首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitivities of 2 cytogenetic tests, chromosome analysis and the micronucleus test, were compared by using mice exposed to the substances methyl methanesulfonate (MMS), mitomycin C (MC) and procarbazine (Natulan®). The lowest dose at which a significant effect could be observed in bone-marrow cells of mice was determined. Both test systems proved equally sensitive for MC and procarbazine. Doses as low as 0.16 mg of MC per kg and 3.12 mg of Natulan® per kg significantly increased both the aberration rates and the micronucleus rates above those of the controls. In contrast, after exposure to MMS, chromosomal aberrations were elevated above control levels at 5 mg/kg, and the micronucleus rate differed significantly from that of the controls after a dose of 10 mg/kg. With the present protocol and sample size one can conclude that the micronucleus test is generally comparable in sensitivity to the chromosome analysis. However, the MMS data indicate that there might be chemicals for which the resolution of the chromosome analysis is higher.

When the mutagens were given in 2 single i.p. injections separated by 24 h, the polychromatic erythrocytes were analyzed for the presence of micronuclei 6 or 24 h after the second injection. The double treatment did not increase the micronucleus rates above the single-treatment results at either sampling interval.  相似文献   


2.
Human sexual preference is a sexually dimorphic trait with a substantial genetic component. Linkage of male sexual orientation to markers on the X chromosome has been reported in some families. Here, we measured X chromosome inactivation ratios in 97 mothers of homosexual men and 103 age-matched control women without gay sons. The number of women with extreme skewing of X-inactivation was significantly higher in mothers of gay men (13/97=13%) compared to controls (4/103=4%) and increased in mothers with two or more gay sons (10/44=23%). Our findings support a role for the X chromosome in regulating sexual orientation in a subgroup of gay men.  相似文献   

3.
Fifty-two age-matched Alzheimer's disease (AD) patients (26 men, 26 women), mean age 76.2 years, were assessed with the Rivermead Behavioural Memory Test, a test of everyday memory, coincident with the measurement of plasma cortisol (CRT) and dehydroepiandrosterone sulfate (DHEAS) via radioimmunoassay. The AD patients were compared to a control group of age- and gender-matched healthy elderly men and women. No differences were found between the AD patients and the controls in DHEAS or CRT levels, or in the DHEAS/CRT ratio. There were no gender differences in DHEAS or CRT levels, or in the DHEAS/CRT ratio in subjects with AD. However, AD patients with higher levels of DHEAS scored better than those with lower levels on the subtests of Remembering a Name associated with a picture, Digit Span Total and Forward, and the Mini Mental Status Exam. AD patients with higher CRT levels performed worse on Delayed Route Recall than those with lower levels. These findings suggest that AD patients with higher endogenous levels of DHEAS may perform better on some memory tasks than those with lower levels, while AD patients with lower levels of CRT may perform better than those with higher CRT.  相似文献   

4.
Previous studies on lymphocytes have suggested that patients with head and neck squamous cell carcinoma (HNSCC) have an increased susceptibility for chromosomal damage induced by bleomycin, a known radiomimetic mutagen. However, it has so far not been possible to study whether this genetic instability is present also in the epithelial component of the upper aerodigestive tract mucosa, the tissue from which HNSCC originates. In the present study, we have successfully cultured epithelial cells and fibroblasts isolated from non-neoplastic mucosa samples of 30 HNSCC patients and 56 controls. All cell cultures were exposed to bleomycin and chromosome instability was assessed by analysis of chromosome breakage in cells harvested after 2h of exposure and subsequent removal of bleomycin. Furthermore, the status of the fragile histidine triad gene (FHIT) in chromosome band 3p14.2 was studied by fluorescence in situ hybridization (FISH) in epithelial cells that had been cultured after removal of bleomycin. Chromosomal damage, in the form of chromosomal breaks and gaps, was seen in all cell cultures harvested 2h after exposure to bleomycin. In epithelial cells, the frequency of chromosome breakage was significantly higher among HNSCC patients than among controls [mean breaks per cell (b/c) 1.02 vs. 0.77, p=0.02]. When subdivided according to smoking status, age, and sex, a significantly higher frequency of chromosome breakage was still found in HNSCC patients (smokers, p=0.01, age相似文献   

5.
Although the large majority of solid tumors show a combination of mitotic spindle defects and chromosomal instability, little is known about the mechanisms that govern the initial steps in tumorigenesis. The recent report of spindle-induced DNA damage provides evidence for a single mechanism responsible for the most prominent genetic defects in chromosomal instability. Spindle-induced DNA damage is brought about by uncorrected merotelic attachments, which cause kinetochore distortion, chromosome breakage at the centromere, and possible activation of DNA damage repair pathways. Although merotelic attachments are common early in mitosis, some escape detection by the kinetochore pathway. As a consequence, a proportion of merotelic attachments gives rise to chromosome breakage in normal cells and in carcinomas. An intrinsic chromosome segregation defect might thus form the basis of tumor initiation. We propose a hypothesis in which merotelic attachments and chromosome breakage establish a feedback loop that results in relaxation of the spindle checkpoint and suppression of anti-proliferative pathways, thereby promoting carcinogenesis.  相似文献   

6.
7.
The molecular dosimetry of methyl methanesulfonate (MMS) in the germ cells of male mice has been investigated. The mice were injected i.p. with 100 mg/kg of [3H]MMS and methylations per sperm head, per deoxynucleotide, and per unit of protamine were then determined over a 3-week period. The methylations per sperm head paralleled the dominant lethal frequency curve for MMS, reaching a maximum of between 22 and 26 million methylations per vas sperm head 8-11 days after treatment. Methylation of sperm DNA was greatest at 4 h (the earliest time point studied) after treatment, with 16.6 methylations/10(5) deoxynucleotides. DNA methylation gradually decreased during the subsequent 3-week period. The methylation of germ-cell DNA did not increase in the stages most sensitive to MMS (late spermatids leads to early spermatozoa) and was not correlated with the dominant lethal frequency curve for MMS. However, methylation of protamine did increase in the germ-cell stages most sensitive to MMS, and showed an excellent correlation with the incidence of dominant lethals produced by MMS in the different germ-cell stages. The pattern of alkylation produced by MMS in the developing germ-cell stages of the mouse is similar to that found for EMS. However, for equimolar exposures, MMS alkylates the germ cells 5-7 times more than does EMS. Hydrolyzed samples of protamine from [3H]MMS-exposed animals were subjected to thin-layer chromatography and amino acid analysis. Both procedures showed that most of the labeled material recovered from the hydrolysates co-chromatographed with authentic standards of S-methyl-L-cysteine. The amino acid analyses showed an average of approximately 80% of the labeled material eluting with S-methyl-L-cysteine. The mechanism of action of both MMS and EMS on the developing germ cells appears to be similar. The occurrence of S-methyl-L-cysteine as the major reaction product in sperm protamine after MMS exposure supports our initial model of how dominant lethals are induced in mouse germ cells by these chemicals: Alkylation of cysteine sulfhydryl groups contained in mouse-sperm protamine blocks normal disulfide-bond formation, preventing proper chromatin condensation in the sperm nucleus. Subsequent stresses produced in the chromatin structure eventually lead to chromosome breakage, with resultant dominant lethality.  相似文献   

8.
The effect of the use of an oral contraceptive (OC) on the frequency of sister chromatid exchanges (SCEs) and on the response in the alkaline comet assay (single-cell gel electrophoresis (SCGE)) was investigated in 18 women taking contraceptive pills daily for 24 months. As controls, fertile women were included with regular menstrual cycles who received no OC drugs. A significant increase in the number of lymphocytes with DNA migration and an increased frequency of SCE per metaphase were observed in OC users as compared with their age-matched untreated controls (P<0.005). As higher incidences of spontaneous SCEs in peripheral blood lymphocytes have been reported to occur in females during pregnancy due to profound changes in the levels of certain sex hormones such as progesterone and estrogen, particularly during the last trimester, 17 pregnant women served as positive controls in this study in order to test the rate of genetic damage due to those changes. Higher frequencies of SCEs and comet responses were observed in pregnant women than in their matched controls. However, no statistically significant difference in DNA damage was observed between OC users and pregnant women (P>0.05). This study underscores the fact that prolonged and extensive use of these drugs in our daily life may be hazardous and also, that OC users should be aware of multifactorial risk factors (environmental, genetic and life style patterns) that may be responsible for additional DNA damage.  相似文献   

9.
Increased micronucleated cell rates, dicentric chromosomes, and other chromosomal damages have been reported in lymphocytes of cancer patients prior to the initiation of chemotherapy, and/or radiotherapy. The cause of these chromosomal damages in these lymphocytes remains unclear. In the present work, we investigated whether these micronuclei mainly reflect structural or numerical chromosomal aberrations by applying the cytokinesis-blocked micronucleus (CBMN) assay in combination with fluorescent in situ hybridization (FISH) of a DNA centromeric probe on blood samples of 10 untreated cancer patients (UCPs), and 10 healthy subjects (HSs). Micronucleated binucleated lymphocyte rate was significantly increased in patients (mean+/-S.D.: 19.0 per thousand +/-14.1 versus 9.2 per thousand +/-4.6 in controls). Trinucleated cytokinesis-blocked cells were not significantly higher in patients than in controls. Acentromeric, centromeric, and multicentromeric micronucleus levels were two-fold higher in patients than in controls, but the difference was significant only with acentromeric micronuclei. The percentage of micronuclei containing one or more centromeres averaged 69.2, and 71.5% in patients, and controls, respectively. The percentage of micronuclei containing several centromeres was 44.7% in patients, and 54.6% in controls. Among centromere-positive micronuclei, the percentage of micronuclei containing several centromeres averaged 59.7% in patients, and 75.4% in controls. These results indicate that genetic instability in peripheral blood lymphocytes of UCPs occurs because of enhanced chromosome breakage. However, a substantial proportion of this genetic instability occurs because of defects in chromosome segregation.  相似文献   

10.
We have measured the levels of typical end products of the processes of lipid peroxidation, protein oxidation, and total antioxidant capacity (TAC) in skin fibroblasts and lymphoblasts taken from patients with familial Alzheimer's disease (FAD), sporadic Alzheimer's disease (AD), and age-matched healthy controls. Compared to controls, the fibroblasts and lymphoblasts carrying amyloid precursor protein (APP) and presenilin-1 (PS-1) gene mutations showed a clear increase in lipoperoxidation products, malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE). In contrast, the antioxidant defenses of cells from FAD patients were lower than those from normal subjects. Lipoperoxidation and antioxidant capacity in lymphoblasts from patients affected by sporadic AD were virtually indistinguishable from the basal values of normal controls. An oxidative attack on protein gave rise to greater protein carbonyl content in FAD patients than in age-matched controls. Furthermore, ADP ribosylation levels of poly(ADP-ribose) polymerase (PARP) nuclear substrates were significantly raised, whereas the PARP content did not differ significantly between fibroblasts carrying gene mutations and control cells. These results indicate that peripheral cells carrying APP and PS-1 gene mutations show altered levels of oxidative markers even though they are not directly involved in the neurodegenerative process of AD. These results support the hypothesis that oxidative damage to lipid, protein, and DNA is an important early event in the pathogenesis of AD.  相似文献   

11.
45S rDNA基因由串联重复序列构成,是遗传不稳定性的热点区域,易于发生DNA断裂和重组。以Hela和CHO细胞系为研究对象,运用荧光原位杂交技术检测有丝分裂不同时期的45S rDNA基因的不稳定性表型。结果表明,位点特异性的染色体浓缩失败是其在中期染色体上不稳定性的主要表型。具有这种表型的染色体在后期可能会出现落后或粘连现象,甚至有可能引发断裂,形成卫星核。同时,免疫荧光双染色技术检测表明DNA双链断裂的标记蛋白(γH2AX)和RNA聚合酶I的上游结合因子(UBF)在有丝分裂的不同时期都存在共定位现象。该结果为探讨45S rDNA基因的不稳定性与转录的关系提供了直观的细胞学证据。  相似文献   

12.
Summary To study mutagen-induced chromosome instability in cancer disposition, late S and G2 lymphocytes of 15 patients with common variable immunodeficiency and 14 healthy controls were exposed to bleomycin in vitro. The groups did not differ in the frequency of spontaneous chromosome aberrations. In bleomycin-treated samples we found higher numbers of break events per cell and increased frequency of cells with aberrations compared to the control group. A slightly reduced breakage of chromosome group D was noted in patients. These results support the hypothesis that a higher incidence of cancer in patients with genetically determined immunodeficiencies may be explained by an increased mutagen-induced chromosome instability in at least some of them.  相似文献   

13.
To further investigate our finding of high levels of spontaneous aneuploidy in somatic cells of Alzheimer's disease (AD) patients (Migliore et al. 1997), we studied the molecular cytogenetics of eight patients with sporadic AD and six healthy controls of similar age. Cytochalasin B-blocked binucleated peripheral blood lymphocytes from the AD patients and unaffected controls were used to measure micronucleus induction or other aneuploidy events, such as the presence of malsegregation in interphase nuclei (representing chromosome loss and gain). Dual-color fluorescence in situ hybridization (FISH) with differential labeled DNA probes was applied. We used a probe specific for the centromeres of chromosomes 13 and 21 combined with a single cosmid for the Down's syndrome region (21q22.2) to obtain information on spontaneous chromosome loss and gain frequencies for both chromosomes (13 and 21). FISH data showed that AD lymphocytes had higher frequencies of chromosome loss (evaluated as fluorescently labeled micronuclei) for both chromosomes, as well as higher frequencies of aneuploid interphase nuclei, again involving both chromosomes, compared to control lymphocytes. However, aneuploidy for chromosome 21 was more frequent than for chromosome 13 in AD patients. This preferential occurrence of chromosome 21 in malsegregation in somatic cells of AD patients raises the hypothesis that mosaicism for trisomy of chromosome 21 could underlie the dementia phenotype in AD patients, as well as in elderly Down's syndrome patients.  相似文献   

14.
The effect of the use of an oral contraceptive (OC) on the frequency of sister chromatid exchanges (SCEs) and on the response in the alkaline comet assay (single-cell gel electrophoresis (SCGE)) was investigated in 18 women taking contraceptive pills daily for 24 months. As controls, fertile women were included with regular menstrual cycles who received no OC drugs. A significant increase in the number of lymphocytes with DNA migration and an increased frequency of SCE per metaphase were observed in OC users as compared with their age-matched untreated controls (P<0.005). As higher incidences of spontaneous SCEs in peripheral blood lymphocytes have been reported to occur in females during pregnancy due to profound changes in the levels of certain sex hormones such as progesterone and estrogen, particularly during the last trimester, 17 pregnant women served as positive controls in this study in order to test the rate of genetic damage due to those changes. Higher frequencies of SCEs and comet responses were observed in pregnant women than in their matched controls. However, no statistically significant difference in DNA damage was observed between OC users and pregnant women (P>0.05). This study underscores the fact that prolonged and extensive use of these drugs in our daily life may be hazardous and also, that OC users should be aware of multifactorial risk factors (environmental, genetic and life style patterns) that may be responsible for additional DNA damage.  相似文献   

15.
Increasing evidence suggests that oxidative stress is associated with normal aging and several neurodegenerative diseases, including Alzheimer's disease (AD). Here we quantified multiple oxidized bases in nuclear and mitochondrial DNA of frontal, parietal, and temporal lobes and cerebellum from short postmortem interval AD brain and age-matched control subjects using gas chromatography/mass spectrometry with selective ion monitoring (GC/MS-SIM) and stable labeled internal standards. Nuclear and mitochondrial DNA were extracted from eight AD and eight age-matched control subjects. We found that levels of multiple oxidized bases in AD brain specimens were significantly (p < 0.05) higher in frontal, parietal, and temporal lobes compared to control subjects and that mitochondrial DNA had approximately 10-fold higher levels of oxidized bases than nuclear DNA. These data are consistent with higher levels of oxidative stress in mitochondria. Eight-hydroxyguanine, a widely studied biomarker of DNA damage, was approximately 10-fold higher than other oxidized base adducts in both AD and control subjects. DNA from temporal lobe showed the most oxidative damage, whereas cerebellum was only slightly affected in AD brains. These results suggest that oxidative damage to mitochondrial DNA may contribute to the neurodegeneration of AD.  相似文献   

16.
《Bioscience Hypotheses》2008,1(3):156-161
Chromosomal involvement is a legitimate, yet not well understood, feature of Alzheimer disease (AD). Firstly, AD affects more women than men. Secondly, the amyloid-β protein precursor genetic mutations, responsible for a cohort of familial AD cases, reside on chromosome 21, the same chromosome responsible for the developmental disorder Down's syndrome. Thirdly, lymphocytes from AD patients display a novel chromosomal phenotype, namely premature centromere separation (PCS). Other documented morphological phenomena associated with AD include the occurrence of micronuclei, aneuploidy, binucleation, telomere instability, and cell cycle re-entry protein expression. Based on these events, here we present a novel hypothesis that the time dimension of cell cycle re-entry in AD is highly regulated by centromere cohesion dynamics. In view of the fact that neurons can re-enter the cell division cycle, our hypothesis predicts that alterations in the signaling pathway leading to premature cell death in neurons is a consequence of altered regulation of the separation of centromeres as a function of time. It is well known that centromeres in the metaphase anaphase transition separate in a non-random, sequential order. This sequence has been shown to be deregulated in aging cells, various tumors, syndromes of chromosome instability, following certain chemical inductions, as well as in AD. Over time, premature chromosome separation is both a result of, and a driving force behind, further cohesion impairment, activation of cyclin dependent kinases, and mitotic catastrophe–a vicious circle resulting in cellular degeneration and death.  相似文献   

17.
Increased micronucleated cell rates, dicentric chromosomes, and other chromosomal damages have been reported in lymphocytes of cancer patients prior to the initiation of chemotherapy, and/or radiotherapy. The cause of these chromosomal damages in these lymphocytes remains unclear. In the present work, we investigated whether these micronuclei mainly reflect structural or numerical chromosomal aberrations by applying the cytokinesis-blocked micronucleus (CBMN) assay in combination with fluorescent in situ hybridization (FISH) of a DNA centromeric probe on blood samples of 10 untreated cancer patients (UCPs), and 10 healthy subjects (HSs). Micronucleated binucleated lymphocyte rate was significantly increased in patients (mean±S.D.: 19.0‰±14.1 versus 9.2‰±4.6 in controls). Trinucleated cytokinesis-blocked cells were not significantly higher in patients than in controls. Acentromeric, centromeric, and multicentromeric micronucleus levels were two-fold higher in patients than in controls, but the difference was significant only with acentromeric micronuclei. The percentage of micronuclei containing one or more centromeres averaged 69.2, and 71.5% in patients, and controls, respectively. The percentage of micronuclei containing several centromeres was 44.7% in patients, and 54.6% in controls. Among centromere-positive micronuclei, the percentage of micronuclei containing several centromeres averaged 59.7% in patients, and 75.4% in controls. These results indicate that genetic instability in peripheral blood lymphocytes of UCPs occurs because of enhanced chromosome breakage. However, a substantial proportion of this genetic instability occurs because of defects in chromosome segregation.  相似文献   

18.
We determined relationship among DNA damage, nitric oxide (NO) and antioxidant defense in leukocytes of patients with Type 1 DM. DNA damage was evaluated as strand breakage and formamidopyrimidine DNA glycosylase (Fpg)-sensitive sites by the comet assay in DNA from leukocytes of the subjects. Nitrite level, as a product of NO, superoxide dismutase (SOD) activity and glutathione peroxidase (G-Px) activity of the leukocytes were measured by spectrophotometric kits. Serum glucose level and glycosylated haemoglobin (HbA(1c)) were higher in the patients, as expected. Differences in measured parameters between controls and patients were assessed in men and women separately. There was no significant difference between patient and control groups in neither men nor women for nitrite level. Strand breakage and Fpg-sensitive sites were found to be increased, SOD and G-Px activities of the leukocytes were found to be decreased in both men and women of patient group as compared to their respective controls. Significant correlations were determined between strand breakage and HbA(1c) (r = 0.37, P<0.05); Fpg-sensitive sites and HbA(1c) (r = 0.59, P<0.01); Fpg-sensitive sites and glucose (r = 0.45, P<0.02); Fpg-sensitive sites and SOD (r = -0.48, P<0.02); HbA(1c) and SOD (r = -0.50, P<0.02). In conclusion, impaired antioxidant defense in leukocytes of patients with Type 1 DM may be one of the responsible mechanisms for increased DNA damage in those patients.  相似文献   

19.

Background

Maintenance of genome integrity is crucial for the propagation of the genetic information. Cdt1 is a major component of the pre-replicative complex, which controls once per cell cycle DNA replication. Upon DNA damage, Cdt1 is rapidly targeted for degradation. This targeting has been suggested to safeguard genomic integrity and prevent re-replication while DNA repair is in progress. Cdt1 is deregulated in tumor specimens, while its aberrant expression is linked with aneuploidy and promotes tumorigenesis in animal models. The induction of lesions in DNA is a common mechanism by which many cytotoxic anticancer agents operate, leading to cell cycle arrest and apoptosis.

Methodology/Principal Finding

In the present study we examine the ability of several anticancer drugs to target Cdt1 for degradation. We show that treatment of HeLa and HepG2 cells with MMS, Cisplatin and Doxorubicin lead to rapid proteolysis of Cdt1, whereas treatment with 5-Fluorouracil and Tamoxifen leave Cdt1 expression unaffected. Etoposide affects Cdt1 stability in HepG2 cells and not in HeLa cells. RNAi experiments suggest that Cdt1 proteolysis in response to MMS depends on the presence of the sliding clamp PCNA.

Conclusion/Significance

Our data suggest that treatment of tumor cells with commonly used chemotherapeutic agents induces differential responses with respect to Cdt1 proteolysis. Information on specific cellular targets in response to distinct anticancer chemotherapeutic drugs in different cancer cell types may contribute to the optimization of the efficacy of chemotherapy.  相似文献   

20.
Heterochromatin is considered to play a role in protecting the genome against mutagens. Changes in the quantity and proportion of different types of satellite DNA could increase genetic susceptibility in individuals with heterochromatic variations; they cause chromosome instability and predispose patients to malignancies. We evaluated the heterochromatin associated with chromosomes in 50 leukemia patients, 93 drug addicts and 93 healthy controls from Tehran, Iran. Barium hydroxide saline Giemsa staining was used to examine heterochromatin polymorphism of chromosomes 1, 9 and 16 in lymphocyte cultures. There were significant differences in this polymorphism in lymphocytes from drug addicts and leukemia patients compared to healthy controls. These polymorphisms could serve as markers for the detection and characterization of chromosome damage in leukemia patients and drug addicts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号