialylation not only of a minimal Ig5-FN1 substrate but also of full-length NCAM. Ala substitution of these residues eliminated Ig5-FN1 polysialylation but not that of full-length NCAM, suggesting that the two proteins are interacting differently with the enzymes and that multiple residues are involved in the enzyme-NCAM interaction. By using another truncated protein, Ig5-FN1-FN2, we confirmed the importance of enzyme-substrate positioning for optimal recognition and polysialylation. In sum, we have found that acidic residues on the surface of FN1 are part of a larger protein interaction region that is critical for NCAM recognition and polysialylation by the polysialyltransferases.  相似文献   

17.
To determine the molecular basis of eukaryotic polysialylation, the function of a structurally unique polybasic motif of 32 amino acids (pI∼12) in the polysialyltransferases (polySTs), ST8Sia II (STX and ST8Sia IV (PST) was investigated. This motif, designated the “polysialyltransferase domain” (PSTD), is immediately upstream of the sialylmotif S (SM-S). PolyST activity was lost in COS-1 mutants in which the entire PSTD in ST8Sia IV was deleted, or in mutants in which 10 and 15 amino acids in either the N- or C- terminus of PSTD were deleted. Site-directed mutagenesis showed that Ile275, Lys276 and Arg277 in the C-terminus of PSTD in ST8Sia IV, which is contiguous with the N-terminus of sialylmotif-S, were essential for polysialylation. Arg252 in the N-terminus segment of the PSTD was also required, as was the overall positive charge. Thus, multiple domains in the polySTs can influence their activity. Immunofluorescent microscopy showed that the mutated proteins were folded correctly, based on their Golgi localization. The structural distinctness of the conserved PSTD in the polySTs, and its absence in the mono- oligoSTs, suggests that it is a “polymerization domain” that distinguishes a polyST from a monosialyltransferases. We postulate that the electrostatic interaction between the polybasic PSTD and the polyanionic polySia chains may function to tether nascent polySia chains to the enzyme, thus facilitating the processive addition of new Sia residues to the non-reducing end of the growing chain. In accord with this hypothesis, the polyanion heparin was shown to inhibit recombinant human ST8Sia II and ST8Sia IV at 10 μM.  相似文献   

18.
The study of new biomaterials is the objective of many current research projects in biotechnological medicine. A promising scaffold material for the application in tissue engineering or other biomedical applications is polysialic acid (polySia), a homopolymer of alpha2,8-linked sialic acid residues, which represents a posttranslational modification of the neural cell adhesion molecule and occurs in all vertebrate species. Some neuroinvasive bacteria like, e.g. Escherichia coli K1 (E. coli K1) use polySia as capsular polysaccharide. In this latter case long polySia chains with a degree of polymerization of >200 are linked to lipid anchors. Since in vertebrates no polySia degrading enzymes exist, the molecule has a long half-life in the organism, but degradation can be induced by the use of endosialidases, bacteriophage-derived enzymes with pronounced specificity for polySia. In this work a biotechnological process for the production of bacterial polysialic acid is presented. The process includes the development of a multiple fed-batch cultivation of the E. coli K1 strain and a complete downstream strategy of polySia. A controlled feed of substrate at low concentrations resulted in an increase of the carbon yield (C(product)/C(substrate)) from 2.2 to 6.6%. The downstream process was optimized towards purification of long polySia chains. Using a series of adjusted precipitation steps an almost complete depletion of contaminating proteins was achieved. The whole process yielded 1-2g polySia from a 10-l bacterial culture with a purity of 95-99%. Further product analysis demonstrated maximum chain length of >130 for the final product.  相似文献   

19.
Biosynthesis and processing of polysialylated NCAM by AtT-20 cells   总被引:4,自引:0,他引:4  
Polysialylation is a unique posttranslational modification of NCAM. In this report, we investigated the kinetics and localization of NCAM polysialylation in AtT-20 cells. We show that this cell line expresses both the 180 kDa and 140 kDa isoforms of NCAM, in agreement with the proposal that it belongs to a neuroendocrine lineage. The two NCAM chains bear polysialic acid (PSA) and migrate in sodium dodecyl sulfate (SDS) gels as a diffuse, high Mr component, as has been observed in fetal brain. Polysialylation of neosynthesized NCAM was found to be a rapid event, occurring within 8 to 13 min after the beginning of the pulse and appeared to be essentially complete as soon as it was detected. Treatment with endosialidase specific for PSA led to the appearance of two components of 200 and 160 kDa which still bear short sialosyl oligomers. Neither this treatment nor the slowing down of synthesis by lowering the temperature revealed any intermediate bearing oligomers of polysialic acid in the process of elongation suggesting the possibility that polysialylation may involve the transfer to NCAM of preassembled completed PSA chains. Endo H resistance preceded polysialylation, which was totally blocked by monensin and swainsonine which inhibit transport of plasma membrane or secreted proteins within the Golgi complex and the maturation of complex-type oligosaccharide chains, respectively. Depletion of cell-surface NCAM with proteinase K did not prevent the appearance of polysialylated molecules in similar amounts as in untreated cells suggesting that NCAM polysialylation occurs either in a late Golgi or in a post-Golgi compartment but before the molecules reach the plasma membrane.  相似文献   

20.
Polysialic acids are bioactive carbohydrates found in eukaryotes and some bacterial pathogens. The bacterial polysialyltransferases (PSTs), which catalyze the synthesis of polysialic acid capsules, have previously been identified in select strains of Escherichia coli and Neisseria meningitidis and are classified in the Carbohydrate-Active enZYmes Database as glycosyltransferase family GT-38. In this study using DNA sequence analysis and functional characterization we have identified a novel polysialyltransferase from the bovine/ovine pathogen Mannheimia haemolytica A2 (PSTMh). The enzyme was expressed in recombinant form as a soluble maltose-binding-protein fusion in parallel with the related PSTs from E. coli K1 and N. meningitidis group B in order to perform a side-by-side comparison. Biochemical properties including solubility, acceptor preference, reaction pH optima, thermostability, kinetics, and product chain length for the enzymes were compared using a synthetic fluorescent acceptor molecule. PSTMh exhibited biochemical properties that make it an attractive candidate for chemi-enzymatic synthesis applications of polysialic acid. The activity of PSTMh was examined on a model glycoprotein and the surface of a neuroprogenitor cell line where the results supported its development for use in applications to therapeutic protein modification and cell surface glycan remodelling to enable cell migration at implantation sites to promote wound healing. The three PSTs examined here demonstrated different properties that would each be useful to therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号