首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Addition of alcohols to cytochrome P450cam (CYP101) was shown to release the substrate camphor from the heme pocket of the enzyme. The release of the substrate was found to be caused both due to increased solubility of the substrate in solution in presence of alcohol and due to change in the tertiary structure of the active site of the enzyme. The far-UV CD and near-UV CD spectra reveal that addition of alcohols to cytochrome P450cam cause a small change in the secondary structural elements but a significant change in the tertiary structural organization of this enzyme. The CD spectra at the heme region at various concentrations of alcohols indicate a substantial change in the tertiary structural organization around the heme moiety too. The equilibrium constant associated with the binding of camphor to Cyt P450cam is strongly dependent on the concentration of alcohols and the corresponding free energy associated with the binding is found to scale linearly with the concentration of alcohols. Kinetic experiments on binding of camphor to Cyt P450cam show that both k(on) and k(off) rate constants are strongly affected by addition of alcohols suggesting that alcohol expel camphor out of the heme cavity of Cyt P450cam by affecting tertiary structure of Cyt P450cam as well as by modifying the solubility properties of camphor in aqueous medium.  相似文献   

2.
P450cam has long served as a prototype for the cytochrome P450 (CYP) gene family. But, little is known about how substrate enters its active site pocket, and how access is achieved in a way that minimizes exposure of the reactive heme. We hypothesize that P450cam may first bind substrate transiently near the mobile F-G helix that covers the active site pocket. Such a two-step binding process is kinetically required if P450cam rarely populates an open conformation-as suggested by previous literature and the inability to obtain a crystal structure of P450cam in an open conformation. Such a mechanism would minimize exposure of the heme by allowing P450cam to stay in a closed conformation as long as possible, since only brief flexing into an open conformation would be required to allow substrate entry. To test this model, we have attempted to dock a second camphor molecule into the crystal structure of camphor-bound P450cam. The docking identified only one potential entry site pocket, a well-defined cavity on the F-helix side of the F-G flap, 16 A from the heme iron. Location of this entry site pocket is consistent with our NMR T1 relaxation-based measurements of distances for a camphor that binds in fast exchange (active site camphor is known to bind in slow exchange). Presence of a second camphor binding site is also confirmed with [(1)H-(13)C] HSQC titrations of (13)CH3-threonine labeled P450cam. To confirm that camphor can bind outside of the active site pocket, (13)CH3-S-pyridine was bound to the heme iron to physically block the active site, and to serve as an NMR chemical shift probe. Titration of this P450cam-pyridine complex confirms that camphor can bind to a site outside the active site pocket, with an estimated Kd of 43 microM. The two-site binding model that is proposed based on these data is analogous to that recently proposed for CYP3A4, and is consistent with recent crystal structures of P450cam bound to tethered-substrates, which force a partially opened conformation.  相似文献   

3.
Crystal structure of substrate-free Pseudomonas putida cytochrome P-450   总被引:6,自引:0,他引:6  
T L Poulos  B C Finzel  A J Howard 《Biochemistry》1986,25(18):5314-5322
The crystal structure of Pseudomonas putida cytochrome P-450cam in the substrate-free form has been refined at 2.20-A resolution and compared to the substrate-bound form of the enzyme. In the absence of the substrate camphor, the P-450cam heme iron atom is hexacoordinate with the sulfur atom of Cys-357 providing one axial heme ligand and a water molecule or hydroxide ion providing the other axial ligand. A network of hydrogen-bonded solvent molecules occupies the substrate pocket in addition to the iron-linked aqua ligand. When a camphor molecule binds, the active site waters including the aqua ligand are displaced, resulting in a pentacoordinate high-spin heme iron atom. Analysis of the Fno camphor - F camphor difference Fourier and a quantitative comparison of the two refined structures reveal that no detectable conformational change results from camphor binding other than a small repositioning of a phenylalanine side chain that contacts the camphor molecule. However, large decreases in the mean temperature factors of three separate segments of the protein centered on Tyr-96, Thr-185, and Asp-251 result from camphor binding. This indicates that camphor binding decreases the flexibility in these three regions of the P-450cam molecule without altering the mean position of the atoms involved.  相似文献   

4.
Resonance Raman spectroscopy at 2.5cm(-1) resolution was used to probe differences in wild-type and Y96F mutant P450cam (CYP101), both with and without bound camphor or styrene substrates. In the substrate-free state, the spin state equilibrium is shifted from 6-coordinate low spin (6CLS) toward more 5-coordinate high spin (5CHS) when tyrosine-96 in the substrate pocket is replaced by phenylalanine. About 25% of substrate-free Y96F mutant is 5CHS as opposed to 8% for substrate-free wild-type P450cam. Spin equilibrium constants calculated from Raman intensities indicate that the driving force for electron transfer from putidaredoxin, the natural redox partner of P450cam, is significantly smaller on styrene binding than for camphor binding. Spectral differences suggest that there is a tilt in camphor toward the pyrrole III ring on Y96F mutation. This finding is consistent with the altered product distribution found for camphor hydroxylation by the Y96F mutant relative to the single enantiomer produced by the wild-type enzyme.  相似文献   

5.
Substrate binding to cytochrome P450cam is generally considered to be a two-step process. The first step corresponds to the entrance of the substrate, camphor, into the heme pocket. The second step corresponds to a spin transition (low spin-->high spin) of the iron in the protein-substrate complex. This spin transition is related to the mobility of the substrate inside the active site [Biochim Biophys Acta 1338 (1997) 77]. Potassium cations (K(+)) have a specific effect on the spin equilibrium. This is generally attributed to the K(+) ion-induced conformational change of tyrosine 96, the hydroxyl group of which is hydrogen bonded to the keto group of camphor and results in optimum substrate orientation and reduced mobility of this substrate in the active site. In the present paper, we show that K(+) not only affects the substrate-Tyr 96 couple, but acts more globally since K(+) effects are also observed in the Tyr96Phe mutant as well as in complexes with camphor-analogues. Large compounds, that fit well in the heme pocket and bind with higher affinity than camphor, display high spin contents that are less dependent on the presence of K(+). In contrast, K(+) has a significant effect on the high spin content of substrate-cytochrome P450cam complexes with looser interactions. We conclude that large compounds with higher affinities than camphor have more van der Waals contacts with the active site residues. Their mobilities are then reduced and less dependent on the presence of K(+). In this study, we also explored, for comparison, the K(+) effect on the spin transition state of another member of the P450 superfamily, cytochrome P450lin. This effect is not as strong as those observed for cytochrome P450cam. Even though the spin equilibrium does not change dramatically in the presence of K(+) or Na(+), the value of the dissociation constant (K(d)) for linalool binding is significantly affected by ionic strength. Analysis of the thermodynamic parameters for the linalool binding strongly suggests that, similarly to our previous finding for cytochrome P450cam, electrostatic gates participate in the control of substrate access.  相似文献   

6.
Cytochrome P450s are a superfamily of heme containing enzymes that use molecular oxygen and electrons from reduced nicotinamide cofactors to monooxygenate organic substrates. The fatty acid hydroxylase P450BM-3 has been particularly widely studied due to its stability, high activity, similarity to mammalian P450s, and presence of a cytochrome P450 reductase domain that allows the enzyme to directly receive electrons from NADPH without a requirement for additional redox proteins. We previously characterized the substrate N-palmitoylglycine, which found extensive use in studies of P450BM-3 due to its high affinity, high turnover number, and increased solubility as compared to fatty acid substrates. Here, we report that even higher affinity substrates can be designed by acylation of other amino acids, resulting in P450BM-3 substrates with dissociation constants below 100 nM. N-Palmitoyl-l-leucine and N-palmitoyl-l-methionine were found to have the highest affinity, with dissociation constants of less than 8 nM and turnover numbers similar to palmitic acid and N-palmitoylglycine. The interactions of the amino acid side chains with a hydrophobic pocket near R47, as revealed by our crystal structure determination of N-palmitoyl-l-methionine bound to the heme domain of P450BM-3, appears to be responsible for increasing the affinity of substrates. The side chain of R47, previously shown to be important in interactions with negatively charged substrates, does not interact strongly with N-palmitoyl-l-methionine and is found positioned at the enzyme-solvent interface. These are the tightest binding substrates for P450BM-3 reported to date, and the affinity likely approaches the maximum attainable affinity for the binding of substrates of this size to P450BM-3.  相似文献   

7.
This study examines the ability of P450cam to catalyze the formation of 2-ethylhexanoic acid from 2-ethylhexanol relative to its activity on the natural substrate camphor. As is the case for camphor, the P450cam exhibits stereoselectivity for binding (R)- and (S)-2-ethylhexanol. Kinetic studies indicate (R)-2-ethylhexanoic acid is produced 3.5 times as fast as the (S)-enantiomer. In a racemic mixture of 2-ethylhexanol, P450cam produces 50% more (R)-2-ethylhexanoic acid than (S)-2-ethylhexanoic acid. The reason for stereoselective 2-ethylhexanoic acid production is seen in regioselectivity assays, where (R)-2-ethylhexanoic acid comprises 50% of total products while (S)-2-ethylhexanoic acid comprises only 13%. (R)- and (S)-2-ethylhexanol exhibit similar characteristics with respect to the amount of oxygen and reducing equivalents consumed, however, with (S)-2-ethylhexanol turnover producing more water than the (R)-enantiomer. Crystallographic studies of P450cam with (R)- or (S)-2-ethylhexanoic acid suggest that the (R)-enantiomer binds in a more ordered state. These results indicate that wild-type P450cam displays stereoselectivity toward 2-ethylhexanoic acid synthesis, providing a platform for rational active site design.  相似文献   

8.
Interactions of various axial ligands with cytochrome P-450d wild type, proximal mutants (Lys453Glu, Ile460Ser), and putative distal mutants (Glu318Asp, Thr319Ala, Thr322Ala) expressed in yeast were studied with optical absorption spectroscopy. P-450d wild type and all five mutants were purified essentially as the high-spin form, but the putative distal mutants contained about 5% low-spin form. Bindings of metyrapone and 4-phenylimidazole to the wild type and all mutants formed nitrogen-bound low-spin forms. In contrast, binding of 2-phenylimidazole to the wild type and most of mutants formed oxygen-bond low-spin forms except for the mutant Glu318Asp in which the nitrogen-bound low-spin form was formed. By analogy with the distal structure of P-450cam, it was thus suggested that Glu318 of P-450d, which corresponds with Asp251 of P-450cam, somehow interacts with 2-phenylimidazole over the heme plane. Addition of 1-butanol and acetanilide, a substrate of P-450d, to the wild type and mutants caused the spin change to the low-spin form. The order of dissociation constants of these oxygen ligands to P-450d was wild type greater than proximal mutants greater than putative distal mutants. Spectral analyses showed that the binding of acetanilide is the same as that of another substrate, 7-ethoxycoumarin, in the putative distal mutants but is not the same in the wild type and proximal mutants. From these findings together with other spectral data, it was suggested that the region from Glu318 to Thr322 is located at the distal region of the heme in membrane-bound P-450d as suggested from the X-ray crystal structure of water-soluble P-450cam and amino acid alignments of P-450s.  相似文献   

9.
Prasad S  Mitra S 《Biochemistry》2002,41(49):14499-14508
The role of protein structural flexibility and substrate dynamics in catalysis by cytochrome P450 enzymes is an area of current interest. We have addressed these in cytochrome P450(cam) (P450(cam)) and its Y96A mutant with camphor and its related compounds using fluorescence spectroscopy. Previously [Prasad et al. (2000) FEBS Lett. 477, 157-160], we provided experimental support to dynamic fluctuations in P450(cam), and substrate access into the active site region via the channel next to the flexible F-G helix-loop-helix segment. In the investigation described here, we show that the dynamic fluctuations in the enzyme are substrate dependent as reflected by tryptophan fluorescence quenching experiments. The orientation of tryptophan relative to heme (kappa(2)) for W42 obtained from time-resolved tryptophan fluorescence measurements show variation with type of substrate bound to P450(cam) suggesting regions distant from heme-binding site are affected by physicochemical and steric characteristics/protein-substrate interactions of P450(cam) active site. We monitored substrate dynamics in the active site region of P450(cam) by time-resolved substrate anisotropy measurements. The anisotropy decay of substrates bound to P450(cam) indicate that mobility of substrates is modulated by physicochemical and steric characteristics/protein-substrate interactions of local active site structure, and provides an understanding of factors controlling observed hydroxylated products for substrate bound P450(cam) complexes. The present study shows that P450(cam) local and peripheral structural flexibility and heterogeneity along with substrate mobility play an important role in regulating substrate binding orientation during catalysis and accommodating diverse range of substrates within P450(cam) heme pocket.  相似文献   

10.
A cytochrome P450cam monooxygenase (P450cam) system from the soil bacterium Pseudomonas putida requires electron transfer among three different proteins and a cofactor, nicotinamide adenine dinucleotide (NADH), for oxygenation of its natural substrate, camphor. Herein, we report a facile way to significantly enhance the catalytic efficiency of the P450cam system by the coupling of its native electron transfer system with enzymatic NADH regeneration catalyzed by glycerol dehydrogenase (GLD) in Escherichia coli whole cell biocatalysts. Recombinant E. coli harboring the P450cam system, but lacking GLD, exhibited little activity for camphor hydroxylation. In contrast, coexpression of GLD with the proteinaceous electron transfer components of P450cam resulted in about tenfold improvement in the substrate conversion, implying that the whole cell biocatalyst utilized molecular oxygen, endogenous NADH, and glycerol in the cell for catalysis. The addition of glycerol to the reaction media further promoted camphor hydroxylation, suggesting that exogenous glycerol is also available for GLD in the host cell and actively participates in the catalytic cycle. These results clearly show the utility of GLD towards functional reconstruction of the native P450cam system. The present approach may also be useful for E. coli whole cell biocatalysts with the other NADH-dependent oxygenases and oxidoreductases.  相似文献   

11.
Prasad S  Mazumdar S  Mitra S 《FEBS letters》2000,477(3):157-160
The binding of camphor to cytochrome P450(cam) has been investigated by steady-state and time-resolved tryptophan fluorescence spectroscopy to obtain information on the substrate access channel. The fluorescence quenching experiments show that some of the tryptophan residues undergo changes in their local environment on camphor binding. The time-resolved fluorescence decay profile gives four lifetime components in the range from 99 ps to 4.5 ns. The shortest lifetime component assigned to W42 lies close to the proposed camphor access channel. The results show that the fluorescence of W42 is greatly affected on binding of camphor, and supports dynamic fluctuations involved in the passage of camphor through the access channel as proposed earlier on the basis of crystallographic, molecular dynamics simulation and site-directed mutagenesis studies.  相似文献   

12.
Cytochrome P450 monooxygenases (P450s) are powerful biocatalysts that have the ability to oxidize a broad range of substrates, often at non-reactive carbon centers. However, incorporation of P450s into synthetic schemes has so far been limited to a few whole-cell transformations. P450 substrates are often hydrophobic and have low water solubility, limiting the amount of product that can be produced. To help overcome this limitation, we have examined P450cam activity in two-phase hexane/water emulsions with and without the anionic surfactant, bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT). Hydroxylation of camphor to hydroxycamphor by the three- component P450cam system was chosen as the model reaction, and regeneration of NADH was accomplished with yeast alcohol dehydrogenase (YADH). P450cam was activated in the surfactant-free emulsions, and addition of AOT improved the activity even further, at least over the range of camphor concentrations for which initial rates were readily measurable in all media. The largest observed rate enhancement was 4.5-fold. Nearly 50-times more product was formed in the surfactant-stabilized emulsions than was achieved in aqueous buffer, with total turnover numbers reaching 28,900 for P450cam and 11,800 for YADH. In the absence of surfactant, the two-phase reaction appeared to be mass-transfer limited, while inclusion of AOT alleviated transport limitations and/or afforded a larger interfacial area for P450 activation. The oxidation of hydroxycamphor to 2,5-diketocamphane was also observed, owing to the large concentration of hydroxycamphor relative to camphor in the aqueous phase of the two-phase emulsion. This competing reaction was accompanied by the uncoupled oxidation of NADH (i.e., NADH oxidation without formation of 2,5-diketocamphane), which reduced the availability of NADH for camphor oxidation and further limited the yield of hydroxycamphor in the two-phase emulsions. These results indicate that a surfactant-stabilized two-phase emulsion is a promising reaction medium for practical P450 biocatalysis, although its effectiveness for a given P450/substrate combination can depend on several factors, including competitive or sequential reactions, product inhibition, and NAD(P)H uncoupling.  相似文献   

13.
We characterized electron transfer (ET) from putidaredoxin (Pdx) to the mutants of cytochrome P450(cam) (P450(cam)), in which one of the residues located on the putative binding site to Pdx, Gln360, was replaced with Glu, Lys, and Leu. The kinetic analysis of the ET reactions from reduced Pdx to ferric P450(cam) (the first ET) and to ferrous oxygenated P450(cam) (the second ET) showed the dissociation constants (K(m)) that were moderately perturbed for the Lys and Leu mutants and the distinctly increased for the Glu mutant. Although the alterations in K(m) indicate that Gln360 is located at the Pdx binding site, the effects of the Gln360 mutations (0.66-20-fold of that of wild type) are smaller than those of the Arg112 mutants (25-2500-fold of that of wild type) [Unno, M., et al. (1996) J. Biol. Chem. 271, 17869-17874], allowing us to conclude that Gln360 much less contributes to the complexation with Pdx than Arg112. The first ET rate (35 s(-1) for wild-type P450(cam)) was substantially reduced in the Glu mutant (5.4 s(-1)), while less perturbation was observed for the Lys (53 s(-1)) and Leu (23 s(-1)) mutants. In the second ET reaction, the retarded ET rate was detected only in the Glu mutant but not in the Lys and Leu mutants. These results showed the smaller mutational effects of Gln360 on the ET reactions than those of the Arg112 mutants. In contrast to the moderate perturbations in the kinetic parameters, the mutations at Gln360 significantly affected both the standard enthalpy and entropy of the redox reaction of P450(cam), which cause the negative shift of the redox potentials for the Fe(3+)/Fe(2+) couple by 20-70 mV. Since the amide group of Gln360 is located near the carbonyl oxygen of the amide group of the axial cysteine, it is plausible that the mutation at Gln360 perturbs the electronic interaction of the axial ligand with heme iron, resulting in the reduction of the redox potentials. We, therefore, conclude that Gln360 primarily regulates the ET reaction of P450(cam) by modulating the redox potential of the heme iron and not by the specific interaction with Pdx or the formation of the ET pathway that are proposed as the regulation mechanism of Arg112.  相似文献   

14.
Previous studies on mammalian peroxidases and cytochrome P450 family 4 enzymes have shown that a carboxylic group positioned close to a methyl group of the prosthetic heme is required for the formation of a covalent link between a protein carboxylic acid side chain and the heme. To determine whether there are additional requirements for covalent bond formation in the P450 enzymes, a glutamic acid or an aspartic acid has been introduced into P450(cam) close to the heme 5-methyl group. Spectroscopic and kinetic studies of the resulting G248E and G248D mutants suggest that the carboxylate group coordinates with the heme iron atom, as reported for a comparable P450(BM3) mutant [Girvan, H. M., Marshall, K. R., Lawson, R. J., Leys, D., Joyce, M. G., Clarkson, J., Smith, W. E., Cheesman, M. R., and Munro, A. W. (2004) J. Biol. Chem. 279, 23274-23286]. The two P450(cam) mutants have low catalytic activity, but in contrast to the P450(BM3) mutant, incubation of the G248E (but not G248D) mutant with camphor, putidaredoxin, putidaredoxin reductase, and NADH results in partial covalent binding of the heme to the protein. No covalent attachment is observed in the absence of camphor or any of the other reaction components. Pronase digestion of the G248E P450(cam) mutant after covalent attachment of the heme releases 5-hydroxyheme, establishing that the heme is covalently attached through its 5-methyl group as predicted by in silico modeling. The results establish that a properly positioned carboxyl group is the sole requirement for autocatalytic formation of a heme-protein link in P450 enzymes, but also show that efficient covalent binding requires placement of the carboxyl close to the methyl but in a manner that prevents strong coordination to the iron atom.  相似文献   

15.
The active oxygenating intermediate, a ferryl-oxo-(II) porphyrin cation radical (compound I), in substrate-bound cytochrome P450(cam) (P450(cam)) has eluded detection and kinetic analysis for several decades. Upon rapid mixing of peroxides-H(2)O(2) and m-CPBA with substrate-bound forms of P450(cam), we observed an intermediate with spectral features characteristic of compound I. Unlike in H(2)O(2), kinetic investigation on the reaction of m-CPBA with various substrate (camphor, adamantone, and norcamphor)-bound P450(cam) and its Y96A mutant shows a preferential binding of the aromatic end group of m-CPBA to the active-site of the enzyme and modulation of compound I formation by the local environment of heme active-site. The results presented in this paper describe the importance of heme environment in modulating formation of compound I, and form the first kinetic analysis of this intermediate in the peroxide shunt pathway of substrate-bound P450(cam).  相似文献   

16.
Cytochrome P450 enzymes are hemoprotein monooxygenases that catalyse the oxidation of a variety of compounds. The mechanism by which camphor, the natural substrate of Cytochrome P450cam (P450cam), accesses the active site is a long-standing puzzle, although putative access channels have been proposed. A thermal motion pathway (TMP) analysis was performed on the crystal structure of P450cam with camphor bound. Hereby, three distinct thermal motion pathway families (TMPFs) were found. Possible substrate access channels obtained by this analysis based on B-factors are compared with exit channels explored by molecular dynamics simulations (MDS) by imposing an artificial expulsion force on the substrate in addition to the standard MD force field. Two out of three TMPFs are supported by results obtained with the random expulsion MDS method. However, the pathway found by the TMP method to have the highest average B-factor could not be observed by MDS. The pathway proposed from crystallographic data, which is a small opening above the active site located near residues 185, 87 and 395 corresponds to the TMPF with the second highest average B-factor.  相似文献   

17.
Cytochrome P450cam (P450CIA1) catalyzes the hydroxylation of camphor and several substrate analogues such as norcamphor and 1-methyl-norcamphor. Hydroxylation was found experimentally at the 3, 5, and 6 positions of norcamphor, but only at the 5 and 6 positions of 1-methyl-norcamphor. In the catalytic cycle, the hydroxylation of substrate is coupled to the consumption of NADH. For camphor, the degree of coupling is 100%, but for both norcamphor and 1-methyl-norcamphor, the efficiency is dramatically lowered to 12% and 50%, respectively. Based on an examination of the active site of P450cam, it appeared that mutating position 185 might dramatically alter the product specificity and coupling of hydroxylation of norcamphor by P450cam. Analysis of molecular dynamics trajectories of norcamphor bound to the T185F mutant of cytochrome P450cam predicted that hydroxylation at the 3 position should be abolished and that the coupling should be dramatically increased. This mutant was constructed and the product profile and coupling experimentally determined. The coupling was doubled, and hydroxylation at the 3 position was essentially abolished. Both of these results are in agreement with the prediction.  相似文献   

18.
Mutations of the active site residues F87 and Y96 greatly enhanced the activity of cytochrome P450(cam) (CYP101) from Pseudomonas putida for the oxidation of the polycyclic aromatic hydrocarbons phenanthrene, fluoranthene, pyrene and benzo[a]pyrene. Wild-type P450(cam) had low (<0.01 min(-1)) activity with these substrates. Phenanthrene was oxidized to 1-, 2-, 3- and 4-phenanthrol, while fluoranthene gave mainly 3-fluoranthol. Pyrene was oxidized to 1-pyrenol and then to 1,6- and 1,8-pyrenequinone, with small amounts of 2-pyrenol also formed with the Y96A mutant. Benzo[a]pyrene gave 3-hydroxybenzo[a]pyrene as the major product. The NADH oxidation rate of the mutants with phenanthrene was as high as 374 min(-1), which was 31% of the camphor oxidation rate by wild-type P450(cam), and with fluoranthene the fastest rate was 144 min(-1). The oxidation of phenanthrene and fluoranthene were highly uncoupled, with highest couplings of 1.3 and 3.1%, respectively. The highest coupling efficiency for pyrene oxidation was a reasonable 23%, but the NADH turnover rate was slow. The product distributions varied significantly between mutants, suggesting that substrate binding orientations can be manipulated by protein engineering, and that genetic variants of P450(cam) may be useful for studying the oxidation of polycyclic aromatic hydrocarbons by P450 enzymes.  相似文献   

19.
High-resolution resonance Raman spectra of the ferric, ferrous, and carbonmonoxy (CO)-bound forms of wild-type Escherichia coli-expressed Pseudomonas putida cytochrome P450cam and its P420 form are reported. The ferric and ferrous species of P450 and P420 have been studied in both the presence and absence of excess camphor substrate. In ferric, camphor-bound, P450 (mos), the E. coli-expressed P450 is found to be spectroscopically indistinguishable from the native material. Although substrate binding to P450 is known to displace water molecules from the heme pocket, altering the coordination and spin state of the heme iron, the presence of camphor substrate in P420 samples is found to have essentially no effect on the Raman spectra of the heme in either the oxidized or reduced state. A detailed study of the Raman and absorption spectra of P450 and P420 reveals that the P420 heme is in equilibrium between a high-spin, five-coordinate (HS,5C) form and low-spin six-coordinate (LS,6C) form in both the ferric and ferrous oxidation states. In the ferric P420 state, H2O evidently remains as a heme ligand, while alterations of the protein tertiary structure lead to a significant reduction in affinity for Cys(357) thiolate binding to the heme iron. Ferrous P420 also consists of an equilibrium between HS,5C and LS,6C states, with the spectroscopic evidence indicating that H2O and histidine are the most likely axial ligands. The spectral characteristics of the CO complex of P420 are found to be almost identical to those of a low pH of Mb. Moreover, we find that the 10-ns transient Raman spectrum of the photolyzed P420 CO complex possesses a band at 220 cm-1, which is strong evidence in favor of histidine ligation in the CO-bound state. The equilibrium structure of ferrous P420 does not show this band, indicating that Fe-His bond formation is favored when the iron becomes more acidic upon CO binding. Raman spectra of stationary samples of the CO complex of P450 reveal VFe-CO peaks corresponding to both substrate-bound and substrate-free species and demonstrate that substrate dissociation is coupled to CO photolysis. Analysis of the relative band intensities as a function of photolysis indicates that the CO photolysis and rebinding rates are faster than camphor rebinding and that CO binds to the heme faster when camphor is not in the distal pocket.  相似文献   

20.
CYP101D2 is a cytochrome P450 monooxygenase from Novosphingobium aromaticivorans which is closely related to CYP101A1 (P450cam) from Pseudomonas putida. Both enzymes selectively hydroxylate camphor to 5-exo-hydroxycamphor, and the residues that line the active sites of both enzymes are similar including the pre-eminent Tyr96 residue. However, Met98 and Leu253 in CYP101D2 replace Phe98 and Val247 in CYP101A1, and camphor binding only results in a maximal change in the spin state to 40 % high-spin. Substitutions at Tyr96, Met98 and Leu253 in CYP101D2 reduced both the spin state shift on camphor binding and the camphor oxidation activity. The Tyr96Ala mutant increased the affinity of CYP101D2 for hydrocarbon substrates including adamantane, cyclooctane, hexane and 2-methylpentane. The monooxygenase activity of the Tyr96Ala variant towards alkane substrates was also enhanced compared with the wild-type enzyme. The crystal structure of the substrate-free form of this variant shows the enzyme in an open conformation (PDB: 4DXY), similar to that observed with the wild-type enzyme (PDB: 3NV5), with the side chain of Ala96 pointing away from the heme. Despite this, the binding and activity data suggest that this residue plays an important role in substrate binding, evidencing that the enzyme probably undergoes catalysis in a more closed conformation, similar to those observed in the crystal structures of CYP101A1 (PDB: 2CPP) and CYP101D1 (PDB: 3LXI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号