首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardioprotective role of intravenous administration of magnesium chloride was evaluated in rabbits by biochemical and histopathological parameters. Myocardial damage was induced by injecting (i.v.) isoprenaline 1, 2.5, 5 and 7.5 mg/kg body weight of animal. There was a dose dependent increase in the activity of cardiac enzyme creatinine kinase CK (C Max). Maximal elevation of CK (C Max) was observed with 2.5 mg isoprenaline. The mean T-max (mean of the time duration in hr at which maximum creatinine kinase activity of individual rabbit was observed in a group) shifted early, significantly with 2.5, 5 and 7.5 mg isoprenaline compared to control group. Histopathologically, myocardial damage was quite significant in 2.5 mg isoprenaline subgroup of animals. A mortality of 29% was observed in animals injected with 5 and 7.5 mg isoprenaline, whereas all animals subjected with 1 and 2.5 mg isoprenaline were alive for 72 hr. Considering the data on serial determination of cardiac enzyme CK and histopathological changes, 2.5 mg isoprenaline was chosen as standard dose to study efficacy of cardioprotection by gold standard verapamil and magnesium chloride. Verapamil (5 microM) injected prior to 2.5 mg isoprenaline administration revealed significant reduction of CK (C Max) activity (P < 0.05) compared to animals infused with isoprenaline alone. T-max value did not show any alteration in both the groups. Histopathological findings showed no areas of necrosis and cellular infiltrates in animals primed with 2.5 mg isoprenaline following verapamil. Highly significant reduction in CK (C-max) activity was observed in animals administered with 40 mg magnesium chloride prior to isoprenaline compared to animals treated with isoprenaline alone (P < 0.001). In addition to this, significant delay in T-max of CK activity was observed in group treated with 40 mg magnesium chloride and isoprenaline compared to group treated with only isoprenaline (P < 0.01). The study clearly highlighted and confirmed the valuable role of magnesium chloride as cardioprotective agent.  相似文献   

2.
3.
Administration of nitric oxide (NO) donors during ischemia and reperfusion protects from myocardial injury. However, whether administration of an NO donor during a brief period prior to ischemia protects the myocardium and the endothelium against ischemia-reperfusion injury in vivo is unknown. To study this possibility anesthetized pigs were subjected to 45-min ligation of the left anterior descending coronary artery (LAD) followed by 4h of reperfusion. In initial dose-finding experiments, vehicle or three different doses of the NO donor S-nitroso-N-acetyl-D,L-penicillamin (SNAP; 0.1; 0.5; 2.5 micromol) were infused into the LAD for 3 min starting 13 min during ischemia. Only the 0.5 micromol dose of SNAP reduced infarct size (from 85+/-3% of the area at risk in the vehicle group to 63+/-3% in the SNAP-treated group; p<0.01). There were no significant differences in hemodynamics in the vehicle and SNAP groups during ischemia-reperfusion. Endothelium-dependent dilatation of coronary microvasculature induced by substance P was larger in the SNAP group than in the vehicle group. Myeloperoxidase activity was lower in the ischemic/reperfused myocardial area of pigs given SNAP (4.97+/-0.61 U/g) than in vehicle-treated pigs (8.45+/-0.25 U/g; p<0.05). It is concluded that intracoronary administration of the NO donor SNAP for a brief period before ischemia reduces infarct size, attenuates neutrophil accumulation, and improves endothelial function. These results suggest that NO exerts a classic preconditioning-like protection against ischemia-reperfusion injury in vivo in a narrow concentration range.  相似文献   

4.
The present study was designed to investigate the effects of chronic administration of the alcoholic extract of Terminalia arjuna (TAAE) bark on isoproterenol induced myocardial injury. The TAAE was administered orally to Wistar albino rats (150-200 g) in three different doses, by gastric gavage [3.4 mg/kg: (T1), 6.75 mg/kg: (T2) and 9.75 mg/kg: (T3)] 6 days/week for 4 weeks. At the end of this period, all the animals, except the normal untreated rats that served as the control group, were administered isoproterenol (ISO) 85 mg/kg, S.C., for two consecutive days to induce in vivo myocardial injury. After 48 hours rats were anaesthetized with anaesthetic ether, then sacrificed and the hearts were harvested for biochemical and histological studies. A significant rise in myocardial thiobarbituric acid reactive substances (TBARS) and loss of reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (suggestive of increased oxidative stress) occurred in the hearts subjected to in vivo myocardial ischemic reperfusion injury. The 6.75 mg/kg TAAE treatment group (baseline) shows a significant increase in myocardial TBARS as well as endogenous antioxidants (GSH, SOD, and catalase), but not in the other treatment groups. In in vivo ischemic reperfusion injury of the TAAE treated rats there was a significant decrease in TBARS in all the groups. In 6.75 mg/kg treatment group, a significant rise in the levels of GSH, SOD and catalase were observed, and it shows better recovery profile than the other groups subjected to in vivo ischemic reperfusion injury. In histological studies, all the groups, except the isoproterenol treated group, showed preserved myocardium. The present study demonstrates that the 6.75 mg/kg TAAE augments endogenous antioxidant compounds of the rat heart and also prevents the myocardium from isoproterenol induced myocardial ischemic reperfusion injury.  相似文献   

5.
The purpose of this study is to examine the antiarrhythmic and antioxidant effects of tamoxifen, one of the selective estrogen modulators, in ovariectomized rats subjected to myocardial ischemia-reperfusion (I/R) injury. A month after ovariectomy, rats were divided into four groups: (I) ovariectomized controls without any treatment, (II) ovariectomized rats treated with vehicle dimethylsulfoxide (DMSO), (III)–(IV) ovariectomized rats treated with tamoxifen 1 or 10 mg/kg,sc daily for 14 days. To produce arrhythmia, the left main coronary artery was occluded for 7 min, followed by 7 min of reperfusion. The blood pressure (BP), heart rate (HR), electrocardiography (ECG) was recorded before and during the ischemia-reperfusion period. The blood levels of malondialdehyde (MDA), creatine kinase (CK), glutathione (GSH), glutathione peroxidase (GSH-Px), glutathione reductase (GR), and catalase (CAT) were measured after the rats were killed. Tamoxifen reduced the incidence of ventricular tachycardia (VT) on ischemia and reperfusion as well as the incidence and duration of reversible ventricular fibrillation (VF) on reperfusion. I/R injury caused a significant fall in GSH, GSH-Px as well as an increase in MDA and CK levels in the control group when compared to tamoxifen treated groups. The changes in levels of CAT and GR were however, not significant. In conclusion, our findings suggest that tamoxifen has cardioprotective effects against I/R injury in rats, likely its antioxidant properties.  相似文献   

6.
Gu SS  Shi N  Wu MP 《Life sciences》2007,81(9):702-709
It is well established that reperfusion of heart is the optimal method for salvaging ischemic myocardium, however, the success of this therapy could be limited by reperfusion injury, which is involved in inflammatory responses. High density lipoprotein (HDL) has an anti-inflammatory function and can protect the heart from ischemia-reperfusion (I/R) injury. In this study, we investigated the cardioprotective role of apolipoprotein A-I (ApoA-I), the major apolipoprotein of HDL, in I/R injury. Using rats subjected to myocardial I/R by ligation of left anterior descending coronary artery (LAD), we found that administration of ApoA-I (20 mg/kg, iv) before the onset of reperfusion of myocardial infarction can significantly reduce serum creatine kinase (CK) levels (62.1+/-13.8%, p<0.01) and heart TNF-alpha as well as IL-6 levels, compared with saline controls (40.4+/-14.7%, 44+/-9.8%, p<0.01 respectively). Moreover, ApoA-I treatment suppresses the expression of ICAM-1 on endothelium, thus diminishing neutrophil adherence, transendothelial migration, and the subsequent myocyte injury. We concluded that ApoA-I could effectively protect rat heart from I/R injury.  相似文献   

7.
8.
Inhalation of hydrogen (H2) gas has been demonstrated to limit the infarct volume of brain and liver by reducing ischemia-reperfusion injury in rodents. When translated into clinical practice, this therapy must be most frequently applied in the treatment of patients with acute myocardial infarction, since angioplastic recanalization of infarct-related occluded coronary artery is routinely performed. Therefore, we investigate whether H2 gas confers cardioprotection against ischemia-reperfusion injury in rats. In isolated perfused hearts, H2 gas enhances the recovery of left ventricular function following anoxia-reoxygenation. Inhaled H2 gas is rapidly transported and can reach ‘at risk’ ischemic myocardium before coronary blood flow of the occluded infarct-related artery is reestablished. Inhalation of H2 gas at incombustible levels during ischemia and reperfusion reduces infarct size without altering hemodynamic parameters, thereby preventing deleterious left ventricular remodeling. Thus, inhalation of H2 gas is promising strategy to alleviate ischemia-reperfusion injury coincident with recanalization of coronary artery.  相似文献   

9.
Myocardial ischemia-reperfusion injury (MIRI) is a major cause of cardiovascular disease, leading to mortality and disability associated with coronary occlusion worldwide. A correlation of mammalian target of rapamycin (mTOR)/nuclear factor-kappa B (NF-κB) signaling pathway has been observed with brain damage resulting from myocardial ischemia. Therefore, by establishing MIRI rat model, this study aimed to explore whether ring finger protein 182 (RNF182) regulates the mTOR signaling pathway affecting MIRI. Initially, MIRI rat model was successfully established, followed by either treatment of shRNF182 or phosphoesterase (PITE) (inhibitor of the mTOR signaling pathway). Then, the serum levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA), left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular systolic pressure (LVSP), and left ventricular end-diastolic pressure (LVEDP) were determined, followed by detection of myocardial infarct sizes and myocardial cell apoptosis. Moreover, the levels of related genes/proteins were determined to further determine the mechanisms of RNF182 in MIRI. First, RNF182 was upregulated in MIRI. Another key observation of this study was that rats with shRNF182 presented with downregulated SOD, GSH-Px, and MDA in serum, accompanied by decreased levels of LVEF, LVFS, LVSP, and LVEDP. In addition, both reduced myocardial infarct sizes and apoptosis of myocardial cells were observed after silencing RNF182. Furthermore, silencing of the RNF182 was observed to downregulate Bcl 2–associated X and cysteine proteinase 3 but upregulate mTOR, ribosome protein subunit 6 kinase 1, eukaryotic elongation factor 2, and B-cell lymphoma-2. Importantly, the effects of RNF182 silencing were reversed after PITE treatment. In conclusion, our study demonstrates that RNF182 silencing can prevent ventricular remodeling in rats after MIRI by activating the mTOR signaling pathway.  相似文献   

10.
The present study was designed to evaluate the cardioprotective potential of pyruvate and to characterize the mechanism underlying the protection. Wistar albino rats were randomly divided into three groups. Two groups were administered saline orally (sham, ischemia-reperfusion (I-R) control group) and animals of third group received pyruvate (500 mg/kg) for 4 weeks. On the 29th day, animals of the I-R control and pyruvate treated groups underwent 45 min of occlusion of the left anterior descending (LAD) coronary artery and were thereafter reperfused for 60 min. In the I-R control group, a significant cardiac necrosis, depressed mean arterial pressure (MAP) and heart rate (HR), decline in myocardial antioxidant status and elevation in lipid peroxidation were observed as compared to sham control. Pyruvate treatment restored the myocardial antioxidant status and favorably modulated the altered MAP as compared to I-R control. Furthermore, I/R-induced lipid peroxidation was significantly inhibited by pyruvate treatment. These beneficial cardioprotective effects translated into significant improvement in MAP. Histopathological examination and restored specific myocardial injury marker CK-MB isoenzyme activity further confirmed protective effects of pyruvate. In conclusion, our study has demonstrated that the beneficial effect of pyruvate likely results from improved MAP and suppression of oxidative stress.  相似文献   

11.
We developed a new experimental approach to study the effects of local injury in a multicellular preparation and tested the ability of the method to induce reperfusion arrhythmias in cardiomyocyte monolayers. A small region of injury was created using geometrically defined flows of control and ischemia-like solutions. Calcium transients were acquired simultaneously from injured, control, and border zone cells using fluo 4. Superfusion with the injury solution rapidly diminished the amplitude of calcium transients within the injury zone, followed by cessation of cell beating. Reperfusion caused an immediate tachyarrhythmic response in approximately 17% of experiments, with a wave front propagating from a single cell or small cell cluster within the former injury zone. Inclusion of a gap junction uncoupler (1 mM heptanol) in the injury solution narrowed the functional border and sharply increased the number of ectopic foci and the incidence of reperfusion arrhythmias. The model holds a potential to reveal both micro- and macroscopic features of propagation, conduction, and cell coupling in the normal and diseased myocardium and to serve as a new tool to test antiarrhythmic protocols in vitro.  相似文献   

12.
13.
We have recently demonstrated that endogenous H2O2 plays an important role in coronary autoregulation in vivo. However, the role of H2O2 during coronary ischemia-reperfusion (I/R) injury remains to be examined. In this study, we examined whether endogenous H2O2 also plays a protective role in coronary I/R injury in dogs in vivo. Canine subepicardial small coronary arteries (>or=100 microm) and arterioles (<100 microm) were continuously observed by an intravital microscope during coronary I/R (90/60 min) under cyclooxygenase blockade (n=50). Coronary vascular responses to endothelium-dependent vasodilators (ACh) were examined before and after I/R under the following seven conditions: control, nitric oxide (NO) synthase (NOS) inhibitor NG-monomethyl-L-arginine (L-NMMA), catalase (a decomposer of H2O2), 8-sulfophenyltheophylline (8-SPT, an adenosine receptor blocker), L-NMMA+catalase, L-NMMA+tetraethylammonium (TEA, an inhibitor of large-conductance Ca2+-sensitive potassium channels), and L-NMMA+catalase+8-SPT. Coronary I/R significantly impaired the coronary vasodilatation to ACh in both sized arteries (both P<0.01); L-NMMA reduced the small arterial vasodilatation (both P<0.01), whereas it increased (P<0.05) the ACh-induced coronary arteriolar vasodilatation associated with fluorescent H2O2 production after I/R. Catalase increased the small arterial vasodilatation (P<0.01) associated with fluorescent NO production and increased endothelial NOS expression, whereas it decreased the arteriolar response after I/R (P<0.01). L-NMMA+catalase, L-NMMA+TEA, or L-NMMA+catalase+8-SPT further decreased the coronary vasodilatation in both sized arteries (both, P<0.01). L-NMMA+catalase, L-NMMA+TEA, and L-NMMA+catalase+8-SPT significantly increased myocardial infarct area compared with the other four groups (control, L-NMMA, catalase, and 8-SPT; all, P<0.01). These results indicate that endogenous H2O2, in cooperation with NO, plays an important cardioprotective role in coronary I/R injury in vivo.  相似文献   

14.
Yang W  Li H  Luo H  Luo W 《Life sciences》2011,88(7-8):302-306
AimsThis study tested the hypothesis that the inhibition of semicarbazide-sensitive amine oxidase (SSAO) after ischemia could attenuate myocardial ischemia–reperfusion (I/R) injury.Main methodsAnesthetized male Sprague–Dawley rats underwent myocardial I/R injury. Saline, semicarbazide (SCZ, 30 mg/kg), hydralazine (HYD, 10 mg/kg), or LJP 1207 (30 mg/kg) was administered intraperitoneally 3 min before reperfusion. After 30 min of ischemia and 180 min of reperfusion, the myocardial infarct size was determined using nitroblue tetrazolium staining. Myocardial myeloperoxidase activity was determined through biochemical assay. HE staining was used for histopathological evaluation. Myocardial SSAO activity was assayed with high performance liquid chromatography analysis. Additionally, the endothelial expression of P-selectin was evaluated using immunohistochemistry after 30 min of ischemia and 20 min of reperfusion.Key findingsMyocardial SSAO activity was increased in myocardial I/R injury. Administration of SCZ, HYD, or LJP 1207 reduced the myocardial infarct size and decreased leukocyte infiltration and endothelial P-selectin expression in myocardial I/R injury in vivo.SignificanceThese data suggest that myocardial I/R injury up-regulates myocardial SSAO activity, and the inhibition of SSAO prior to reperfusion is able to attenuate acute myocardial I/R injury.  相似文献   

15.
核基质结合区对转基因表达的影响及其作用机制   总被引:12,自引:1,他引:12  
核基质结合区(matrix attachment region,MAR)是一段在体外能与核基质结合的富含AT的DNA序列。研究发现MAR能使染色质形成环状结构;将其连到目的基因二侧构建载体并转至生物体中,发现它能增强基因转录表达水平及稳定性,在一定程度上降低转基因个体或细胞系之间转基因的表达水平的差异,这很可能是减低了基因沉默所致。现对MAR的序列特征、MAR对转基因表达的影响及对转基因效应的影响机制进行综述。  相似文献   

16.
The myocardium generates inflammatory mediators during ischemia-reperfusion (I/R), and these mediators contribute to cardiac functional depression and apoptosis. The great majority of these data have been derived from male animals and humans. Sex has a profound effect over many inflammatory responses; however, it is unknown whether sex affects the cardiac inflammatory response to acute myocardial I/R. We hypothesized the existence of inherent sex differences in myocardial function, expression of inflammatory cytokines, and activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway after I/R. Isolated rat hearts from age-matched adult males and females were perfused (Langendorff), and myocardial contractile function was continuously recorded. After I/R, myocardium was assessed for expression of TNF-alpha, IL-1beta, and IL-6 (RT-PCR, ELISA); IL-1alpha and IL-10 mRNA (RT-PCR); and activation of p38 MAPK (Western blot). All indexes of postischemic myocardial function [left ventricular developed pressure, left ventricular end-diastolic pressure, and maximal positive (+dP/dt) and negative (-dP/dt) values of the first derivative of pressure] were significantly improved in females compared with males. Compared with males, females had decreased myocardial TNF-alpha, IL-1beta, and IL-6 (mRNA, protein) and decreased activation of p38 MAPK pathway. These data demonstrate that hearts from age-matched adult females are relatively protected against I/R injury, possibly due to a diminished inflammatory response.  相似文献   

17.
Cardiovascular disease is common in asthmatic patients but often is attributed to respiratory drug therapy. With mounting evidence for an inflammatory role in the development of cardiovascular disease, we hypothesized that the inflammation associated with asthma adversely affects the cardiovascular system independent of therapeutic interventions. The hypothesis was tested in a murine model of myocardial ischemia-reperfusion injury. BALB/C mice were sensitized by intraperitoneal injection of ragweed (RW) or normal saline (NS) and challenged by intratracheal instillation of RW or NS. Effective allergic sensitization and challenge were confirmed by hyperresponsiveness to aerosolized methacholine and bronchoalveolar lavage. In vivo myocardial ischemia-reperfusion injury was induced by ligation of the left anterior descending artery for 20 min, followed by reperfusion for 2 h. The infarct size (% risk area) and neutrophil density in the myocardial area at risk were significantly higher in the RW/RW group than in the control groups. The tissue neutrophil count correlated with the infarct size but did not correlate with blood neutrophil counts. Furthermore, in the RW/RW group, circulating granulocytes showed an enhanced expression of CD11b and P-selectin glycoprotein ligand-1, enhanced stimulated release of myeloperoxidase, and enhanced expression of P-selectin in the coronary vasculature. These results indicate that allergic responses in the airways enhance expression of attachment molecules in coronary vasculature and activate circulating neutrophils, resulting in recruitment of highly activated neutrophils to the infarct zone during an acute ischemia-reperfusion event, thereby enhancing tissue destruction.  相似文献   

18.
19.
We have demonstrated that tumor necrosis factor-alpha (TNF-alpha) pretreatment protected the rat heart from ischemia-reperfusion injury. This effect was monitored by assaying for lactate dehydrogenase (LDH), an enzyme whose release correlates with loss of cell membrane integrity. Intact hearts removed from rats pretreated with TNF-released significantly lower amounts of LDH compared to control hearts after 20 min. of total global ischemia followed by reperfusion. Hearts from TNF-alpha-pretreated animals contained higher levels of manganous superoxide dismutase (MnSOD) mRNA than hearts from untreated rats. Because oxygen free radicals have been implicated as a major cause of reperfusion damage and the function of MnSOD is to detoxify superoxide anions in the mitochondria, a possible protective mechanism for TNF-alpha may be to induce expression of MnSOD in the heart and thus confer resistance to oxygen free radicals generated during reperfusion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号