首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadmium biosorption by Saccharomyces cerevisiae   总被引:9,自引:0,他引:9  
Cadmium uptake by nonliving and resting cells of Saccharomyces cerevisiae obtained from aerobic or anaerobic cultures from pure cadmium-bearing solutions was examined. The highest cadmium uptake exceeding 70 mg Cd/g was observed with aerobic baker's yeast biomass from the exponential growth phase. Nearly linear sorption isotherms featured by higher sorbing resting cells together with metal deposits localized exclusively in vacuoles indicate the possibility of a different metal-sequestering mechanism when compared to dry nonliving yeasts which did not usually accumulate more than 20 mg Cd/g. The uptake of cadmium was relatively fast, 75% of the sorption completed in less than 5 min. (c) 1993 Wiley & Sons, Inc.  相似文献   

2.
The present study is aimed at assessing the ability of metal-resistant yeast, Candida tropicalis CBL-1, to uptake metal from liquid medium. The minimum inhibitory concentration of Cd(II) against Candida tropicalis CBL-1 was 2,800 mg/L. The yeast could also tolerate Zn(II) (3,100 mg/L), Hg(II) (2,400 mg/L), Ni(II) (2,200 mg/L), Cr(VI) (2,000 mg/L), Pb(II) (1,100 mg/L), and Cu(II) (2,200 mg/L). The yeast isolate showed typical growth curves but lag and log phases extended in the presence of cadmium. The yeast isolate showed optimum growth at 30oC and pH 7. The metal processing ability of the isolate was determined in a medium containing 100 mg/L of Cd(II). Candida tropicalis CBL-1, could reduce Cd(II) 59%, 64% and 70% from the medium after 48, 96 and 144 h, respectively. C. tropicalis CBL-1 was also able to remove Cd(II) 46% and 60% from the wastewater after 6 and 12 days, respectively. Cd produced an increase in glutathione and non-protein thiols level by 37% (17.50±0.8-24.0±1.2) and 18% (3.30±0.7- 3.90±0.8) at 100 mg/L concentration, respectively. Metal tolerance and accumulation together with changes in the GSH status and non-protein thiols under Cd exposure were studied in C. tropicalis.  相似文献   

3.
Development of xylose-fermenting yeast strains that are tolerant to the inhibitors present in lignocellulosic hydrolysates is crucial to achieve efficient bioethanol production processes. In this study, the importance of the propagation strategy for obtaining robust cells was studied. Addition of hydrolysate during propagation of the cells adapted them to the inhibitors, resulting in more tolerant cells with shorter lag phases and higher specific growth rates in minimal medium containing acetic acid and vanillin than unadapted cells. Addition of hydrolysate during propagation also resulted in cells with better fermentation capabilities. Cells propagated without hydrolysate were unable to consume xylose in wheat straw hydrolysate fermentations, whereas 40.3% and 97.7% of the xylose was consumed when 12% and 23% (v/v) hydrolysate, respectively, was added during propagation. Quantitative polymerase chain reaction revealed changes in gene expression, depending on the concentration of hydrolysate added during propagation. This study highlights the importance of using an appropriate propagation strategy for the optimum performance of yeast in fermentation of lignocellulosic hydrolysates.  相似文献   

4.
Three 5 l working volume fermenters were used to investigate the growth of the yeast Kluyveromyces fragilis in acid cheese whey under ambient temperature in order to assess the specific growth rate and yield, the lactose and oxygen uptake rates during the various phases of batch culture, the effect of increasing temperature on the various kinetic parameters, and the need for a cooling unit for single cell production batch systems. The initial dissolved oxygen in the medium was 5.5 mg l–1 and the pH was maintained at 4.5. The observed lag phase, specific growth rate and maximum cell number were 4 h, 0.2 h–1 and 8.4 × 108 cells ml–1, respectively. About 99% of the lactose in cheese whey was utilized within 20 h, 85% during the exponential growth phase. The specific lactose utilization rates by K. fragilis were 0.20 × 10–12, 1.457 × 10–12, 0.286 × 10–12 and 0.00 g lactose cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The dissolved oxygen concentration in the medium decreased as the cell number increased. The lowest oxygen concentration of 1.2 mg l–1 was observed during the stationary phase. The volumetric oxygen transfer coefficient was 0.41 h–1 and the specific oxygen uptake rates were 0.32 × 10–12, 2.14 × 10–12, 0.51 × 10–12 and 0.003 × 10–12 mg O2 cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The maximum temperature recorded for the medium was 33 °C, indicating that a cooling unit for batch production of single cell protein at ambient temperature is not needed for this type of bioreactor. The increase in medium temperature affected the cell growth and the lactose and oxygen uptake rates.  相似文献   

5.
When cultured in a defined citrate medium supplemented with 1 mM gallium (III) Pseudomonas fluorescens ATCC 13525 experienced a lag phase of 40 h with no apparent diminution in cellular yield. Following initial uptake of the metal-ligand complex, gallium was secreted in the spent fluid. This lag phase was abolished either by inoculating the medium with gallium adapted cells or by inclusion of iron (III) (20 microM) in the growth medium. In the culture enriched with both gallium and iron (III), X-ray fluorescence spectra revealed a gradual decrease of gallium from the spent fluid as growth progressed. In a phosphate deficient medium, no cellular multiplication was observed in the presence of gallium. The inhibitory influence mediated by the trivalent metal was reversed by the addition of (20 microM) iron (III). Although bacterial growth was accompanied by an initial decrease in exocellular gallium, a marked increment in the concentration of this metal was observed in the spent fluid at stationary phase of growth. Citrate was not detected in the exocellular fluid at cessation of bacterial multiplication. Electrophoretic analyses revealed numerous variations in the cytoplasmic protein profiles of the control and metal stressed cells. Gallium induced the syntheses of polypeptides with apparent molecular masses of 89 kDa, 50 kDa, 39 kDa, 26 kDa and 12 kDa.  相似文献   

6.
Adaptation of Tobacco Cells to NaCl   总被引:10,自引:8,他引:2       下载免费PDF全文
Cell lines of tobacco (Nicotiana tabacum L. var Wisconsin 38) were obtained which are adapted to grow in media with varying concentrations of NaCl, up to 35 grams per liter (599 millimolar). Salt-adapted cells exhibited enhanced abilities to gain both fresh and dry weight in the presence of NaCl compared to cells which were growing in medium without NaCl (unadapted cells). Tolerance of unadapted cells and cells adapted to 10 grams per liter NaCl was influenced by the stage of growth, with the highest degree of tolerance exhibited by cells in the exponential phase. Cell osmotic potential and turgor varied through the growth cycle of unadapted cells and cells at all levels of adaptation, with maximum turgor occurring at approximately the onset of exponential fresh weight accumulation.

Adaptation to NaCl led to reduced cell expansion and fresh weight gain, while dry weight gain remained unaffected. This reduction in cell expansion was not due to failure of the cells to maintain turgor since cells adapted to NaCl underwent osmotic adjustment in excess of the change in water potential caused by the addition of NaCl to the medium. Tolerance of the adapted cells, as indicated by fresh or dry weight gain, did not increase proportionately with the increase in turgor. Adaptation of these glycophytic cells to NaCl appears to involve mechanisms which result in an altered relationship between turgor and cell expansion.

  相似文献   

7.
AIMS: To evaluate a simple and economical technique to improve xylitol production using concentrated xylose solutions prepared from rice straw hemicellulosic hydrolysate. METHODS AND RESULTS: Experiments were carried out with rice straw hemicellulosic hydrolysate containing 90 g l-1 xylose, with and without the addition of nutrients, using the yeast Candida guilliermondii previously grown on the hydrolysate (adapted cells) or on semi-defined medium (unadapted cells). By this method, the yield of xylitol increased from 17 g l-1 to 50 g l-1, and xylose consumption increased from 52% to 83%, after 120 h of fermentation. The xylitol production rates were very close to that (0.42 g l-1 h-1) attained in a medium simulating hydrolysate sugars. CONCLUSION: Yeast strain adaptation to the hydrolysate showed to be a suitable method to alleviate the inhibitory effects of the toxic compounds. Adapted cells of Candida guilliermondii can efficiently produce xylitol from hydrolysate with high xylose concentrations. SIGNIFICANCE AND IMPACT OF THE STUDY: Yeast adaptation helps the bioconversion process in hydrolysate made from lignocellulosic materials. This low-cost technique provides an alternative to the detoxification methods used for removal of inhibitory compounds. In addition, the use of adapted inocula makes it possible to schedule a series of batch cultures so that the whole plant can be operated almost continuously with a concomitant reduction in the overall operation time.  相似文献   

8.
AIMS: The aim of the present study is to identify genes and proteins whose expression is induced in lager brewing yeast during the lag phase and early exponential growth. METHODS AND RESULTS: Two-dimensional gel electrophoresis was used to identify proteins induced during the lag and early exponential phase of lager brewing yeast in minimal medium. The identified, early-induced proteins were Ade17p, Eno2p, Ilv5gp, Sam1p, Rps21p and Ssa2p. For most of these proteins, the patterns of induction differed from those of the corresponding genes. However, the genes had similar early expression patterns in minimal medium as observed during lager brewing conditions. The expression of previously identified early-induced genes in Saccharomyces cerevisiae grown in minimal medium, ADO1, ALD6, ASC1, ERG4, GPP1, RPL25, SSB1 and YKL056C, was also early induced in lager yeast under brewing conditions. CONCLUSIONS: The results indicate that the above-mentioned genes in general are induced during the lag phase and early exponential growth in Saccharomyces yeasts. The processes in which these genes take part are likely to play an important role during growth initiation. SIGNIFICANCE AND IMPACT OF THE STUDY: Increased knowledge regarding the early growth phase of lager brewing yeast was obtained. Further, the universality of the identified expression patterns suggests new methodologies for optimization and control of growth initiation during brewing fermentations.  相似文献   

9.
The effect of some milk components on the cellular uptake of cadmium has been studied using a human intestinal cell line (Caco-2). Cadmium uptake by Caco-2 cells increased with the concentration of this metal in the culture medium, in a saturable way. These cells were exposed to different concentrations of cadmium and the synthesis of metallothionein was studied by a cadmium-saturation method. The levels of metallothionein increased with the cadmium concentration in the medium up to 20 μM of metal. Supplementation of the culture medium with 10% bovine milk caused a 25% decrease in the uptake of cadmium with respect to that internalized by the cells maintained in the culture medium alone. However, the uptake of cadmium from the medium supplemented with 10% human milk was similar to that with serum-free medium. β-Lactoglobulin interacted with cadmium when studied by equilibrium dialysis, showing a stoichiometric binding constant of 5 × 104l/mol. Interaction of lactoferrin with cadmium, however, was negligible. When Caco-2 cells were incubated in culture medium containing lactoferrin, cadmium uptake decreased with respect to that observed incubating the cells in a medium containing β-lactoglobulin or in the free-protein medium. The inhibitory effect of lactoferrin on the uptake of cadmium might be due to a reduction of the cell surface charge, through its binding to the membrane.  相似文献   

10.
Induction of acid tolerance response (ATR) of exponential-phase Escherichia coli K-12 cells grown and adapted at different conditions was examined. The highest level of protection against pH 2.5 challenges was obtained after adaptation at pH 4.5-4.9 for 60 min. To study the genetic systems, which could be involved in the development of log-phase ATR, we investigated the acid response of E. coli acid resistance (AR) mutants. The activity of the glutamate-dependent system was observed in exponential cells grown at pH 7.0 and acid adapted at pH 4.5 in minimal medium. Importantly, log-phase cells exhibited significant AR when grown in minimal medium pH 7.0 and challenged at pH 2.5 for 2 h without adaptation. This AR required the glutamate-dependent AR system. Acid protection was largely dependent on RpoS in unadapted and adapted cells grown in minimal medium. RpoS-dependent oxidative, glutamate and arginine-dependent decarboxylase AR systems were not involved in triggering log-phase ATR in cells grown in rich medium. Cells adapted at pH 4.5 in rich medium showed a higher proton accumulation rate than unadapted cells as determined by proton flux assay. It is clear from our study that highly efficient mechanisms of protection are induced, operate and play the main role during log-phase ATR.  相似文献   

11.
Toxic compounds including acids, furans, and phenols (AFP) were generated from the pretreatment of lignocellulose. We cultivated Saccharomyces cerevisiae cells in a batch mode, besides the cell culture of original yeast strain in AFP-free medium which was referred as C0, three independent subcultures were cultivated under multiple inhibitors AFP and were referred as C1, C2, and C3 in time sequence. Comparing to C0, the cell density was lowered while the ethanol yield was maintained stably in the three yeast cultures under AFP stress, and the lag phase of C1 was extended while the lag phases of C2 and C3 were not extended. In proteomic analysis, 194 and 215 unique proteins were identified as differently expressed proteins at lag phase and exponential phase, respectively. Specifically, the yeast cells co-regulated protein folding and protein synthesis process to prevent the generation of misfolded proteins and to save cellular energy, they increased the activity of glycolysis, redirected metabolic flux towards phosphate pentose pathway and the biosynthesis of ethanol instead of the biosynthesis of glycerol and acetic acid, and they upregulated several oxidoreductases especially at lag phase and induced programmed cell death at exponential phase. When the yeast cells were cultivated under AFP stress, the new metabolism homeostasis in favor of cellular energy and redox homeostasis was generated in C1, then it was inherited and optimized in C2 and C3, enabling the yeast cells in C2 and C3 to enter the exponential phase in a short period after inoculation, which thus significantly shortened the fermentation time.  相似文献   

12.
在培养基和食料中添加铅和镉对轮虫种群动态的影响   总被引:1,自引:0,他引:1  
由于工业活动的影响,墨西哥水体环境中的重金属浓度在上升.浮游动物,尤其是轮虫类,由于对环境变化十分敏感而且是淡水中的常见组成部分,因此被广泛用于生态毒理试验以确定水质标准.在不同的胁迫途径下(如通过培养基或食料),重金属的毒性是不同的.在本研究中,通过在轮虫Brachionus rubens的培养基和食料中添加重金属这两种途径,我们评估了镉和铅的效应.对于这两种重金属,均采用将轮虫置于含0.5×106个/ml绿藻的培养基中或每天喂食经5倍于LC50值的金属处理(1,2和4h)的绿藻.对于在培养基中添加镉,使用了三个毒性水平(0.1,0.2和0.4 mg/L),铅的浓度分别为0.005,0.010 和0.015 mg/L.基于LC50的数据,B.rubens对铅的敏感性要比镉高24倍.镉浓度为0.4 mg/L时,培养基中加入镉造成B.rubens的生长趋缓.而喂食经不同时间处理的绿藻后,轮虫的密度随着食料在重金属中处理时间的延长而减小.培养基中或食料中添加铅时,轮虫种群生长的的趋势与在镉处理下的情况类似.随着培养基中重金属浓度的增加,每天种群增长率(r值)会减小.在培养基和食料处理两种不同途径下,r值会在0.33(对照)到0.02 d-1(经重金属处理)间变化[动物学报 51(1)46-52,2005].  相似文献   

13.
In response to adaptation to NaCl, cultured tobacco cells (Nicotiana tabacum L. cv Wisconsin 38) synthesize a major 26 kilodalton protein which has been named osmotin due to its induction by low water potentials. To help characterize the expression of osmotin in adapted cells, a cDNA clone for osmotin has been isolated. Abscisic acid induces messenger RNA encoding osmotin. Levels of this mRNA in adapted cells are approximately 15-fold higher than in unadapted cells. Message for osmotin is present at constant levels through the growth cycle of adapted cells, while in unadapted cells, the level decreases during exponential phase of growth and increases again when the cells approach stationary phase. While abscisic acid induces the message for osmotin, a low water potential environment appears to be required for accumulation of the protein. An osmotic shock to unadapted cells does not increase the amount of message or protein present most likely because this treatment does not induce immediately the accumulation of abscisic acid. The increased expression of osmotin in adapted cells is not correlated with an increase in osmotin gene copy number. Osmotin is homologous to a 24 kilodalton NaCl-induced protein in tomato, as well as thaumatin, maize α-amylase/trypsin inhibitor and a tobacco mosaic virus-induced pathogenesis-related protein.  相似文献   

14.
Growth of the marine bacterium Deleya aesta in a succinate minimal medium showed increasingly long lag phases as Na was decreased below the optimum (200 to 500 mM). The minimum Na concentration permitting growth consistently was 15 mM. Supplementation of the medium with KHCO(3) (as a source of CO(2)) or yeast extract, especially in combination, reduced the lag phase, increased the rate of exponential growth, and allowed growth at 8 mM Na. KHCO(3) did not reduce the lag period but did increase the rate of exponential growth of Deleya venusta, Deleya pacifica, and Alteromonas haloplanktis 214. Yeast extract was active for all three. The effect of yeast extract on D. aesta could be reproduced by a mixture of amino acids approximating its amino acid composition. l-Alanine, l-aspartate, and l-methionine, in combination, were the most effective in reducing the lag phase, although not as effective as the complete mixture. Succinate, l-aspartate, and l-alanine were transported into the cells by largely independent pathways and oxidized at rates which were much lower at 10 than at 200 mM Na. l-Methionine was transported at a low rate in the absence of Na and at a higher rate at 10 mM but was not oxidized. Above 25 mM Na, the rate of transport of the carbon source was not the rate-limiting step for growth. It is concluded that a combination of transportable carbon sources reduced the lag period and increased the rate of exponential growth because they can be taken up independently and at low Na utilized simultaneously.  相似文献   

15.
The biosorption of cadmium and lead ions from artificial aqueous solutions using waste baker's yeast biomass was investigated. The yeast cells were treated with caustic, ethanol and heat for increasing their biosorption capacity and the highest metal uptake values (15.63 and 17.49 mg g(-1) for Cd(2+) and Pb(2+), respectively) were obtained by ethanol treated yeast cells. The effect of initial metal concentration and pH on biosorption by ethanol treated yeast was studied. The Langmuir model and Freundlich equation were applied to the experimental data and the Langmuir model was found to be in better correlation with the experimental data. The maximum metal uptake values (qmax, mg g(-1)) were found as 31.75 and 60.24 for Cd(2+) and Pb(2+), respectively. Competitive biosorption experiments were performed with Cd(2+) and Pb(2+) together with Cu(2+) and the competitive biosorption capacities of the yeast biomass for all metal ions were found to be lower than in non-competitive conditions.  相似文献   

16.
1. Changes in dry weight, protein, RNA and DNA were measured in yeast during adaptation to glycolytic metabolism. 2. Only RNA increased significantly during the lag phase, but during the exponential phase all these cellular components increased in parallel. 3. The concentrations of ATP, ADP, AMP and glucose 6-phosphate were measured in respiring yeast and during the transition to glycolytic metabolism. 4. In respiring cells the concentration of AMP was at its highest and that of ATP was at its lowest; this relationship was reversed in glycolysing cells. 5. ADP concentration was similar in respiring and glycolysing cells, but glucose 6-phosphate concentration was much higher in the glycolysing cells. 6. A possible reason for mitochondrial repression is suggested. 7. It is concluded that adenosine phosphates do not control the direction of glycolytic flux in yeast and an alternative control of glycolysis and gluconeogenesis by enzyme activation and inactivation is suggested.  相似文献   

17.
Summary A heavy metal resistant bacterium, Bacillus circulans strain EB1 showed a high cadmium biosorption capacity coupled with a high tolerance to this metal when grown in its presence. Bacillus circulans EB1 cells grown in the presence of 28.1 mg cadmium/l were capable of removing cadmium with a specific biosorption capacity of 5.8 mg Cd/g dry wt biomass in the first 8 h. When the cells were pre-conditioned with low concentrations of cadmium in pre-grown medium, the uptake was increased to 6.7 mg Cd/g dry wt biomass. The maximum uptake of␣cadmium was during mid-logarithmic phase of growth. The resting cells (both wet and dry) of EB1 were also able to biosorb cadmium. Specific biosorption capacities of wet and dry biomass were 9.8 and 26.5 mg Cd/g dry wt biomass, respectively. Maximum cadmium removals by both wet and dry cells were at pH 7.0. The results showed that the cadmium removal capacity of resting cells was markedly higher than that of growing cells. Since both growing and resting cells had a high biosorption capacity for cadmium, EB1 cells could serve as an excellent biosorbent for removal of cadmium from natural environments.  相似文献   

18.
The fission yeast Schizosaccharomyces pombe detoxifies cadmium by synthesizing phytochelatins, peptides of the structure (gamma-GluCys)nGly, which bind cadmium and mediate its sequestration into the vacuole. The fission yeast protein HMT2, a mitochondrial enzyme that can oxidize sulphide, appears to be essential for tolerance to multiple forms of stress, including exposure to cadmium. We found that the hmt2- mutant is unable to accumulate normal levels of phytochelatins in response to cadmium, although the cells possess a phytochelatin synthase that is active in vitro. Radioactive pulse-chase experiments demonstrated that the defect lies in two steps: the synthesis of phytochelations and the upregulation of glutathione production. Phytochelatins, once formed, are stable. hmt2- cells accumulate high levels of sulphide and, when exposed to cadmium, display bright fluorescent bodies consistent with cadmium sulphide. We propose that the precipitation of free cadmium blocks phytochelatin synthesis in vivo, by preventing upregulation of glutathione production and formation of the cadmium-glutathione thiolate required as a substrate by phytochelatin synthase. Thus, although sulphide is required for phytochelatin-mediated metal tolerance, aberrantly high sulphide levels can inhibit this pathway. Precise regulation of sulphur metabolism, mediated in part by HMT2, is essential for metal tolerance in fission yeast.  相似文献   

19.
Ehrlich ascites tumor cells accumulate cadmium against a concentration gradient in a bisphasic uptake process. There is little efflux of the metal from preloaded cells into a cadmium-free medium. Incorporation of 3H-thymidine into DNA is markedly inhibited by cadmium ion at 5-100 ng atoms of Cd/mg of cell protein, but uptake of the nucleoside label into cells is not depressed in this concentration range. Cell respiration is much less affected by cadmium ion despite the sensitivity of isolated mitochondria to the metal. Model experiments using several cadmium complexes with known conditional formation constants show that bovine heart mitochondria have strong affinity for cadmium ion. The contrast between this result and the resistance of cells to respiratory inhibition with cadmium ion is discussed to illustrate the difficulty in relating in vitro studies to the cell. The behavior of cadmium ion with the Ehrlich cell is compared with data for zinc ion to reveal similarities in inhibition of nucleoside metabolism and respiration but a sharp difference in transport properties.  相似文献   

20.
The effects of copper and zinc on Spirulina platensis (Nordst.) Geitl. growth and the capability of this cyanobacterium for accumulation of these heavy metals (HMs) were studied. S. platensis tolerance to HMs was shown to depend on the culture growth phase. When copper was added during the lag phase, its lethal concentration was 5 mg/l, whereas 4 mg/l were lethal during the linear growth phase. Zinc concentration of 8.8 mg/l was lethal during the linear but not lag phase of growth. HM-treated S. platensis cells were capable for accumulation of tenfold more copper and zinc than control cells. Independently of Cu2+ content in the medium and of the growth phase, cell cultures accumulated the highest amount of this metal as soon as after 1 h, which may be partially determined by its primary sorption by cell-wall polysaccharides. A subsequent substantial decrease in the intracellular copper content occurred due to it secretion, which was evident from the increased metal concentration in the culturing medium. When zinc was added during the linear growth phase, similar pattern of its accumulation was observed: the highest content after 1 h and its subsequent decrease to the initial level. When the initial density of the culture was low and the cells had much time to adapt to HM, zinc accumulated during the entire linear growth phase, and thereafter the metal was secreted to the medium. The mechanisms of S. platensis tolerance to HM related to both their sorption by the cell walls and secretion of metal excess into the culturing medium and its conversion into the form inaccessible for the cells are discussed.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 259–265.Original Russian Text Copyright © 2005 by Nalimova, Popova, Tsoglin, Pronina.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号