首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
In vivo, apoptotic cells are removed by surrounding phagocytes, a process thought to be essential for tissue remodeling and the resolution of inflammation [1]. Although apoptotic cells are known to be efficiently phagocytosed by macrophages, the mechanisms whereby their interaction with the phagocytes triggers their engulfment have not been described in mammals. Here, we report that primary murine bone marrow-derived macrophages (using alpha(v)beta(3) integrin for apoptotic cell uptake) extend lamellipodia to engulf apoptotic cells and form an actin cup where phosphotyrosine accumulates. Rho GTPases and PI 3-kinases have been widely implicated in the regulation of the actin cytoskeleton [2, 3]. We show that inhibition of Rho GTPases by Clostridium difficile toxin B prevents apoptotic cell phagocytosis and inhibits the accumulation of both F-actin and phosphotyrosine. Importantly, the Rho GTPases Rac1 and Cdc42 are required for apoptotic cell uptake whereas Rho inhibition enhances uptake. The PI 3-kinase inhibitor LY294002 also prevents apoptotic cell phagocytosis but has no effect on the accumulation of F actin and phosphotyrosine. These results indicate that both Rho GTPases and PI 3-kinases are involved in apoptotic cell phagocytosis but that they play distinct roles in this process.  相似文献   

2.
被吞噬细胞吞噬是多数凋亡细胞的命运.凋亡细胞表面膜磷脂酰丝氨酸的暴露、膜碳水化合物的改变及表面糖蛋白的重新分布和聚集导致被吞噬细胞识别与摄取.吞噬细胞的多种受体参与吞噬过程,有些受体参与栓系凋亡细胞,有些激发巨吞饮的摄取机制.吞噬的摄取过程因吞噬细胞和凋亡细胞的类型差异而不同.至少有7种线虫吞噬基因及其哺乳动物同源物组成两条部分重叠而又平行的摄取信息传导通路.吞噬基因的突变可以改变凋亡细胞的进程.吞噬功能的缺陷将影响机体正常的免疫应答.  相似文献   

3.
Efficient elimination of cells undergoing programmed cell death is crucial for normal tissue homeostasis and for the regulation of immune responses. This review examines unique signals presented by apoptotic cells and the mechanisms by which phagocytes recognize and respond to these signals to orchestrate the selective and rapid removal of apoptotic cells. Such unique signals include direct and indirect ‘eat-me’ markers on the apoptotic cell surface, the absence of ‘don't eat-me’ markers normally found on living cells and soluble ‘come-get-me’ signals secreted by apoptotic cells to attract phagocytes to sites of apoptotic cell death. Once apoptotic cells are identified, their uptake by phagocytes further depends on the molecular machinery highly conserved from Caenorhabditis elegans to mammals.  相似文献   

4.
Cell death and removal of cell corpses in a timely manner is a key event in both physiological and pathological situations including tissue homeostasis and the resolution of inflammation. Phagocytic clearance of cells dying by apoptosis is a complex sequential process comprising attraction, recognition, tethering, signalling and ultimately phagocytosis and degradation of cell corpses. A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within this process. The role of myeloid cell CD14 in mediating apoptotic cell interactions with macrophages has long been known though key molecules and residues involved have not been defined. Here we sought to further dissect the function of CD14 in apoptotic cell clearance. A novel panel of THP-1 cell-derived phagocytes was employed to demonstrate that CD14 mediates effective apoptotic cell interactions with macrophages in the absence of detectable TLR4 whilst binding and responsiveness to LPS requires TLR4. Using a targeted series of CD14 point mutants expressed in non-myeloid cells we reveal CD14 residue 11 as key in the binding of apoptotic cells whilst other residues are reported as key for LPS binding. Importantly we note that expression of CD14 in non-myeloid cells confers the ability to bind rapidly to apoptotic cells. Analysis of a panel of epithelial cells reveals that a number naturally express CD14 and that this is competent to mediate apoptotic cell clearance. Taken together these data suggest that CD14 relies on residue 11 for apoptotic cell tethering and it may be an important tethering molecule on so called ‘non-professional’ phagocytes thus contributing to apoptotic cell clearance in a non-myeloid setting. Furthermore these data establish CD14 as a rapid-acting tethering molecule, expressed in monocytes, which may thus confer responsiveness of circulating monocytes to apoptotic cell derived material.  相似文献   

5.
In metazoans apoptosis is a major physiological process of cell elimination during development and in tissue homeostasis and can be involved in pathological situations. In vitro, apoptosis proceeds through an execution phase during which cell dismantling is initiated, with or without fragmentation into apoptotic bodies, but with maintenance of a near-to-intact cytoplasmic membrane, followed by a transition to a necrotic cell elimination traditionally called “secondary necrosis”. Secondary necrosis involves activation of self-hydrolytic enzymes, and swelling of the cell or of the apoptotic bodies, generalized and irreparable damage to the cytoplasmic membrane, and culminates with cell disruption. In vivo, under normal conditions, the elimination of apoptosing cells or apoptotic bodies is by removal through engulfment by scavengers prompted by the exposure of engulfment signals during the execution phase of apoptosis; if this removal fails progression to secondary necrosis ensues as in the in vitro situation. In vivo secondary necrosis occurs when massive apoptosis overwhelms the available scavenging capacity, or when the scavenger mechanism is directly impaired, and may result in leakage of the cell contents with induction of tissue injury and inflammatory and autoimmune responses. Several disorders where secondary necrosis has been implicated as a pathogenic mechanism will be reviewed.  相似文献   

6.
Defective clearance of apoptotic cells has been shown in systemic lupus erythematosus (SLE) and is postulated to enhance autoimmune responses by increasing access to intracellular autoantigens. Until now, research has emphasized inherited rather than acquired impairment of apoptotic cell engulfment in the pathogenesis of SLE. In this study, we confirm previous results that efficient removal of apoptotic cells (efferocytosis) is bolstered in the presence of wild-type mouse serum, through the C3 deposition on the apoptotic cell surface. In contrast, sera from three mouse models of SLE, Mer(KD), MRL(lpr), and New Zealand Black/WF1 did not support and in fact actively inhibited apoptotic cell uptake. IgG autoantibodies were responsible for the inhibition, through the blockade of C3 recognition by macrophages. Consistent with this, IgG removal reversed the inhibitory activity within autoimmune serum, and purified autoimmune IgG blocked both the detection of C3 on apoptotic cells and C3-dependent efferocytosis. Sera from SLE patients demonstrated elevated anti-C3b IgG that blocked detection of C3 on apoptotic cells, activity that was not found in healthy controls or patients with rheumatoid arthritis, nor in mice prior to the onset of autoimmunity. We propose that the suppression of apoptotic cell disposal by Abs against deposited C3 may contribute to increasing severity and/or exacerbations in SLE.  相似文献   

7.
Apoptotic-cell removal is critical for development, tissue homeostasis, and resolution of inflammation. Although many candidate systems exist, only phosphatidylserine has been identified as a general recognition ligand on apoptotic cells. We demonstrate here that calreticulin acts as a second general recognition ligand by binding and activating LDL-receptor-related protein (LRP) on the engulfing cell. Since surface calreticulin is also found on viable cells, a mechanism preventing inadvertent uptake was sought. Disruption of interactions between CD47 (integrin-associated protein) on the target cell and SIRPalpha (SHPS-1), a heavily glycosylated transmembrane protein on the engulfing cell, permitted uptake of viable cells in a calreticulin/LRP-dependent manner. On apoptotic cells, CD47 was altered and/or lost and no longer activated SIRPalpha. These changes on the apoptotic cell create an environment where "don't eat me" signals are rendered inactive and "eat me" signals, including calreticulin and phosphatidylserine, congregate together and signal for removal.  相似文献   

8.
Programmed cell death, or apoptosis, is a genetically controlled process of cell suicide that is a common fate during an animal's life. In metazoans, apoptotic cells are rapidly removed from the body through the process of phagocytosis. Genetic analyses probing the mechanisms controlling the engulfment of apoptotic cells were pioneered in the nematode Caenorhabditis elegans. So far, at least seven genes have been identified that are required for the recognition and engulfment of apoptotic cells and have been shown to function in two partially redundant signaling pathways. Molecular characterization of their gene products has lead to the finding that similar genes act to control the same processes in other organisms, including mammals. In this paper, we review these exciting findings in C. elegans and discuss their implications in understanding the clearance of apoptotic cells in mammals.  相似文献   

9.
Apoptosis or programmed cell death occurs in multicellular organisms throughout life. The removal of apoptotic cells by phagocytes prevents secondary necrosis and inflammation and also plays a key role in tissue remodeling and regulating immune responses. The molecular mechanisms that regulate the engulfment of apoptotic cells are just beginning to be elucidated. Recent genetic studies in the nematode Caenorhabditis elegans have implicated at least six genes in the removal of apoptotic cell corpses. The gene products of ced-2, ced-5, and ced-10 are thought to be part of a pathway that regulates the reorganization of the cytoskeleton during engulfment. The adapter proteins CrkII and Dock180 and the small GTPase Rac represent the mammalian orthologues of the ced-2, ced-5 and ced-10 gene products, respectively. It is not known whether CrkII, Dock180, or Rac proteins have any role during engulfment in mammalian cells. Here we show, using stable cell lines and transient transfections, that overexpression of wild-type CrkII or an activated form of Rac1 enhances engulfment. Mutants of CrkII failed to mediate this increased engulfment. The higher CrkII-mediated uptake was inhibited by coexpression of a dominant negative form of Rac1 but not by a dominant a negative Rho protein; this suggested that Rac functions downstream of CrkII in this process, which is consistent with genetic studies in the worm that place ced-10 (rac) downstream of ced-2 (crk) in cell corpse removal. Taken together, these data suggest that CED-2/CrkII and CED-10/Rac are part of an evolutionarily conserved pathway in engulfment of apoptotic cells.  相似文献   

10.
A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within the complex sequential processes that result in phagocytosis and degradation of apoptotic cells. Intercellular adhesion molecule 3 (ICAM-3, also known as CD50), a human leukocyte-restricted immunoglobulin super-family (IgSF) member, has previously been implicated in apoptotic cell clearance, although its precise role in the clearance process is ill defined. The main objective of this work is to further characterise the function of ICAM-3 in the removal of apoptotic cells. Using a range of novel anti-ICAM-3 monoclonal antibodies (mAbs), including one (MA4) that blocks apoptotic cell clearance by macrophages, alongside apoptotic human leukocytes that are normal or deficient for ICAM-3, we demonstrate that ICAM-3 promotes a domain 1-2-dependent tethering interaction with phagocytes. Furthermore, we demonstrate an apoptosis-associated reduction in ICAM-3 that results from release of ICAM-3 within microparticles that potently attract macrophages to apoptotic cells. Taken together, these data suggest that apoptotic cell-derived microparticles bearing ICAM-3 promote macrophage chemoattraction to sites of leukocyte cell death and that ICAM-3 mediates subsequent cell corpse tethering to macrophages. The defined function of ICAM-3 in these processes and profound defect in chemotaxis noted to ICAM-3-deficient microparticles suggest that ICAM-3 may be an important adhesion molecule involved in chemotaxis to apoptotic human leukocytes.  相似文献   

11.
Sulfoglycolipids are present on the surface of a variety of cells. The sulfatide SM4s is increased in lung, renal, and colon cancer and is associated with an adverse prognosis, possibly due to a low immunoreactivity of the tumor. As macrophages significantly contribute to the inflammatory infiltrate in malignancies, we postulated that SM4s may modulate macrophage function. We have investigated the effect of SM4s on the uptake of apoptotic tumor cells, macrophage cytokine profile, and receptor expression. Using flow cytometry and microscopic analyses, we found that coating apoptotic murine carcinoma cells from the colon and kidney with SM4s promoted their phagocytosis by murine macrophages up to 3-fold ex vivo and in vivo. This increased capacity was specifically inhibited by preincubation of macrophages with oxidized or acetylated low density lipoprotein and maleylated albumin, indicating involvement of scavenger receptors in this interaction. The uptake of SM4s-coated apoptotic cells significantly enhanced macrophage production of TGF-beta1, expression of P-selectin, and secretion of IL-6. These data suggest that SM4s within tumors may promote apoptotic cell removal and alter the phenotype of tumor-associated macrophages.  相似文献   

12.
Apoptotic cell clearance facilitates the removal of aged, damaged, infected or dangerous cells although minimizing perturbation of surrounding tissues, and is a vital process in the development and homeostasis of multicellular organisms. Importantly, failure to correctly execute programmed cell death and subsequent corpse clearance is broadly associated with chronic inflammatory and/or autoimmune diseases such as systemic lupus erythematosus. Apoptotic cells develop dramatic morphological changes including contraction, membrane blebbing and apoptotic body formation, which were among the first and most readily identifiable features of cellular suicide. However, understanding the purpose of apoptotic cell morphological changes has proven to be elusive, and recent studies have made somewhat surprising, and occasionally opposing, conclusions about the contribution of blebbing to phagocytic clearance and prevention of inflammatory/autoimmune disease. We review the evidence indicating how apoptotic blebs actively promote corpse recognition, uptake, and generation of auto-reactive antibodies.  相似文献   

13.
Hsieh HH  Hsu TY  Jiang HS  Wu YC 《PLoS genetics》2012,8(5):e1002663
Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integrin α subunit PAT-2 in Caenorhabditis elegans and show that it specifically functions in muscle-mediated engulfment during embryogenesis. Inactivation of pat-2 results in a defect in apoptotic cell internalization. The PAT-2 extracellular region binds to the surface of apoptotic cells in vivo, and the intracellular region may mediate signaling for engulfment. We identify essential roles of small GTPase CDC-42 and its activator UIG-1, a guanine-nucleotide exchange factor, in PAT-2-mediated cell corpse removal. PAT-2 and CDC-42 both function in muscle cells for apoptotic cell removal and are co-localized in growing muscle pseudopods around apoptotic cells. Our data suggest that PAT-2 functions through UIG-1 for CDC-42 activation, which in turn leads to cytoskeletal rearrangement and apoptotic cell internalization by muscle cells. Moreover, in contrast to PAT-2, the other integrin α subunit INA-1 and the engulfment receptor CED-1, which signal through the conserved signaling molecules CED-5 (DOCK180)/CED-12 (ELMO) or CED-6 (GULP) respectively, preferentially act in epithelial cells to mediate cell corpse removal during mid-embryogenesis. Our results show that different engulfing cells utilize distinct repertoires of receptors for engulfment at the whole organism level.  相似文献   

14.
15.
Clearance of apoptotic cells by phagocytes   总被引:3,自引:0,他引:3  
Phagocytic clearance of apoptotic cells may be considered to consist of four distinct steps: accumulation of phagocytes at the site where apoptotic cells are located; recognition of dying cells through a number of bridge molecules and receptors; engulfment by a unique uptake process; and processing of engulfed cells within phagocytes. Here, we will discuss these individual steps that collectively are essential for the effective removal of apoptotic cells. This will illustrate our relative lack of knowledge about the initial attraction signals, the specific mechanisms of engulfment and processing in comparison to the extensive literature on recognition mechanisms. There is now mounting evidence that clearance defects are responsible for chronic inflammatory disease and contribute to autoimmunity. Therefore, a better understanding of all aspects of the clearance process is required before it can truly be manipulated for therapeutic gain.  相似文献   

16.
Recognition of phosphatidylserine (PtdSer) is essential for engulfment of apoptotic cells by mammalian phagocytes. Engagement of a new phosphatidylserine-specific receptor (PtdSerR) appears to be necessary for uptake of apoptotic cells. Many other mammalian receptors have been described to function in the clearance of apoptotic cells. The emerging picture is that many of these receptors may provide the strong adhesion needed to increase the likelihood of contact between the PtdSerR and its phospholipid ligand, which is required for uptake. Furthermore, stimulation of this receptor on different types of phagocytes by apoptotic cells, PtdSer-containing liposomes or an IgM monoclonal anti-PtdSer antibody initiates release of TGFbeta, known to be involved in the anti-inflammatory effects of apoptotic cells. Although highly homologous genes exist in C. elegans and Drosophila melanogaster, their role in engulfment of apoptotic cells remains to be determined.  相似文献   

17.
Removal of apoptotic cells during tissue remodeling or resolution of inflammation is critical to the restoration of normal tissue structure and function. During apoptosis, early surface changes occur, which trigger recognition and removal by macrophages and other phagocytes. Loss of phospholipid asymmetry results in exposure of phosphatidylserine (PS), one of the surface markers recognized by macrophages. However, a number of receptors have been reported to mediate macrophage recognition of apoptotic cells, not all of which bind to phosphatidylserine. We therefore examined the role of membrane phospholipid symmetrization and PS externalization in uptake of apoptotic cells by mouse macrophages and human HT-1080 fibrosarcoma cells by exposing them to cells that had undergone apoptosis without loss of phospholipid asymmetry. Neither mouse macrophages nor HT-1080 cells recognized or engulfed apoptotic targets that failed to express PS, in comparison to PS-expressing apoptotic cells. If, however, their outer leaflets were repleted with the l-, but not the d-, stereoisomer of sn-1,2-PS by liposome transfer, engulfment by both phagocytes was restored. These observations directly demonstrate that loss of phospholipid asymmetry and PS expression is required for phagocyte engulfment of apoptotic cells and imply a critical, if not obligatory, role for PS recognition in the uptake process.  相似文献   

18.
Phagocytosis of apoptotic cells and the resolution of inflammation   总被引:10,自引:0,他引:10  
Clearance of apoptotic cells by phagocytic cells plays a significant role in the resolution of inflammation, protecting tissue from harmful exposure to the inflammatory and immunogenic contents of dying cells. Apoptosis induces cell surface changes that are important for recognition and engulfment of cells by phagocytes. These changes include alterations in surface sugars, externalization of phosphatidylserine and qualitative changes in the adhesion molecule ICAM-3. Several studies have contributed to clarify the role of the receptors on the surface of phagocytes that are involved in apoptotic cell clearance. The phagocytic removal of apoptotic cells does not elicit pro-inflammatory responses; in contrast, apoptotic cell engulfment appears to activate signals that suppress release of pro-inflammatory cytokines. Therefore, clearance of apoptotic leucocytes is implicated in the resolution of inflammation and mounting evidence suggests that defective clearance of apoptotic cells contributes to inflammatory and autoimmune diseases. Defining the ligands on apoptotic cells and the corresponding receptors on phagocytes with which they engage, is likely to lead to the development of novel anti-inflammatory pro-resolution drugs. In this article, we will review the recognition and signaling mechanisms involved in the phagocytosis of apoptotic cells as well as the role of endogenous compounds that play a relevant role in the modulation of inflammation. We will also discuss what is currently known about diseases that may reflect impaired phagocytosis and the consequences on inflammation and immune responses.  相似文献   

19.
When lymphocytes (and other cells) die by apoptosis, they orchestrate their own orderly removal by macrophages, and thereby prevent the inflammation that would otherwise attend cell lysis. As part of their demise, apoptotic cells disrupt the normal asymmetric distribution of phospholipids across their plasma membranes, an asymmetry normally maintained by an aminophospholipid translocase. This disruption of asymmetry, mediated by an activity known as the scramblase, generates ligands on the cell surface that trigger phagocytosis of the dying cell before lysis can occur. This crucial alteration of the plasma membrane is not dependent on caspase-mediated proteolysis, but quite unexpectedly, it is required both on the apoptotic target cell and on the phagocyte that engulfs it. At least in the phagocyte, this rearrangement may depend on the activity of an ABC ATPase, termed ABC1 in mammals and ced-7 in C. elegans.  相似文献   

20.
Apoptosis or programmed cell death is an important physiologic event crucial for the selective removal of damaged or unwanted cells from body tissues. In the cardiovascular system, apoptosis has been observed in the vasculature and myocardium. Untimely or inappropriate myocardial cell loss through an apoptotic process may contribute to ventricular remodeling and the ultimate demise of ventricular function following injury. Therapeutic interventions designed to modulate or prevent myocardial apoptotic cell loss may therefore prove beneficial in maintaining cardiac function. Incite into the molecular mechanisms that govern apoptosis in mammalian cells has led to the identification of several key factors that promote or prevent the apoptotic process. In this report, we discuss putative regulators of cardiac cell apoptosis with specific reference to the tumor suppressor proteins, p53 and Rb. The interplay between these factors, as well as the anti-apoptotic molecules related to the Bcl-2 the family are discussed in the context of the heart under normal and disease conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号